JPH07206545A - High-thermal insulation molded form containing low thermally conductive polymer capsule - Google Patents

High-thermal insulation molded form containing low thermally conductive polymer capsule

Info

Publication number
JPH07206545A
JPH07206545A JP26838894A JP26838894A JPH07206545A JP H07206545 A JPH07206545 A JP H07206545A JP 26838894 A JP26838894 A JP 26838894A JP 26838894 A JP26838894 A JP 26838894A JP H07206545 A JPH07206545 A JP H07206545A
Authority
JP
Japan
Prior art keywords
polymer capsule
thermal conductivity
thermal insulation
less
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26838894A
Other languages
Japanese (ja)
Inventor
Seiichi Fukunaga
精一 福永
Jun Akai
潤 赤井
Yoshiyuki Nakai
良之 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP26838894A priority Critical patent/JPH07206545A/en
Publication of JPH07206545A publication Critical patent/JPH07206545A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the subject molded form having advantageous properties of both inorganic and organic thermal insulation materials, excellent in thermal insulation, mechanical strength and flame resistance. CONSTITUTION:This high-thermal insulation molded form is composed of 100 pts.wt. of silica and/or calcium silicate crystal form and 5 300 pts.wt. of polymer capsules containing >=30vol.% of a gas <=0.02kcal/mh deg.C in thermal conductivity and having a particle diameter of <=500mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は断熱性が低い、脆くて割
れやすい等の無機系断熱材のもつ欠点、および火炎にあ
たると溶融、変形する等の有機系断熱材のもつ欠点を解
消した新規な高断熱性成形体に関する。
INDUSTRIAL APPLICABILITY The present invention overcomes the drawbacks of inorganic heat insulating materials such as low heat insulation, brittleness and cracking, and organic heat insulating materials such as melting and deformation when hit by a flame. High heat insulating molded article.

【0002】[0002]

【従来の技術】戸建住宅における断熱方法のほとんどは
10Kタイプ(密度 10kg/m3)のグラスウールを断熱材
として使用しているが、断熱性能が低く(熱伝導率λ=
0.045kcal/mh℃)、省エネルギー対応のため断熱材の
厚みを大きくする必要があり、居住空間が狭くなつてし
まう欠点がある。そのほか珪酸カルシウム等の無機系の
断熱材も市販されているが、熱伝導率λ=0.032〜0.045
kcal/mh℃レベルで断熱性能は改善されている。しかし
特に断熱性能の良い材料では空間率を大きくして空気の
断熱性を利用するため空間率を大きくとり比重を小さく
しているが、無機系材料では脆くて割れやすい欠点があ
り、むやみに空間率を大きくすることができず限界があ
る。一方、有機系では発泡ポリウレタン、ポリスチレン
等が市販されており弾性があり強度が大きいので加工性
に優れ断熱性能も優れている反面、火炎があたると溶
融、変形する欠点がある。
2. Description of the Related Art Most of the heat insulation methods in detached houses
Although 10K type (density 10 kg / m 3 ) glass wool is used as a heat insulating material, its heat insulating performance is low (thermal conductivity λ =
(0.045 kcal / mh ℃), it is necessary to increase the thickness of the heat insulating material in order to save energy, which has the drawback of reducing the living space. In addition, inorganic heat insulating materials such as calcium silicate are also commercially available, but the thermal conductivity λ = 0.032 to 0.045
Insulation performance is improved at kcal / mh ℃ level. However, especially for materials with good heat insulation performance, the space ratio is made large and the specific gravity is made small in order to utilize the heat insulation of air, but inorganic materials have the drawback of being brittle and easily cracked, which makes the space unnecessarily vulnerable. There is a limit because the rate cannot be increased. On the other hand, in the organic type, foamed polyurethane, polystyrene, etc. are commercially available and have elasticity and high strength, so that they are excellent in workability and have excellent heat insulating performance, but on the other hand, they have a drawback that they are melted and deformed when exposed to a flame.

【0003】また無機系と有機系の複合体として、セメ
ントや発泡セメントに発泡ポリスチレンビーズのような
有機発泡ビーズを混入する方法も提案されているが、断
熱性能を良くするためには有機発泡ビーズを多量に入れ
なければならず、体積の大部分を有機発泡ビーズが占
め、バインダーとなるべきセメントの結合量が少なくな
り、極めて強度の弱い、また耐火炎性のない断熱材とな
るので、一般的には少量の有機発泡ビーズに留め、セメ
ントや発泡セメントの断熱性能を多少改良する程度にな
つているにすぎない。
As a composite of an inorganic type and an organic type, a method of mixing organic foamed beads such as expanded polystyrene beads into cement or foamed cement has been proposed, but in order to improve heat insulation performance, organic foamed beads are used. Since a large amount of organic foam beads occupy most of the volume, the amount of cement that should serve as a binder is reduced, and it becomes an insulating material with extremely weak strength and no flame resistance. In general, it is only limited to a small amount of organic foam beads to improve the heat insulation performance of cement and foam cement to some extent.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は断熱
性、強度、耐火炎性のいずれにも優れた無機系及び有機
系断熱材の両方の有利な特性を備えた高断熱性成形体を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly heat-insulating molded article having advantageous properties of both inorganic and organic heat insulating materials which are excellent in heat insulation, strength and flame resistance. To provide.

【0005】[0005]

【課題を解決するための手段】本発明は珪酸及び/又は
珪酸カルシウム結晶体 100重量部に対し、熱伝導率が0.
02kcal/mh℃以下の気体を30vol%以上含有する気体を
封じ込めた粒子径が500μm以下のポリマーカプセルを5
〜300重量部含有することを特徴とする高断熱性成形体
に係る。
The present invention has a thermal conductivity of 0. 0 with respect to 100 parts by weight of silica and / or calcium silicate crystals.
5 polymer capsules with a particle size of 500 μm or less that contain gas containing 30 vol% or more of 02 kcal / mh ° C or less
The present invention relates to a highly heat-insulating molded article, characterized in that it is contained in an amount of 300 parts by weight.

【0006】本発明は珪酸及び/又は珪酸カルシウム結
晶体とポリマーカプセルとを凝集させて成形体としたも
ので、ポリマーカプセルに低熱伝導率の気体を封じ込め
ることによつて高断熱性能が得られる。
The present invention is a molded product obtained by aggregating a silicic acid and / or calcium silicate crystal and a polymer capsule, and high heat insulation performance can be obtained by enclosing a gas having a low thermal conductivity in the polymer capsule.

【0007】ポリマーカプセルに封じ込められた気体の
熱伝導率が0.02kcal/mh℃を越えたり、熱伝導率が0.02
kcal/mh℃以下の気体の含有量が30vol%未満である
と、空気の熱伝導率 0.0208kcal/mh℃と差がなくな
り、低熱伝導率を有する断熱材を得ることができない。
ポリマーカプセルに封じ込められる気体の好ましい熱伝
導率は0.02kcal/mh℃以下であり、更に0.012〜0.0001kc
al/mh℃の範囲が好ましい。このような気体のポリマー
カプセル中の気体に占める割合は30〜100vol%が好まし
く、更には60〜100vol%が好ましい。
The thermal conductivity of the gas contained in the polymer capsule exceeds 0.02 kcal / mh ° C., and the thermal conductivity is 0.02 kcal / mh ° C.
When the gas content of kcal / mh ° C or less is less than 30 vol%, the thermal conductivity of air is equal to 0.0208 kcal / mh ° C, and a heat insulating material having a low thermal conductivity cannot be obtained.
The preferred thermal conductivity of the gas contained in the polymer capsule is 0.02 kcal / mh ° C or lower, and 0.012 to 0.0001 kc.
A range of al / mh ° C is preferred. The proportion of such gas in the gas in the polymer capsule is preferably 30 to 100 vol%, more preferably 60 to 100 vol%.

【0008】ポリマーカプセルの粒子径が500μmを越え
ると、ポリマーカプセル内の気体が対流を起こし、これ
により熱伝導率が大きくなつてしまう。また珪酸や珪酸
カルシウム結晶体のサイズに比べ大きすぎるため、また
添加量が300重量部を越えると、珪酸カルシウム結晶同
士の繋がりが粗となり、成形体となし得ない。また添加
量が5重量部未満であると、ポリマーカプセルに封じ込
めた低熱伝導率の気体の効果が少なく、高断熱性能が得
られない。ポリマーカプセルの粒子径は5〜500μmが好
ましく、特に10〜100μmの範囲が好ましい。
If the particle size of the polymer capsule exceeds 500 μm, the gas in the polymer capsule causes convection, which increases the thermal conductivity. Further, since the size is too large compared to the size of the silicic acid or calcium silicate crystals, if the addition amount exceeds 300 parts by weight, the connection between the calcium silicate crystals becomes rough and it cannot be made into a compact. If the amount added is less than 5 parts by weight, the effect of the low thermal conductivity gas contained in the polymer capsule is small and high heat insulation performance cannot be obtained. The particle size of the polymer capsule is preferably 5 to 500 μm, and particularly preferably 10 to 100 μm.

【0009】本発明に用いる粒子径500μm以下のポリマ
ーカプセルの作成方法としては化学的方法(界面重合
法、液中硬化被覆法など)、物理化学的方法(層分離
法、液中乾燥法、融解分散冷却法、内包物交換法な
ど)、機械的物理的方法(粉床法、気中懸濁被覆法、ス
プレードライング法、真空蒸着被覆法、静電的合体法な
ど)を挙げることができ、本発明の目的にかなうもので
あれば特に限定されるものではないが、好ましくは界面
重合法を応用した以下の方法が良い。
As a method for producing a polymer capsule having a particle diameter of 500 μm or less used in the present invention, a chemical method (interfacial polymerization method, in-liquid curing coating method, etc.), a physicochemical method (layer separation method, in-liquid drying method, melting method) Dispersion cooling method, inclusion exchange method, etc.), mechanical and physical methods (powder bed method, air suspension coating method, spray drying method, vacuum deposition coating method, electrostatic coalescence method, etc.), The method is not particularly limited as long as it meets the purpose of the present invention, but the following method applying the interfacial polymerization method is preferable.

【0010】即ち、揮発性溶液を水中に数10μmの粒子
状に分散させ、その粒子の表面にポリマーを重合生成さ
せポリマーカプセル前駆体とした後、この揮発性溶液の
沸点以上で且つポリマーの軟化点以上に加熱することに
よつて揮発性溶液が揮発膨張し、カプセルを膨張させる
ことによつてポリマーカプセルが得られる。本発明では
この揮発性溶液に、気体状態での熱伝導率が0.02kcal/
mh℃以下であるものを選択する。熱伝導率が0.02kcal/
mh℃以下の気体としては、例えば炭酸ガス、水蒸気等の
無機物を始め、プロパン、ブタン、ペンタン、ヘキサ
ン、ヘプタン、オクタン等の低分子量の脂肪族炭化水素
や石油エーテル、メチルシラン、代替フロン,パーフル
オロ脂肪族炭化水素等が挙げられる。代替フロンとして
はジクロロトリフルオロエタン(HCFC−123)、ジ
クロロフルオロエタン(HCFC 141b)、ジフルオロ
エタン(HFC−152a)、テトラフルオロエタン(HF
C 134a)等を、パーフルオロ脂肪族炭化水素としては
512(住友スリーエム株式会社製、PF−5050)、
614(住友スリーエム株式会社製、PF−5060)、
716(住友スリーエム株式会社製、PF−5070)等
を挙げることができる。
That is, a volatile solution is dispersed in water in the form of particles of several tens of μm, a polymer is polymerized on the surface of the particles to form a polymer capsule precursor, and the polymer is softened above the boiling point of the volatile solution. The volatile solution is volatilized and expanded by heating above the point, and the polymer capsule is obtained by expanding the capsule. In the present invention, this volatile solution has a thermal conductivity of 0.02 kcal /
Select one that is below mh ° C. Thermal conductivity is 0.02kcal /
Examples of gases at mh ° C and below include inorganic substances such as carbon dioxide and water vapor, low molecular weight aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane and octane, petroleum ether, methylsilane, alternative CFCs and perfluorocarbons. Aliphatic hydrocarbons and the like can be mentioned. Dichlorotrifluoroethane (HCFC-123), dichlorofluoroethane (HCFC 141b), difluoroethane (HFC-152a), tetrafluoroethane (HF)
C134a) and the like are C 5 F 12 (PF-5050 manufactured by Sumitomo 3M Limited) as a perfluoroaliphatic hydrocarbon,
C 6 F 14 (manufactured by Sumitomo 3M Co., Ltd., PF-5060),
C 7 F 16 (PF-5070 manufactured by Sumitomo 3M Limited) and the like can be mentioned.

【0011】一方ポリマーカプセルのカプセルの材質と
しては封じ込めた気体がカプセル膜を通して揮散してい
かないように、ガス透過性の小さいポリマーが好まし
い。例えば、ポリ塩化ビニリデン、ポリアクリロニトリ
ル、ポリビニルアルコール、ポリイミド等が好ましい。
On the other hand, as the material of the capsule of the polymer capsule, a polymer having a small gas permeability is preferable so that the enclosed gas does not vaporize through the capsule membrane. For example, polyvinylidene chloride, polyacrylonitrile, polyvinyl alcohol, polyimide and the like are preferable.

【0012】本発明において珪酸としては気相法で作ら
れた平均粒径1μm以下の微粉末シリカが好適に用いら
れる。これは特開平5−194058号に示されるよう
に平均粒子径1μm以下であると、これと粒子径 500μm
以下の合成樹脂発泡体(ポリマーカプセル)とを水を加
えてスラリー状で混合した後、水分を乾燥により除去す
ることにより、容易に低比重、高強度な成形体が得られ
るからである。珪酸の平均粒子径は0.007〜1μmが好ま
しく、特に0.01〜0.05μmが好ましい。
In the present invention, as the silicic acid, fine powder silica having an average particle diameter of 1 μm or less, which is produced by a vapor phase method, is preferably used. When the average particle size is 1 μm or less as shown in JP-A-5-194058, the average particle size is 500 μm.
This is because a molded product having low specific gravity and high strength can be easily obtained by adding water to the following synthetic resin foam (polymer capsule) and mixing them in a slurry state, and then removing water by drying. The average particle size of silicic acid is preferably 0.007 to 1 μm, and particularly preferably 0.01 to 0.05 μm.

【0013】一方、本発明に用いられる珪酸カルシウム
結晶体は珪酸と石灰を水中に分散させたものを水熱反応
させることにより合成される。針状のゾノトライト結晶
は水熱反応条件を180℃以上且つ10気圧以上とすること
で合成され、さらに水熱反応中に撹拌することによつて
ゾノトライト結晶体が凝集したものが得られるが、この
ようなものが好ましい。
On the other hand, the calcium silicate crystal used in the present invention is synthesized by hydrothermally reacting a dispersion of silicic acid and lime in water. Needle-shaped xonotlite crystals are synthesized by setting the hydrothermal reaction conditions to 180 ° C or higher and 10 atm or higher, and by further stirring during the hydrothermal reaction, zonotolite crystal aggregates can be obtained. Such is preferable.

【0014】本発明の成形体は、例えば水熱反応で合成
した珪酸カルシウム結晶体のスラリーとポリマーカプセ
ルとを混合し、脱水成形した後、乾燥させることによつ
て得られる。珪酸や、珪酸カルシウムスラリーとポリマ
ーカプセルを混合するとき、ガラス繊維、炭素繊維、ビ
ニロン繊維、ロツクウール等の繊維質のものを添加した
り、炭酸カルシウム、珪砂、クレー等の粒状充填材を加
えることもできる。また、凝集材やポリマーエマルジヨ
ン、界面活性剤等を添加することもできる。更に高断熱
性成形体の表面に、紙、金属板、石膏ボード等を接着剤
で接着したり、無機、有機系塗料を塗布することによつ
て表面を改質することもできる。
The molded product of the present invention is obtained, for example, by mixing a slurry of calcium silicate crystal synthesized by hydrothermal reaction with a polymer capsule, dehydrating and molding, and then drying. When mixing silicic acid or calcium silicate slurry with polymer capsules, it is possible to add fiber materials such as glass fiber, carbon fiber, vinylon fiber and rock wool, or to add granular fillers such as calcium carbonate, silica sand and clay. it can. Further, an aggregating agent, a polymer emulsion, a surfactant or the like can be added. Further, it is possible to modify the surface by adhering paper, a metal plate, a gypsum board or the like to the surface of the highly heat insulating molded product with an adhesive, or by applying an inorganic or organic paint.

【0015】本発明の高断熱性成形体においては、ポリ
マーカプセルを珪酸あるいは珪酸カルシウム結晶体で包
み込むようになつて繋がつている。そのため、ポリマー
カプセルが例えば火災等によつて、燃焼してしまつて
も、珪酸あるいは珪酸カルシウム結晶体のみで成形体の
形状を維持することができ、住宅用建材として安全性の
高い性能を有するものである。
In the highly heat-insulating molded article of the present invention, the polymer capsules are linked by being surrounded by a silicic acid or calcium silicate crystal. Therefore, even if the polymer capsule burns due to, for example, a fire, the shape of the molded body can be maintained only with the silicic acid or calcium silicate crystal, and it has a highly safe performance as a building material for houses. Is.

【0016】[0016]

【実施例】以下に実施例及び比較例を挙げて本発明を更
に詳しく説明する。単に部及び%とあるのはそれぞれ重
量部及び重量%を示す。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. Only parts and% refer to parts by weight and% by weight, respectively.

【0017】A.珪酸カルシウム結晶体スラリー(CS
−1)の作成 珪酸(ホワイトカーボン)77.5部、消石灰 97.5部に水
3500部を加えて撹拌混合したものをオートクレーブ中に
入れ、200℃、15気圧で5時間、200回転/分で撹拌しな
がら水熱反応させると30μmの粒子径に凝集した、固形
分5%のスラリー状のゾノトライト結晶体が得られた。 B.珪酸スラリー(SA−1) 気相法で作られた珪酸として、AEROSIL 200(日
本アエロジル、平均粒子径 0.012μm)100部に水 900部
を加えた固形分10%のスラリーを使用した。 C.ポリマーカプセル(PC−1)の作成 シクロペンタン(熱伝導率 0.0095kcal/mh℃)を水中に
50μmの粒子状に分散させ、その粒子表面にポリ塩化ビ
ニリデンを重合生成させた後、水分を除去し、粉体状の
ポリマーカプセル前駆体を得た。このポリマーカプセル
前駆体を100℃の飽和水蒸気下で加熱して膨張させ、平
均粒子径 40μmで嵩比重 0.02のポリマーカプセルを得
た。このポリマーカプセルに封じ込められた気体のシク
ロペンタンの割合は90vol%であつた。
A. Calcium silicate crystal slurry (CS
-1) Preparation of silicic acid (white carbon) 77.5 parts, slaked lime 97.5 parts water
After adding 3500 parts and stirring and mixing, the mixture was placed in an autoclave and hydrothermally reacted at 200 ° C. and 15 atm for 5 hours with stirring at 200 rpm to agglomerate to a particle size of 30 μm, with a solid content of 5%. A slurry of zonotolite crystals was obtained. B. Silicic Acid Slurry (SA-1) As the silicic acid prepared by the vapor phase method, a slurry having a solid content of 10% was used, in which 900 parts of water was added to 100 parts of AEROSIL 200 (Japan Aerosil, average particle diameter 0.012 μm). C. Preparation of polymer capsule (PC-1) Cyclopentane (thermal conductivity 0.0095kcal / mh ℃) in water
The particles were dispersed in a particle size of 50 μm, and polyvinylidene chloride was polymerized on the surface of the particles, and then water was removed to obtain a powdery polymer capsule precursor. The polymer capsule precursor was heated and expanded under saturated steam at 100 ° C. to obtain a polymer capsule having an average particle diameter of 40 μm and a bulk specific gravity of 0.02. The proportion of gaseous cyclopentane contained in this polymer capsule was 90 vol%.

【0018】実施例1〜4 Aで作成したスラリー(CS−1)に、Cで作成したポ
リマーカプセル(PC−1)を加え、よく混合した後、
120φの型中に入れ、0.6kg/cm2の圧力で脱水成形した
後、100℃のオーブン中に10時間放置し、乾燥させて成
形体を得た。結果を表1に示す。
Examples 1 to 4 The polymer capsule (PC-1) prepared in C was added to the slurry (CS-1) prepared in A and mixed well,
It was put in a 120φ mold, dehydrated and molded at a pressure of 0.6 kg / cm 2 , then left in an oven at 100 ° C for 10 hours and dried to obtain a molded body. The results are shown in Table 1.

【0019】実施例5〜7 Bで作成したスラリー(SA−1)に、Cで作成したポ
リマーカプセル(PC−1)を加え、よく混合した後、
120φの型中に入れ、40℃、24時間及び105℃、24時間放
置して乾燥させて成形体を得た。結果を表1に示す。
Examples 5 to 7 The polymer capsule (PC-1) prepared in C was added to the slurry (SA-1) prepared in B and mixed well.
It was put in a 120φ mold and left to dry at 40 ° C. for 24 hours and 105 ° C. for 24 hours to obtain a molded body. The results are shown in Table 1.

【0020】実施例8〜9 シクロペンタンの代りにn−ペンタン(熱伝導率 0.011
kcal/mh℃)を用いた以外は上記Cと同様にしてn−ペ
ンタンを50vol%含有する平均粒子径 20μmのポリマー
カプセル(PC−2,実施例8)と60μmのポリマーカ
プセル(PC−3,実施例9)を得た。このポリマーカ
プセルを用いた以外は上記実施例5又は実施例1と同様
にして成形体を得た。結果を表2に示す。
Examples 8 to 9 Instead of cyclopentane, n-pentane (heat conductivity 0.011
kcal / mh ° C.), except that the above-mentioned C was used, a polymer capsule containing 50 vol% of n-pentane and having an average particle size of 20 μm (PC-2, Example 8) and a polymer capsule of 60 μm (PC-3, Example 9) was obtained. A molded body was obtained in the same manner as in Example 5 or Example 1 except that this polymer capsule was used. The results are shown in Table 2.

【0021】実施例10〜11 シクロペンタンの代りにPF−5050(C512、熱伝導
率 0.000414kcal/mh℃)を用いた以外は上記Cと同様
にしてパーフルオロ脂肪族炭化水素を80vol%含有する
平均粒子径 120μmのポリマーカプセル(PC−4)を
得た。このポリマーカプセルを用いた以外は上記実施例
5又は実施例1と同様にして成形体を得た。結果を表2
に示す。
Examples 10 to 11 Perfluoroaliphatic hydrocarbon was added in the same manner as in the above C except that PF-5050 (C 5 F 12 , thermal conductivity 0.000414 kcal / mh ° C.) was used in place of cyclopentane. % To obtain a polymer capsule (PC-4) having an average particle diameter of 120 μm. A molded body was obtained in the same manner as in Example 5 or Example 1 except that this polymer capsule was used. The results are shown in Table 2.
Shown in.

【0022】比較例1〜2 表3に示す配合成分を用いた以外は実施例1と同様にし
て比較用成形体を得た。結果を表3に示す。
Comparative Examples 1 and 2 Comparative molded bodies were obtained in the same manner as in Example 1 except that the compounding ingredients shown in Table 3 were used. The results are shown in Table 3.

【0023】比較例3〜4 ポリマーカプセルの代りに微粒子シラスバルーン(SB
−1,比較例3)又は発泡スチレンビーズ(ST−1,
比較例4)を用いた以外は実施例5と同様にして比較用
成形体を得た。結果を表3に示す。表において( )内
は固形分を示す。 SB−1:カルシード社製の平均粒子径 15μmのシラス
バルーンで、バルーン中には空気(熱伝導率 0.0208kca
l/mh℃)が封じ込まれている。 ST−1:積水化学(株)製の平均粒子径 1.2mmのスチ
レンビーズ発泡体、ダイラクビーズ 1240
Comparative Examples 3 to 4 Instead of the polymer capsule, a fine particle silas balloon (SB
-1, Comparative Example 3) or expanded styrene beads (ST-1,
A comparative molded body was obtained in the same manner as in Example 5 except that Comparative Example 4) was used. The results are shown in Table 3. In the table, () indicates solid content. SB-1: Shirasu balloon manufactured by Calceed Co., Ltd. having an average particle diameter of 15 μm, and air (heat conductivity of 0.0208 kca) is contained in the balloon.
l / mh ° C) is contained. ST-1: Sekisui Chemical Co., Ltd., styrene bead foam with an average particle size of 1.2 mm, Dairac beads 1240

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】一般に無機系の成形体で、空気を断熱体と
したものは、熱伝導率が0.030kcal/mh℃より小さくす
ることは極めて難しい。しかし表から本発明によれば、
この熱伝導率 0.030kcal/mh℃の壁を大巾に突破できる
ことが明らかである。
In general, it is extremely difficult to make the thermal conductivity of an inorganic molded product having air as a heat insulator smaller than 0.030 kcal / mh ° C. But from the table, according to the invention,
It is clear that the wall with this thermal conductivity of 0.030 kcal / mh ℃ can be broken through significantly.

【0028】[0028]

【発明の効果】本発明によれば無機系の材料にもかかわ
らず熱伝導率を0.030kcal/mh℃以下にすることがで
き、さらに火災等の火炎があたつた場合には、この材料
に含まれるポリマーカプセルが一時的に燃焼するが、そ
の後は、珪酸あるいは珪酸カルシウム結晶体が残り、成
形体の形状を崩すことなく、800℃以上の温度に耐える
という優れた効果を奏する。このように本発明の成形体
は住宅用の断熱材として安全性の高い性能を有するもの
である。
According to the present invention, the thermal conductivity can be 0.030 kcal / mh ° C or less despite the use of an inorganic material, and when a flame such as a fire hits the material, The contained polymer capsules burn temporarily, but thereafter, silicic acid or calcium silicate crystals remain, and the excellent effect of withstanding a temperature of 800 ° C. or higher is maintained without destroying the shape of the molded body. Thus, the molded product of the present invention has highly safe performance as a heat insulating material for a house.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 珪酸及び/又は珪酸カルシウム結晶体 1
00重量部に対し、熱伝導率が0.02kcal/mh℃以下の気体
を30vol%以上含有する気体を封じ込めた粒子径が500μ
m以下のポリマーカプセルを5〜300重量部含有すること
を特徴とする高断熱性成形体。
1. Silica and / or calcium silicate crystals 1
With respect to 00 parts by weight, a particle size of 500μ containing a gas containing 30vol% or more of a gas with a thermal conductivity of 0.02kcal / mh ° C or less is 500μ.
A highly heat-insulating molded article, which comprises 5 to 300 parts by weight of a polymer capsule having a size of m or less.
【請求項2】 珪酸が気相法で作られた平均粒径1μm
以下の微粉末シリカである請求項1の高断熱性成形体。
2. The average particle size of silicic acid produced by the vapor phase method is 1 μm.
The highly heat insulating molded article according to claim 1, which is the following fine powder silica.
【請求項3】 珪酸カルシウム結晶体が針状のゾノトラ
イト結晶あるいはこのゾノトライト結晶体が凝集したも
のである請求項1の高断熱性成形体。
3. The highly heat-insulating molded article according to claim 1, wherein the calcium silicate crystal is a needle-shaped zonotolite crystal or an aggregate of this zonotlite crystal.
【請求項4】 熱伝導率が0.02kcal/mh℃以下の気体が
シクロペンタン又はn−ペンタン又は沸点120℃以下の
パーフルオロ脂肪族炭化水素である請求項1の高断熱性
成形体。
4. The highly heat-insulating molded article according to claim 1, wherein the gas having a thermal conductivity of 0.02 kcal / mh ° C. or less is cyclopentane or n-pentane or a perfluoroaliphatic hydrocarbon having a boiling point of 120 ° C. or less.
JP26838894A 1993-12-03 1994-10-05 High-thermal insulation molded form containing low thermally conductive polymer capsule Withdrawn JPH07206545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26838894A JPH07206545A (en) 1993-12-03 1994-10-05 High-thermal insulation molded form containing low thermally conductive polymer capsule

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-339597 1993-12-03
JP33959793 1993-12-03
JP26838894A JPH07206545A (en) 1993-12-03 1994-10-05 High-thermal insulation molded form containing low thermally conductive polymer capsule

Publications (1)

Publication Number Publication Date
JPH07206545A true JPH07206545A (en) 1995-08-08

Family

ID=26548288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26838894A Withdrawn JPH07206545A (en) 1993-12-03 1994-10-05 High-thermal insulation molded form containing low thermally conductive polymer capsule

Country Status (1)

Country Link
JP (1) JPH07206545A (en)

Similar Documents

Publication Publication Date Title
KR101795749B1 (en) Flame retardant particle, manufacturing method of the same, and flame retardant polystyrene foam
US20080224357A1 (en) Method for Producing Foamed Slabs
US20080230956A1 (en) Process for Producing Foam Boards
JPH07267756A (en) Molding containing silica aerosol particle
KR20080049753A (en) Method for producing foam plates
AU2008300762A1 (en) Coating composition for foam particles, and method for the production of molded foam bodies
JP2009521350A (en) Organic foam plastic molding with excellent heat resistance and durability
CN102070850A (en) Flame retardant expanded polystyrene particle and preparation method thereof
JPS6357377B2 (en)
US3429836A (en) Foamed articles comprising an alkali metal silicate and a styrene resin
KR101281577B1 (en) Expandable styrene polymer composition having good flame retardancy, flame retardant polystyrene foam and method for preparing flame retardant polystyrene foam
US3434980A (en) Production of insulating materials having low specific gravity
US4396723A (en) Lightweight silicate aggregate
CN106082884A (en) A kind of insulating light wall slab containing solid waste cinder and preparation technology
KR101795750B1 (en) Composition for flame retardant, flame retardant polystyrene foam and manufacturing method of the same
KR20120075821A (en) Anti-flammable composite
JPH07206545A (en) High-thermal insulation molded form containing low thermally conductive polymer capsule
JPH08109079A (en) Highly heat-insulating formed article containing low-heat conductive foamed bead
EP2256154B1 (en) Method of insulation
JP2003313504A (en) Curable composition for heat insulating coating material comprising flaky silica particle and flexible heat insulating cured product
KR20180137317A (en) Manufacturing method of Nonflammable EPS pannel with wasted EPS granules
WO2017082651A1 (en) Flame retardant particle, manufacturing method therefor, and flame retardant styrofoam using same
JP2019074116A (en) Heat insulation material and method for producing heat insulation material
JPH06157110A (en) Heat-insulating lightweight mortar spraying material
Skaropoulou et al. Synthesis and characterization of innovative insulation materials

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115