JPH0720651Y2 - Optical device - Google Patents

Optical device

Info

Publication number
JPH0720651Y2
JPH0720651Y2 JP1989029685U JP2968589U JPH0720651Y2 JP H0720651 Y2 JPH0720651 Y2 JP H0720651Y2 JP 1989029685 U JP1989029685 U JP 1989029685U JP 2968589 U JP2968589 U JP 2968589U JP H0720651 Y2 JPH0720651 Y2 JP H0720651Y2
Authority
JP
Japan
Prior art keywords
observation
optical system
focus
illumination
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989029685U
Other languages
Japanese (ja)
Other versions
JPH02121710U (en
Inventor
和幸 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP1989029685U priority Critical patent/JPH0720651Y2/en
Publication of JPH02121710U publication Critical patent/JPH02121710U/ja
Application granted granted Critical
Publication of JPH0720651Y2 publication Critical patent/JPH0720651Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、手術用顕微鏡,通常の顕微鏡,一部のカメラ
など、物体を観察する観察光学系と物体の観察範囲を照
明する照明光学系とを備えた光学装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an observation optical system for observing an object and an illumination optical system for illuminating an observation range of the object, such as a surgical microscope, an ordinary microscope, and some cameras. The present invention relates to an optical device including and.

〔従来の技術〕[Conventional technology]

近年、顕微鏡観察下で行うマイクロサージェリーが普及
し、これまで直せなかった疾患が治せるようになってき
た。マイクロサージェリーに使用される顕微鏡は実体顕
微鏡であり、術者は立体視をしながら手術を行うように
なっている。最近のエレクトロニクスの進歩によりスチ
ルカメラ,ビデオカメラにはオートフォーカス機能がつ
き、自動でピント合わせが行えるようになっているが、
手術用顕微鏡においても操作性向上のためにオートフォ
ーカス機能の付加が望まれている。特に顕微鏡の場合
は、カメラと比較して焦点深度が浅く、観察物体がピン
ト面から外れると大きくボケてしまい、どちらに焦準を
動かせばピントが合うのか分からず、試行錯誤でピント
を合わせる場合が多かったので、上記要望は一層強かっ
た。
In recent years, microsurgery performed under microscope observation has become widespread, and it has become possible to cure diseases that could not be cured until now. The microscope used for the microsurgery is a stereomicroscope, and the surgeon is supposed to perform surgery while viewing stereoscopically. Due to recent advances in electronics, still cameras and video cameras are equipped with an autofocus function, enabling automatic focusing.
It is also desired to add an autofocus function to improve the operability of a surgical microscope. Especially in the case of a microscope, the depth of focus is shallower than that of the camera, and if the observed object is out of focus, it will be greatly blurred. Since there were many cases, the above request was stronger.

ピント検出方法としては、実体顕微鏡分野では特公昭57
-55123号公報や特開昭57-158826号公報に示されるもの
がある。どちらも、物体面上に指標を投影し、その反射
光を受光素子で検出し、その検出信号によりピントのず
れとその方向を検定するものである。又、顕微鏡,カメ
ラに共通のものとしては特開昭63-256932号公報に記載
のように、撮像面と共役な位置に置いたスプリットプリ
ズムの物体への投影像を該撮像面と共役な位置にある光
電素子上に投影し、その投影像の分割量を検出してピン
トずれとその方向を検出するものがある。
In the field of stereoscopic microscopes, Japanese Patent Publication No.
-55123 and Japanese Patent Laid-Open No. 57-158826. In both cases, an index is projected on the object surface, the reflected light is detected by a light receiving element, and the deviation of focus and its direction are verified by the detection signal. Further, as described in Japanese Patent Application Laid-Open No. 63-256932, which is common to a microscope and a camera, a projection image of a split prism placed on a position conjugate with an image pickup surface onto an object has a position conjugate with the image pickup surface. There is a method for detecting a focus shift and its direction by projecting it on a photoelectric element in (1) and detecting the division amount of the projected image.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

ところが、特公昭57-55123号公報,特開昭57-158826号
公報に記載のように、指標投影光が観察光と同じ波長或
いは図示されていない照明系の照明光と同じ波長では、
指標投影光と観察光とを分離できず、ピント検出も出来
なくなるので、指標投影光は観察光或いは照明光と異な
る波長例えば赤外光等を用いなければならない。
However, as described in JP-B-57-55123 and JP-A-57-158826, when the index projection light has the same wavelength as the observation light or the same wavelength as the illumination light of the illumination system not shown,
Since the index projection light and the observation light cannot be separated and focus detection cannot be performed, the index projection light must use a wavelength different from the observation light or the illumination light, for example, infrared light.

又、特開昭63-256932号公報についても、投影光を異な
る波長で用いることは示されていないが、同様のことが
言える。即ち、もし投影像の大きさが対物レンズで得ら
れる観察視野と同等かそれより大きい場合は、第12図
(a)に示すように分割投影像30,30が一致していれ
ば、一次元光電素子31で検出出来るが、第12図(b)に
示すように分割投影像30,30がずれた時にはそれらの視
野32から外れた部分が光路中でけられてケラレ部33が生
じ、分割撮影像30,30は完全な形で一次元光電素子31上
に投影されなくなる。従って、特開昭63-256932号公報
に示された方法でピント検出を行うとすれば、第13図に
示すように分割投影像30,30を合わせたものが観察視野3
2に対して十分小さくなければならず、そのため観察を
行うためには観察視野全体を照らす照明装置が別に必要
である。そして、照明装置を別に設けるとすれば、投影
像のみを検出するためには、投影像を観察像或いは照明
光と分離しなければならず、そのために投影光を照明光
或いは観察光と異なる波長にする手段が必然的に必要と
なるのである。
Also, in Japanese Patent Laid-Open No. 63-256932, the use of projection light at different wavelengths is not shown, but the same can be said. That is, if the size of the projected image is equal to or larger than the observation field of view obtained by the objective lens, if the divided projected images 30, 30 match as shown in FIG. Although it can be detected by the photoelectric element 31, as shown in FIG. 12 (b), when the divided projected images 30, 30 deviate from each other, the portions outside the visual field 32 are eclipsed in the optical path to cause the vignetting portion 33, resulting in division. The captured images 30, 30 are no longer projected on the one-dimensional photoelectric element 31 in perfect form. Therefore, if focus detection is carried out by the method disclosed in Japanese Patent Laid-Open No. 63-256932, a combination of divided projection images 30, 30 as shown in FIG.
It must be sufficiently smaller than 2, so an additional illuminator is needed to illuminate the entire field of view for observation. If a separate illuminating device is provided, the projection image must be separated from the observation image or the illumination light in order to detect only the projection image. Therefore, the projection light has a wavelength different from that of the illumination light or the observation light. Inevitably, the means to do is necessary.

従って、これらのピント検出装置は、肉眼で指標光を見
ることができず、而も観察用の照明装置以外に、指標投
影装置と、投影光と観察光の分離手段と、受光装置と受
光装置からの信号をもとにピントずれ量と方向を算出す
る演算装置とが必要であり、そのため高価なものとなる
という問題があった。特に、特殊な光学系を必要とする
ため、これを顕微鏡に内蔵させると顕微鏡が大きくなっ
てその操作性が悪くなったり、現存の顕微鏡を改造して
も容易に取り付けることが出来ず、その結果新たに専用
の鏡体を買わなければならないので、非常に不経済であ
るという問題があった。
Therefore, these focus detection devices cannot see the index light with the naked eye, and in addition to the illumination device for observation, the index projection device, the separating means for the projection light and the observation light, the light receiving device and the light receiving device. There is a problem in that an arithmetic unit for calculating the focus shift amount and the direction based on the signal from is necessary, which is expensive. In particular, because a special optical system is required, if this is built into the microscope, the size of the microscope becomes large and the operability deteriorates, and even if the existing microscope is modified, it cannot be easily installed. There was a problem that it was very uneconomical because I had to buy a new dedicated mirror body.

又、これらのピント検出装置は、手術部位のように凹凸
が激しい場合には、どの位置にピントを合わせるかとい
うことを装置自体で判断させることは難しいし、指標自
体の形状がくずれるため合焦動作が収束しなかったり、
不要な位置にピントが合ってしまい易くて術者が適当な
判断でピント合わせをしなおすということが多く、その
結果信頼性に乏しく且つ実用的でなかった。
Further, in these focus detection devices, it is difficult for the device itself to determine which position to focus on when the projections and depressions are severe as in the surgical site, and the shape of the index itself collapses so that the focus is focused. The movement does not converge,
It is easy for the operator to focus on an unnecessary position, and the operator often refocuses the image with appropriate judgment, resulting in poor reliability and impracticality.

本考案は、上記問題点に鑑み、微少なピント合わせは操
作者が行うとしてもピントずれにより観察像が大きくボ
ケたときにピントずれの方向を操作者が容易且つ正確に
認識でき、而も安価で、現存の光学装置に簡単な改造を
加えるだけ使用できる、信頼性が高く且つ実用的な光学
装置を提供することを目的としている。
In view of the above problems, the present invention makes it possible for the operator to easily and accurately recognize the direction of focus deviation when the observation image is greatly blurred due to focus deviation, even if the operator performs a minute focus adjustment. It is an object of the present invention to provide a highly reliable and practical optical device that can be used by simply modifying the existing optical device.

〔課題を解決するための手段及び作用〕[Means and Actions for Solving the Problems]

本考案による光学装置は、物体を観察する観察光学系と
物体の観察範囲を照明する照明光学系とを備えた光学装
置において、前記照明光学系中の、前記観察光学系の物
体側ピント面と共役な位置の近傍に像分割光学素子を配
置して、ピントがずれた時には照野の一部が他の部分に
対して相対移動するようにしたことにより、指標投影装
置等を初めとする特殊な光学系や付加装置を用いずに、
操作者が肉眼でピントずれの方向を認識し得るようにし
たものである。
An optical device according to the present invention is an optical device comprising an observation optical system for observing an object and an illumination optical system for illuminating an observation range of the object, wherein an object-side focus surface of the observation optical system in the illumination optical system and By placing an image splitting optical element in the vicinity of the conjugate position so that when the focus shifts, part of the illumination field moves relative to other parts, so that special features such as the index projection device etc. Without using a simple optical system or additional equipment,
The operator can recognize the direction of out-of-focus with the naked eye.

〔実施例〕〔Example〕

以下、図示した実施例に基づき本考案を詳細に説明す
る。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

第1図は第1実施例である実体顕微鏡の光学系を横から
見た時の概略図であり、Fはピント面、1は対物レン
ズ、2は観察倍率を変える観察変倍光学系、3は観察光
学系、Oは術者であって、ピント面に物体がある時は術
者Oはピントが合った状態で物体の拡大像を観察し得る
ようになっている。尚、観察変倍光学系2,観察光学系3
は一組しか示されていないが、実際は紙面と垂直な面内
にもう一組あって立体視を可能にしている。4は図示し
ない光源から照明光を導くライトガイド、5はリレーレ
ンズ、6はプリズム、7は観察倍率の変化に対応して照
野の大きさを変える照明変倍光学系、8はプリズムであ
って、ピント面Fと共役な位置Cの近傍には第2図
(a),(b)に示した如く互いに反対方向の傾斜面を
有する半円形のプリズム9a,9bから成る円形のスプリッ
トプリズム9が配置されている。
FIG. 1 is a schematic view of the optical system of the stereoscopic microscope according to the first embodiment as viewed from the side, where F is a focusing surface, 1 is an objective lens, 2 is an observation variable magnification optical system for changing the observation magnification, 3 Is an observation optical system, and O is an operator. When an object is on the focusing surface, the operator O can observe an enlarged image of the object in a focused state. The observation variable magnification optical system 2 and the observation optical system 3
Although only one set is shown, in reality, there is another set in a plane perpendicular to the paper surface to enable stereoscopic viewing. Reference numeral 4 is a light guide for guiding illumination light from a light source (not shown), 5 is a relay lens, 6 is a prism, 7 is a variable-magnification optical system for changing the size of the illumination field in response to a change in observation magnification, and 8 is a prism. A circular split prism 9 composed of semi-circular prisms 9a and 9b having inclined surfaces in opposite directions as shown in FIGS. 2 (a) and 2 (b) in the vicinity of a position C conjugate with the focusing surface F. Are arranged.

本実施例は上述の如く構成されているから、ライトガイ
ド4から出射された照明光は、リレーレンズ5,スプリッ
トプリズム9,プリズム6,照明変倍光学系7,プリズム8を
経由し、観察光学系と共通の対物レンズ1を通して観察
部位に照射される。そして観察部位がピント面Fにある
場合には、観察部位はほぼ円形に照明され、照野は第3
図に示すように範囲IAのようになる。しかし、例えば観
察部位がピント面Fよりも対物レンズ1に近づいた近面
Fnにある場合には、術者から見ると、照野は第4図
(a)に示すように左右で上下方向に分かれた範囲IA
となる。又、観察部位がピント面Fよりも対物レンズ1
から遠ざかった遠面Ffにある場合には、照野は第4図
(b)に示すように左右でIA′とは逆の上下方向に分か
れた範囲IA″となる。従って、これを術者Oが観察光学
系3を介さずに目視すればピントずれの方向により照野
のずれかたが異なるためピントのずれ方向が分かり、容
易にピント合わせの作業ができる。又、術者Oが観察光
学系3を通して術部(観察部位)を観察していても、観
察部位が近面Fnにあると、第5図(a)に示した如く、
観察視野Aoには照明されないために暗くなる非照明部B
が現われる。同様に遠面Ffに観察部位がある場合には、
第5図(b)に示すように、第5図(a)に示されたの
とは異なる位置に非照明部Bが現われる。従って、術者
は一目でピントずれの方向が分かり、容易にピント合わ
せ作業が行える。又、本実施例は、第5図から分かるよ
うに、ピントずれによる照野の移動部分が大きいので、
大きくぼけていても認識し易い。そして、ピント合わせ
時の手術の中断時間を短縮でき、術者の精神的疲労も軽
減できるので、手術の安全性が高まる。更に、特殊な光
学系や付加装置を必要とせず、現存の鏡体に簡単な改造
を行うだけで済むので、安価である。
Since the present embodiment is configured as described above, the illumination light emitted from the light guide 4 passes through the relay lens 5, the split prism 9, the prism 6, the illumination variable-magnification optical system 7 and the prism 8 and the observation optical system. The observation site is illuminated through the objective lens 1 common to the system. When the observation area is on the focus plane F, the observation area is illuminated in a substantially circular shape, and the illumination field is the third area.
It becomes like the range I A as shown in the figure. However, for example, the near surface where the observed portion is closer to the objective lens 1 than the focus surface F is
When in the F n, when viewed from the operator, illumination field FIG. 4 (a) ranges divided in the vertical direction on the left and right as shown in I A '
Becomes Further, the observation portion is the objective lens 1 rather than the focus plane F.
When it is on the far surface F f away from the illuminating field, the illumination field is in the range I A ″, which is divided in the up and down direction opposite to I A ′ as shown in FIG. 4 (b). When the operator O visually observes without passing through the observing optical system 3, the deviation of the illumination field differs depending on the direction of focus deviation, so that the direction of focus deviation can be known and the focusing operation can be performed easily. Even if O observes the surgical site (observation site) through the observation optical system 3, if the observation site is on the near surface F n , as shown in FIG.
Non-illuminated area B that is dark because it is not illuminated in the observation field of view A o
Appears. Similarly, if there is an observation site on the far surface F f ,
As shown in FIG. 5 (b), the non-illumination part B appears at a position different from that shown in FIG. 5 (a). Therefore, the operator can know the direction of the focus shift at a glance and can easily perform the focusing operation. Further, in this embodiment, as can be seen from FIG. 5, the moving part of the illumination field due to the focus shift is large,
It is easy to recognize even if it is greatly blurred. Further, the operation interruption time at the time of focusing can be shortened and the mental fatigue of the operator can be reduced, so that the safety of the operation is enhanced. Further, it is inexpensive because no special optical system or additional device is required and only the existing mirror body is simply modified.

第6図は第2実施例の光学系を示しており、これは共役
位置の近傍のライトガイド4側にプリズムプレート10
が、プリズム6側に円形開口部を有する照野絞りSFが夫
々配置されている。そして、プリズムプレート10は、第
7図(a)及び(b)に示した如く、円形のプレート10
aの中央部にその直径に沿って帯状のプリズム10bを設け
て成るものであり、プリズム10bはスプリットプリズム
の役割を果たすようになっている。
FIG. 6 shows an optical system according to the second embodiment, which has a prism plate 10 on the light guide 4 side near the conjugate position.
However, illumination field diaphragms S F each having a circular opening are arranged on the prism 6 side. The prism plate 10 has a circular plate 10 as shown in FIGS. 7 (a) and 7 (b).
A strip-shaped prism 10b is provided along the diameter of the center of a, and the prism 10b serves as a split prism.

本実施例は、上述の如く構成されているから、第1実施
例と同様に、プリズムプレート10,照野絞りSFの開口部
を通った照光は観察部位に照射される。観察部位がピン
ト面Fにある場合には、観察部位は、照野絞りSFの円形
開口が投影され、照野は第8図に示した如く円形の範囲
IBとなる。観察部位が近面Fnにある場合、術者から見た
照野は第9図(a)に示した如く凹部T″を有する範囲
IB′のようになる。また観察部位が遠面Ffにある場合、
照野は第9図(b)に示した如くIB′とは逆の位置に凹
部T″を有する範囲IB″のようになる。
This embodiment, from being configured as described above, similarly to the first embodiment, the prism plate 10, illumination passing through the apertures of the illumination field stop S F is irradiated to the observation site. If the observation site is the focal plane F, the observed region is projected circular aperture of the illumination field stop S F, the illumination field in the range of circular as shown in FIG. 8
I B. When the observation site is on the near surface F n , the illuminating area seen by the operator is a range having a recess T ″ as shown in FIG. 9 (a).
It becomes like I B ′. When the observation site is on the far surface F f ,
As shown in FIG. 9 (b), the illumination field has a region I B ″ having a recess T ″ at a position opposite to I B ′.

従って、第1実施例と同様に、術者は目視でも、観察光
学系3を通して観察しても、照野の一部がずれているこ
とによりピントずれを確認出来る。而も、照野絞りSF
存在により照野の輪郭がはっきりするので、照野のずれ
を検出し易い。又、第9図に示すように、照野の上部の
凹部T′が生じている時は観察部位がピント面Fより対
物レンズ1側にあるのでピントを上側にもって行けばよ
く、下部に凹部T″が出ている場合はピント面Fよりも
下に観察部位があるので下側にピントを合わせればよ
く、従ってピントずれの方向と合焦操作方向が容易に認
識できるので適確な合焦作業が行える。
Therefore, similarly to the first embodiment, the operator can confirm the focus shift due to the displacement of a part of the illumination field, whether visually or through the observation optical system 3. Moreover, since the contour of the illumination field becomes clear due to the presence of the illumination field diaphragm S F , it is easy to detect the deviation of the illumination field. Further, as shown in FIG. 9, when the concave portion T'in the upper part of the illumination field is generated, the observation site is on the objective lens 1 side of the focus plane F, so that the focus should be moved upward, and the concave portion in the lower part. When T ″ is present, the observation site is below the focus plane F, so it is sufficient to focus on the lower side. Therefore, the direction of focus deviation and the focusing operation direction can be easily recognized, so that accurate focusing is possible. You can work.

第10図(a)及び(b)は第3実施例の光学系のプリズ
ムプレート11を示しており、これは第2実施例と同じ光
学系においてプリズムプレート10の代わりに用いられる
ものであって、円形プレート11aの互いに反対側の二つ
の周辺部にプリズム11b,11cを設けて成るものであり、
プリズム11b,11cがスプリットプリズムの役割を果たす
ようになっている。
FIGS. 10A and 10B show a prism plate 11 of the optical system of the third embodiment, which is used in place of the prism plate 10 in the same optical system as the second embodiment. The circular plate 11a is provided with prisms 11b and 11c on two opposite peripheral portions of the circular plate 11a,
The prisms 11b and 11c function as a split prism.

本実施例は上述の如く構成されているから、観察部位が
近面Fnにある時は、照野は第11図(a)に示した如く範
囲Ic′のようになり、遠面Ffにある時は、第11図(b)
に示した如く範囲Ic″のようになる。従って、観察光学
系3で観察した時にピントずれが生じている場合は、観
察視野に対して移動部Mがずれて見える。そして、第1
実施例,第2実施例と同様に移動部Mのずれている方向
により、合焦動作の方向を認識できる。又、第1,第2実
施例とは異なり、中央部の照野が移動しないので、凹凸
の大きなものを見ても中央部の照野が失われることがな
く、手術上極めて安全である。
Since the present embodiment is constructed as described above, when the observation site is on the near surface F n , the illumination field becomes like the range I c ′ as shown in FIG. When it is at f, it is shown in Fig. 11 (b).
As shown in Fig. 2, the range I c ″ is obtained. Therefore, when the observation optical system 3 observes the focus, the moving portion M appears to be displaced from the observation visual field.
As in the case of the embodiment and the second embodiment, the direction of the focusing operation can be recognized from the direction in which the moving portion M is displaced. Also, unlike the first and second embodiments, the illumination field in the central portion does not move, so that the illumination field in the central portion is not lost even if a large unevenness is seen, which is extremely safe for surgery.

〔考案の効果〕[Effect of device]

上述の如く、本考案による光学装置は、微少なピント合
わせは操作者が行うとしてもピントずれにより観察像が
大きくぼけた時にピントずれの方向を術者が容易且つ正
確に認識でき、而も安価で現存の光学装置に簡単な改造
を加えるだけで使用できるなど、信頼性が高く且つ実用
的であるという重要な利点を有している。
As described above, the optical device according to the present invention allows the operator to easily and accurately recognize the direction of defocusing when the observation image is greatly blurred due to defocusing, even if the operator performs fine focusing, and is inexpensive. Therefore, it has an important advantage that it is highly reliable and practical, such that it can be used by simply modifying the existing optical device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による光学装置の第1実施例である実体
顕微鏡の光学系の概略図、第2図(a)及び(b)は夫
々第1実施例のスプリットプリズムの平面図及び側面
図、第3図及び第4図は第1実施例における照野の変化
を示す図、第5図は第1実施例の照野が変化した時の観
察視野との関係を示す図、第6図は第2実施例の光学系
の概略図、第7図(a)及び(b)は夫々第2実施例の
プリズムプレートの平面図及び側面図、第8図及び第9
図は第2実施例における照野の変化を示す図、第10図
(a)及び(b)は夫々第3実施例のプリズムプレート
の平面図及び側面図、第11図は第3実施例における照野
の変化を示す図、第12図は従来例において投影像が観察
視野と同等又はそれよりも大きい場合の分割投影像の変
化を示す図、第13図は従来例において投影像が観察視野
よりも十分小さい場合の分割投影像の変化を示す図であ
る。 F……ピント面、1……対物レンズ、2……観察変倍光
学系、3……観察光学系、O……術者、4……ライトガ
イド、5……リレーレンズ、6,8……プリズム、7……
照明変倍光学系、9……スプリットプリズム、10,11…
…プリズムプレート、C……共役位置、SF……照野絞
り、IA,IB,IC……照野の範囲、AO……観察視野、B…
…非照明部、T′,T″……凹部、M……移動部。
FIG. 1 is a schematic view of an optical system of a stereoscopic microscope which is a first embodiment of an optical device according to the present invention, and FIGS. 2A and 2B are a plan view and a side view of a split prism of the first embodiment, respectively. , FIG. 3 and FIG. 4 are diagrams showing the change of the illumination field in the first embodiment, and FIG. 5 is a diagram showing the relationship with the observation visual field when the illumination field of the first embodiment is changed, FIG. Is a schematic view of the optical system of the second embodiment, FIGS. 7A and 7B are a plan view and a side view of the prism plate of the second embodiment, FIGS. 8 and 9 respectively.
FIG. 10 is a diagram showing a change in illumination field in the second embodiment, FIGS. 10 (a) and 10 (b) are a plan view and a side view of a prism plate of the third embodiment, and FIG. 11 is a view in the third embodiment. FIG. 12 is a diagram showing changes in the illumination field, FIG. 12 is a diagram showing changes in the division projection image when the projection image is equal to or larger than the observation field of view in the conventional example, and FIG. 13 is a projection image in the conventional example FIG. 7 is a diagram showing a change in a division projection image when the size is sufficiently smaller than that. F ... Focus surface, 1 ... Objective lens, 2 ... Observation zoom optical system, 3 ... Observation optical system, O ... Operator, 4 ... Light guide, 5 ... Relay lens, 6, 8 ... … Prism, 7 ……
Variable magnification optical system, 9 ... Split prism, 10,11 ...
… Prism plate, C… Conjugate position, S F …… Teruno field diaphragm, I A , I B , I C …… range of illumination field, A O …… Observation field of view, B…
... Non-illumination part, T ', T "... recessed part, M ... moving part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】物体を観察する観察光学系と物体の観察範
囲を照明する照明光学系とを備えた光学装置において、
前記照明光学系中の、前記観察光学系の物体側ピント面
と共役な位置の近傍に像分割光学素子を配置したことを
特徴とする光学装置。
1. An optical device comprising an observation optical system for observing an object and an illumination optical system for illuminating an observation range of the object,
An optical device characterized in that an image division optical element is arranged in the illumination optical system in the vicinity of a position conjugate with the object-side focus surface of the observation optical system.
JP1989029685U 1989-03-15 1989-03-15 Optical device Expired - Lifetime JPH0720651Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989029685U JPH0720651Y2 (en) 1989-03-15 1989-03-15 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989029685U JPH0720651Y2 (en) 1989-03-15 1989-03-15 Optical device

Publications (2)

Publication Number Publication Date
JPH02121710U JPH02121710U (en) 1990-10-03
JPH0720651Y2 true JPH0720651Y2 (en) 1995-05-15

Family

ID=31254109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989029685U Expired - Lifetime JPH0720651Y2 (en) 1989-03-15 1989-03-15 Optical device

Country Status (1)

Country Link
JP (1) JPH0720651Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2076176A (en) * 1980-05-19 1981-11-25 Vickers Ltd Focusing Optical Apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2076176A (en) * 1980-05-19 1981-11-25 Vickers Ltd Focusing Optical Apparatus

Also Published As

Publication number Publication date
JPH02121710U (en) 1990-10-03

Similar Documents

Publication Publication Date Title
CN102998786B (en) For microscopical auto focusing method and equipment
JP5341386B2 (en) Ophthalmic imaging equipment
JP5173569B2 (en) Ophthalmic equipment
US4153834A (en) Pattern projector for automatic focusing endoscope
US5382988A (en) Stereoscopic retinal camera with focus detection system
JPH0647001A (en) Ophthalmologic device
US5371557A (en) Stereoscopic retinal camera
US9706919B2 (en) Ophthalmologic apparatus and method for controlling the same
US5434703A (en) Binocular stereomicroscope
US8113656B2 (en) Ophthalmic photography apparatus
EP1326116B1 (en) Variable magnification microscope
JP3888771B2 (en) Fundus camera
JP3939328B2 (en) Surgical microscope
US6304723B1 (en) Retinal camera
US5255026A (en) Stereo eye fundus camera
JP2007185324A (en) Retinal camera
JPH0720651Y2 (en) Optical device
JP2008006103A (en) Fundus camera
JP3944377B2 (en) Focus detection device
JP4228125B2 (en) microscope
JPH0515499A (en) Three dimensional fundus oculi camera
JP3630795B2 (en) Ophthalmic imaging equipment
JP2933108B2 (en) Corneal surgery device
JP2000075213A (en) Microscope for operation
JPS62166310A (en) Stereomicroscope using solid-state image pickup element