JPH0720471U - Flow control valve - Google Patents
Flow control valveInfo
- Publication number
- JPH0720471U JPH0720471U JP5152993U JP5152993U JPH0720471U JP H0720471 U JPH0720471 U JP H0720471U JP 5152993 U JP5152993 U JP 5152993U JP 5152993 U JP5152993 U JP 5152993U JP H0720471 U JPH0720471 U JP H0720471U
- Authority
- JP
- Japan
- Prior art keywords
- drive shaft
- flow rate
- shaft
- driven shaft
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Lift Valve (AREA)
- Electrically Driven Valve-Operating Means (AREA)
Abstract
(57)【要約】
【目的】 1つの駆動系で大流量から少流量まで可変で
き、しかも、微調整の可能な弁の構造を提供することを
目的とする。
【構成】 駆動軸に小さい弁体を配設し、前記駆動軸に
従動されて回転する従動軸に大きい弁体を配設して、駆
動軸の回転により流量の少ない微調整を、従動軸で流量
の多い制御を行う。
(57) [Summary] [Purpose] It is an object of the present invention to provide a valve structure capable of varying from a large flow rate to a small flow rate with one drive system and capable of fine adjustment. [Structure] A small valve element is arranged on a drive shaft, and a large valve element is arranged on a driven shaft that is driven and rotated by the drive shaft. Performs control with a large flow rate.
Description
【0001】[0001]
本考案は、内燃機関等に使用されている燃料調整弁に係り、特に、開口度の微 調整の可能な流量調整弁の構造に関する。 The present invention relates to a fuel control valve used in an internal combustion engine or the like, and more particularly to a structure of a flow control valve capable of finely adjusting the opening degree.
【0002】[0002]
内燃機関に送られる燃料混合空気の流量調整には、アイドリング時のように流 量が少なく精密な制御を必要とするアイドル・スピード制御(以下ISC制御と 称す)と、走行時のように流量が多く広い流量調整範囲を必要とする走行制御が あり、それぞれに適した弁の構造が要求される。 In order to adjust the flow rate of the fuel mixture air sent to the internal combustion engine, the idle speed control (hereinafter referred to as ISC control), which requires a precise control with a small flow rate, such as when idling, and the flow rate as when running. There are many traveling controls that require a wide flow rate adjustment range, and a valve structure suitable for each is required.
【0003】 図4は従来の流量制御方式と流量調整弁の構造を示す断面図である。 15は走行制御用の太い流路で、走行制御用の流量調整弁16が設けられてい る。25はISC制御用の細い流路で、ISC制御用の流量調整弁26が設けら れている。。17、27はそれぞれ走行制御用及びISC制御用の弁体の角度を 調整する軸で、それぞれISC制御用及び走行制御用ステップモータ等(図示せ ず)により駆動される。18、28は軸17、27に配設された弁体で、軸17 、27の回転により流路15、25の開口度の調整を行う。 流量調整は走行時 は軸17の制御を、ISC制御時は軸27の制御をそれぞれ行う。FIG. 4 is a sectional view showing the structure of a conventional flow rate control system and a flow rate adjusting valve. Reference numeral 15 denotes a thick passage for traveling control, which is provided with a flow control valve 16 for traveling control. Reference numeral 25 denotes a narrow flow path for ISC control, which is provided with a flow rate adjusting valve 26 for ISC control. . Numerals 17 and 27 are shafts for adjusting the angles of the valve bodies for traveling control and ISC control, respectively, and are driven by step motors (not shown) for ISC control and traveling control, respectively. Numerals 18 and 28 are valve bodies arranged on the shafts 17 and 27, and the degree of opening of the flow paths 15 and 25 is adjusted by rotating the shafts 17 and 27. The flow rate is adjusted by controlling the shaft 17 during traveling and by controlling the shaft 27 during ISC control.
【0004】[0004]
上述の図4の流量制御方式では流路を途中で太い流路15と細い流路25の2 つに分岐し、太い流路15に走行用調整弁16を、細い流路25にISC調整弁 26を備えて、別々に制御を可能にしたものである。しかし、この方式では、流 路を2つに分岐する必要があり、また、モータ等の駆動系が2個必要になり、費 用が嵩むと言う欠点があった。 In the flow rate control method of FIG. 4 described above, the flow path is divided into two, a thick flow path 15 and a thin flow path 25, and the thick flow path 15 is provided with a travel adjusting valve 16 and the thin flow path 25 is provided with an ISC adjusting valve. It is provided with 26 and can be controlled separately. However, this method has a drawback in that it is necessary to branch the flow path into two and two drive systems such as a motor are required, which increases the cost.
【0005】 尚、別の方法として、1つの流路で1つの弁で流量調整する方法も提案されて いるが、流量の最小調整可能量(分解能と称す)は弁の軸の分解能(制御機構と 弁構造の精度で決まる)が同じ場合は、流路の断面積に比例するため、大きな弁 1つでISC制御のような微調整を行うには、従来以上の高度な制御機構と弁の 精度が必要であり実現できたとしても著しいコストアップになる。As another method, a method of adjusting the flow rate with one valve in one flow path has been proposed, but the minimum adjustable amount of flow rate (referred to as resolution) is the resolution of the valve axis (control mechanism). , Which is determined by the accuracy of the valve structure), is proportional to the cross-sectional area of the flow path. Therefore, in order to make fine adjustments such as ISC control with a single large valve, a more advanced control mechanism and valve Accuracy is required, and even if it can be realized, the cost will increase significantly.
【0006】 従って本考案は、1つの流路でかつ1駆動系で、流量調整範囲が広く、かつ、 精度の良い弁の構造を提供することを目的とする。Therefore, an object of the present invention is to provide a structure of a valve which has one flow passage and one drive system, has a wide flow rate adjustment range, and is highly accurate.
【0007】[0007]
上記目的を達成するために本考案は、流路が形成されたボディと、該ボディに 軸支された弁体を有し、前記弁体が軸芯周りに回転することにより、前記流路の 開口度が調整される流量調整弁において、軸を回転させる駆動手段に接続された 駆動軸と、前記駆動軸が所定回転角以上回転すると該駆動軸に係合し、該駆動軸 と共に回転する従動軸と、前記駆動軸に結合された駆動軸弁体と、前記従動軸に 結合された従動軸弁体とからなることを特徴とするものである。 In order to achieve the above object, the present invention has a body in which a flow path is formed and a valve body axially supported by the body, and the valve body rotates about an axis to In a flow rate control valve whose opening degree is adjusted, a drive shaft connected to a drive means for rotating the shaft, and a driven shaft that engages with the drive shaft when the drive shaft rotates by a predetermined rotation angle or more and rotates with the drive shaft. A shaft, a drive shaft valve body connected to the drive shaft, and a driven shaft valve body connected to the driven shaft.
【0008】[0008]
本考案によれば、流量は少ないが精度が必要な流量調整は、開口面積の小さい 弁体に分担させ、制御系に接続された駆動軸で行われる。一方、広い流量調整は 、開口面積の大きい弁体に分担させ、駆動軸に係合された従動軸により行われる 。尚、両弁は従来の弁と同様に駆動力が解除されるとバネ力等により自動的に閉 じられる。 According to the present invention, the flow rate adjustment that requires a small amount of flow rate but requires precision is performed by the drive shaft connected to the control system by sharing the valve element with a small opening area. On the other hand, a wide flow rate adjustment is performed by a driven shaft that is shared by a valve body having a large opening area and is engaged with a drive shaft. It should be noted that both valves are automatically closed by a spring force or the like when the driving force is released as in the conventional valve.
【0009】[0009]
図1は本考案に係る流量調整弁の構造を示す断面図である。 4は気化燃料空気の流路5を構成するボディ。11は該ボディ4に設けられた 第1の軸(以下駆動軸と称す)で、ステップモータ等(図示せず)により駆動さ れる。21は駆動軸11と共通の軸芯を有する従動軸。12は駆動軸11に軸支 された小さい円板状のISC制御弁体で、流量の小さなISC制御用の微量の流 量調整を行う。22は従動軸21に設けられた大きいドーナツ状の走行制御弁体 で、流量の大きな走行制御用の流量調整を行う。13は駆動軸11に設けられた 突起、また、23は従動軸21に設けられた突起で、突起13は駆動軸の回転方 向に対して突起23よりも90°遅れた位置に設けられている。また、前記駆動 軸11の回転により突起13が前記従動軸21側の突起23に係合して前記従動 軸21側の走行制御弁体22を開閉する。 FIG. 1 is a sectional view showing the structure of a flow control valve according to the present invention. Reference numeral 4 is a body forming a flow path 5 for vaporized fuel air. Reference numeral 11 denotes a first shaft (hereinafter referred to as a drive shaft) provided on the body 4, which is driven by a step motor or the like (not shown). Reference numeral 21 is a driven shaft having a common axis with the drive shaft 11. Reference numeral 12 denotes a small disk-shaped ISC control valve element that is axially supported by the drive shaft 11, and performs a small flow rate adjustment for ISC control with a small flow rate. Reference numeral 22 denotes a large donut-shaped travel control valve element provided on the driven shaft 21 for adjusting the flow rate for travel control with a large flow rate. 13 is a protrusion provided on the drive shaft 11, and 23 is a protrusion provided on the driven shaft 21. The protrusion 13 is provided at a position 90 ° behind the protrusion 23 with respect to the rotational direction of the drive shaft. There is. Further, the rotation of the drive shaft 11 causes the projection 13 to engage with the projection 23 on the side of the driven shaft 21 to open and close the travel control valve element 22 on the side of the driven shaft 21.
【0010】 図2は本考案に係る流量調整弁の動作機構を説明する図である。 駆動軸11の回転角が0°(ここで、回転角の基準はISC制御弁が閉じた状 態を回転角0°とする。図2においての状態)の場合には、駆動軸11に配設 されたISC制御弁体12は閉じられている。また、従動軸21の突起23は駆 動軸11の突起13とは係合しておらず、従って従動軸21は回転されず、従動 軸21に配設された走行制御弁体22も閉じている(但し、微量のオフセット流 量は流れている)。FIG. 2 is a view for explaining the operating mechanism of the flow rate adjusting valve according to the present invention. If the rotation angle of the drive shaft 11 is 0 ° (here, the reference of the rotation angle is the rotation angle 0 ° when the ISC control valve is closed. The installed ISC control valve body 12 is closed. Further, the protrusion 23 of the driven shaft 21 is not engaged with the protrusion 13 of the drive shaft 11, so that the driven shaft 21 is not rotated and the travel control valve element 22 disposed on the driven shaft 21 is also closed. (However, a small amount of offset flow is flowing).
【0011】 駆動軸11の回転角が45°(図2においての状態)の場合には、駆動軸1 1に配設されたISC制御弁体12は45°開かれている。一方、従動軸21の 突起23は駆動軸11の突起13とは係合しておらず、従って従動軸21は回転 されず、従動軸21に配設された走行制御弁体22は閉じている。 駆動軸11の回転角が90°(図2においての状態)の場合には、駆動軸1 1に配設されたISC制御弁体12は全開されている。しかし、従動軸21の突 起23は駆動軸11の突起13とは当接しても従動軸21は回転されず、従動軸 21に配設された走行制御弁体22は閉じている。この駆動軸11の角度が0° 〜90°の範囲はISC制御弁体12(小さい弁)によるの制御域で、図2−( c)のごとく流量はすくないが微調整が可能な領域である。When the rotation angle of the drive shaft 11 is 45 ° (the state in FIG. 2), the ISC control valve body 12 arranged on the drive shaft 11 is opened at 45 °. On the other hand, the protrusion 23 of the driven shaft 21 is not engaged with the protrusion 13 of the drive shaft 11, so that the driven shaft 21 is not rotated and the travel control valve body 22 disposed on the driven shaft 21 is closed. . When the rotation angle of the drive shaft 11 is 90 ° (state in FIG. 2), the ISC control valve body 12 arranged on the drive shaft 11 is fully opened. However, even if the protrusions 23 of the driven shaft 21 come into contact with the protrusions 13 of the drive shaft 11, the driven shaft 21 is not rotated, and the travel control valve body 22 arranged on the driven shaft 21 is closed. The range in which the angle of the drive shaft 11 is 0 ° to 90 ° is a control region by the ISC control valve body 12 (small valve), and is a region in which the flow rate is small but fine adjustment is possible as shown in FIG. .
【0012】 駆動軸11の回転角が135°(図2においての状態)の場合には、駆動軸 11に配設されたISC制御弁体12は90°開かれている。一方、従動軸21 の突起23は駆動軸11の突起13に係合されて従動軸21は45°回転され、 従動軸21に配設された走行制御弁体22は45°開かれている。 駆動軸11の回転角が180°(図2においての状態)の場合には、駆動軸 11に配設されたISC制御弁体12は90°開かれている。一方、従動軸21 の突起23は駆動軸11の突起13に係合されて従動軸21は90°回転され、 従動軸21に配設された走行制御弁体22は全開されている。この駆動軸11の 角度が90°〜180°の範囲は走行制御弁体22(大きい弁)によるの制御域 で、図2−(c)のごとく流路の断面積が大きいため精度は若干劣るが、大きな 流量調整が可能な領域である。When the rotation angle of the drive shaft 11 is 135 ° (the state in FIG. 2), the ISC control valve body 12 arranged on the drive shaft 11 is opened 90 °. On the other hand, the protrusion 23 of the driven shaft 21 is engaged with the protrusion 13 of the drive shaft 11, the driven shaft 21 is rotated by 45 °, and the travel control valve body 22 disposed on the driven shaft 21 is opened by 45 °. When the rotation angle of the drive shaft 11 is 180 ° (state in FIG. 2), the ISC control valve body 12 arranged on the drive shaft 11 is opened 90 °. On the other hand, the protrusion 23 of the driven shaft 21 is engaged with the protrusion 13 of the drive shaft 11, the driven shaft 21 is rotated 90 °, and the travel control valve element 22 disposed on the driven shaft 21 is fully opened. The range in which the angle of the drive shaft 11 is 90 ° to 180 ° is the control region by the travel control valve body 22 (large valve), and the accuracy is slightly inferior because the cross-sectional area of the flow passage is large as shown in FIG. However, this is an area where large flow rate adjustment is possible.
【0013】 尚、流量が減少する場合は、駆動軸11の回転角が小さくなるが、状態〜 の範囲では駆動軸12のみがステップモータ等により戻り、従動軸21は一般の 弁と同様に別に設けられたバネ力等により戻される。 また、本実施例では、駆動軸11の突起13の従動軸21の突起23に対する 遅れ角度は90°であるが、これはISC制御域と走行制御域の制御分解能を均 等にしたためで、一方の制御分解能を多くしたい場合は、その制御域の角度を大 きくすればよい。When the flow rate decreases, the rotation angle of the drive shaft 11 becomes smaller, but in the range from state to, only the drive shaft 12 is returned by the step motor or the like, and the driven shaft 21 is separated like the general valve. It is returned by the provided spring force. Further, in the present embodiment, the delay angle of the protrusion 13 of the drive shaft 11 with respect to the protrusion 23 of the driven shaft 21 is 90 °. This is because the control resolutions of the ISC control region and the travel control region are equalized. If you want to increase the control resolution of, you can increase the angle of the control area.
【0014】 図3は本考案に係る他の実施例の流量調整弁の構造を示す平面図である。 この流量調整弁の構造は前記実施例の流量調整弁とは弁体の部分が異なる。即 ち、前記実施例では弁体を流路に対して同心円に分割して小さな円板状の弁体に ISC制御を、大きなドーナツ状の弁体に走行制御を分担させていたが、本実施 例では弁体を流路に対して軸に垂直に小さい弁体と大きい弁体に分割して、小さ い弁体にISC制御を、大きい弁体に走行制御を分担させるたものである。FIG. 3 is a plan view showing the structure of a flow rate adjusting valve according to another embodiment of the present invention. The structure of this flow rate adjusting valve is different from that of the flow rate adjusting valve of the above-described embodiment in the valve body. That is, in the above embodiment, the valve body was divided into concentric circles with respect to the flow path, and the small disk-shaped valve body was assigned the ISC control, and the large donut-shaped valve element was assigned the travel control. In the example, the valve element is divided into a small valve element and a large valve element perpendicular to the axis of the flow path, and the small valve element is responsible for ISC control and the large valve element is responsible for running control.
【0015】 4は気化燃料空気の流路5を構成するボディ。31は該ボディ4に設けられた 第1の軸(以下駆動軸と称す)で、ステップモータ等(図示せず)により駆動さ れる。41は駆動軸31と共通の軸芯を有する従動軸。42は従動軸41に軸支 された面積の大きい走行制御弁体。32は駆動軸31に軸支された面積の小さい ISC制御弁体。33は駆動軸31に設けられた突起、また、43は従動軸41 に設けられた突起で、突起33は駆動軸の回転方向に対して突起43よりも90 °遅れた位置に設けられている。また、駆動軸31の回転により突起33が従動 軸41側の突起43に係合して従動軸41側の走行制御弁体42が開閉する。動 作機構については前記実施例と全く同様であるため省略する。Reference numeral 4 denotes a body forming a flow path 5 for vaporized fuel air. Reference numeral 31 denotes a first shaft (hereinafter referred to as a drive shaft) provided on the body 4, which is driven by a step motor or the like (not shown). Reference numeral 41 is a driven shaft having a common axis with the drive shaft 31. Reference numeral 42 is a travel control valve body having a large area supported by the driven shaft 41. Reference numeral 32 is an ISC control valve body having a small area supported by the drive shaft 31. 33 is a protrusion provided on the drive shaft 31, 43 is a protrusion provided on the driven shaft 41, and the protrusion 33 is provided at a position delayed by 90 ° from the protrusion 43 with respect to the rotation direction of the drive shaft. . Further, the rotation of the drive shaft 31 causes the projection 33 to engage with the projection 43 on the driven shaft 41 side to open and close the travel control valve body 42 on the driven shaft 41 side. The operation mechanism is completely the same as that of the above-mentioned embodiment, and therefore its explanation is omitted.
【0016】 以上のように本実施例では、ISC制御のような流量の微調整の必要な範囲か ら走行制御のような流量可変範囲の広いところまで、駆動軸11、31の制御だ けで可能となる。As described above, in the present embodiment, only the control of the drive shafts 11 and 31 can be performed from a range in which fine adjustment of the flow rate is required such as ISC control to a wide range of flow rate variable range such as travel control. It will be possible.
【0017】[0017]
以上説明したように、本考案では流量の微調整と可変範囲の広い流量調整の両 方の目的が1つの駆動系で達成されるので、コストの低減が図れる。 As described above, in the present invention, both the fine adjustment of the flow rate and the flow rate adjustment with a wide variable range are achieved by one drive system, so that the cost can be reduced.
【図1】本考案に係る一実施例の流量調整弁の構造を示
す断面図。FIG. 1 is a sectional view showing a structure of a flow rate adjusting valve according to an embodiment of the present invention.
【図2】本考案に係る一実施例の流量調整弁の動作機構
を説明する図。FIG. 2 is a diagram illustrating an operating mechanism of a flow rate adjusting valve according to an embodiment of the present invention.
【図3】本考案に係る他の実施例の流量調整弁の構造を
示す平面図。FIG. 3 is a plan view showing the structure of a flow rate control valve of another embodiment according to the present invention.
【図4】従来の流量制御方式と流量調整弁の構造を示す
断面図。FIG. 4 is a sectional view showing a structure of a conventional flow rate control system and a flow rate adjusting valve.
11・・・駆動軸 21・・・従動軸 12・・・ISC制御弁体 22・・・走行制御弁体 13、23・・・突起 4・・・ボディ 11 ... Drive shaft 21 ... Driven shaft 12 ... ISC control valve body 22 ... Travel control valve body 13, 23 ... Protrusion 4 ... Body
Claims (1)
支された弁体を有し、前記弁体が軸芯周りに回転するこ
とにより、前記流路の開口度が調整される流量調整弁に
おいて、 軸を回転させる駆動手段に接続された駆動軸と、 前記駆動軸が所定回転角以上回転すると該駆動軸に係合
し、該駆動軸と共に回転する従動軸と、 前記駆動軸に結合された駆動軸弁体と、 前記従動軸に結合された従動軸弁体とからなることを特
徴とする流量調整弁。1. A body having a flow passage, and a valve body axially supported by the body, wherein the valve body rotates about an axis to adjust the opening degree of the flow passage. In the flow rate adjusting valve, a drive shaft connected to drive means for rotating the shaft, a driven shaft that engages with the drive shaft when the drive shaft rotates by a predetermined rotation angle or more, and rotates with the drive shaft, and the drive shaft. A flow rate adjusting valve comprising: a drive shaft valve body connected to the driven shaft valve body; and a driven shaft valve body connected to the driven shaft.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5152993U JPH0720471U (en) | 1993-09-22 | 1993-09-22 | Flow control valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5152993U JPH0720471U (en) | 1993-09-22 | 1993-09-22 | Flow control valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0720471U true JPH0720471U (en) | 1995-04-11 |
Family
ID=12889553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5152993U Withdrawn JPH0720471U (en) | 1993-09-22 | 1993-09-22 | Flow control valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0720471U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0872678A1 (en) | 1997-04-14 | 1998-10-21 | Smc Kabushiki Kaisha | Tube joint |
JP2003148642A (en) * | 2001-11-14 | 2003-05-21 | Saginomiya Seisakusho Inc | Electric valve |
JP2010540310A (en) * | 2007-09-25 | 2010-12-24 | ノルド−マイクロ アクティエンゲゼルシャフト アンド カンパニー オーエッチジー | Aircraft spill valve |
-
1993
- 1993-09-22 JP JP5152993U patent/JPH0720471U/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0872678A1 (en) | 1997-04-14 | 1998-10-21 | Smc Kabushiki Kaisha | Tube joint |
JP2003148642A (en) * | 2001-11-14 | 2003-05-21 | Saginomiya Seisakusho Inc | Electric valve |
JP2010540310A (en) * | 2007-09-25 | 2010-12-24 | ノルド−マイクロ アクティエンゲゼルシャフト アンド カンパニー オーエッチジー | Aircraft spill valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4827884A (en) | Throttle assembly | |
US7040283B2 (en) | Throttle valve opening and closing device | |
US5315975A (en) | Intake control device for internal combustion engine | |
JPH0720471U (en) | Flow control valve | |
US6006722A (en) | Fine resolution air control valve | |
JP2003184583A (en) | Throttle valve | |
JPH0236775B2 (en) | ||
GB2192226A (en) | I.c. engine throttle valve body | |
US4428891A (en) | Throttle valve driving mechanism | |
JPH02108842A (en) | Flow control valve | |
US6626142B2 (en) | Intake air rate controlling device for an internal combustion engine | |
KR100203177B1 (en) | Throttle valve for engine of engine | |
JPS61167130A (en) | Intake device of internal-combustion engine | |
JPH0688540A (en) | Throttle valve on-off device | |
JPS639652A (en) | Control method for engine intake throttle valve | |
JP2559341Y2 (en) | Throttle valve stopper structure | |
JPH026306Y2 (en) | ||
JP2001082179A (en) | Throttle device | |
JPH05141281A (en) | Throttle valve control device | |
GB2101714A (en) | Flow proportioning device | |
JPH0213716Y2 (en) | ||
JPH0330612Y2 (en) | ||
JPS60164637A (en) | Idle rotational speed control device | |
JPS62142833A (en) | Flow control valve for intake air to internal combustion engine | |
JPH04301145A (en) | Intake air quantity controller for engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980305 |