JPH07202230A - Solar battery module with natural deterioration recover function - Google Patents

Solar battery module with natural deterioration recover function

Info

Publication number
JPH07202230A
JPH07202230A JP5335504A JP33550493A JPH07202230A JP H07202230 A JPH07202230 A JP H07202230A JP 5335504 A JP5335504 A JP 5335504A JP 33550493 A JP33550493 A JP 33550493A JP H07202230 A JPH07202230 A JP H07202230A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
solar battery
amorphous silicon
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5335504A
Other languages
Japanese (ja)
Inventor
Akira Iwamori
暁 岩森
Mitsuru Sadamoto
満 貞本
Yoshinori Ashida
芳徳 芦田
Nobuhiro Fukuda
信弘 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5335504A priority Critical patent/JPH07202230A/en
Publication of JPH07202230A publication Critical patent/JPH07202230A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make the light deterioration of an amorphous silicon solar battery element recover naturally and suppress it to the minimum, by covering the solar battery element with thermal insulators excepting its light receiving sur face. CONSTITUTION:A translucent surface protecting material 3 and a rear-surface protecting material 4 are bonded respectively to an amorphous silicon solar battery 1 by a laminating agent 2. In this case, a blue plate glass is used as the translucent surface protecting material 3, and Tedlar(R) is used as the rear-surface protecting material 4. Thereafter, by a bonding agent 5, thermal insulators 6, 7 are bonded respectively to the protecting materials, etc. As the bonding agent 5, a silicon based corking agent is used, and as the thermal insulators 6, 7, urethane rubbers having a identical material quality to each other are used. Further, by a bonding agent 8 of a silicon based caulking agent, a frame 9 made of aluminum is mounted on the thermal insulator, and electrodes are led out therefrom. Thereby, when the solar battery module 1 is used for a long time in the open air, high-efficiency annealing is made possible, and accordingly, its light deterioration can be recovered more effectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、本発明は、非晶質シリ
コン太陽電池モジュールの光劣化に関し、特に、断熱剤
もしくは熱吸収体を有効に用いることにより光劣化を自
然回復させ、光劣化を最小限に抑えた非晶質シリコン太
陽電池モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to photodegradation of an amorphous silicon solar cell module, and in particular, it effectively recovers photodegradation by effectively using a heat insulating agent or a heat absorber. The present invention relates to an amorphous silicon solar cell module that minimizes

【0002】[0002]

【従来の技術】太陽からの光エネルギーを電気エネルギ
ーに変換する太陽電池モジュールのなかで、非晶質シリ
コン太陽電池モジュールは、太陽光によりその変換効率
が下がる、いわゆる光劣化が生じる問題がある。この光
劣化は非晶質シリコン太陽電池素子を熱処理すること
(アニーリング)によりあるレベルまで回復されること
が知られている。ところが、従来の非晶質シリコン太陽
電池モジュールでは、屋外に設置した場合に、同時にア
ニーリングにより光劣化を有効に回復させるような設計
にはなっていない。特開平4ー71276号公報におい
て、非晶質シリコン太陽電池の受光面の裏面側に、断熱
手段を具備した少劣化太陽電池モジュールが提案されて
おり、シート上ガラス繊維を断熱手段に用いた太陽電池
モジュールに於いて若干のアニーリング効果が認められ
ている。また、特開昭60ー60777号公報に於い
て、非晶質シリコン膜が、0、8μm以下の波長の光し
か吸収しない性質を利用して、熱吸収層、集熱板及び集
熱管を用いて0、8μmより短い波長に光を太陽電池の
発電に、0、8μmより長い波長の光を熱エネルギーに
変換することを提案している。
2. Description of the Related Art Among solar cell modules for converting light energy from the sun into electric energy, an amorphous silicon solar cell module has a problem that the conversion efficiency is lowered by sunlight, so-called photodegradation occurs. It is known that this photodegradation is restored to a certain level by heat treatment (annealing) of the amorphous silicon solar cell element. However, the conventional amorphous silicon solar cell module is not designed to effectively recover the photodegradation by annealing at the same time when it is installed outdoors. Japanese Patent Application Laid-Open No. 4-71276 proposes a low-degradation solar cell module having a heat insulating means on the back side of a light-receiving surface of an amorphous silicon solar cell, which uses a glass fiber on a sheet as a heat insulating means. A slight annealing effect is recognized in the battery module. Further, in JP-A-60-60777, a heat absorbing layer, a heat collecting plate and a heat collecting tube are used by utilizing the property that an amorphous silicon film absorbs only light having a wavelength of 0.8 μm or less. Therefore, it is proposed that light having a wavelength shorter than 0.8 μm be used for power generation of a solar cell, and light having a wavelength longer than 0.8 μm be converted to thermal energy.

【0003】[0003]

【発明が解決しようとする課題】前述の特開平4ー71
276号公報の場合、断熱手段を施したのは受光面の裏
面だけで、太陽電池素子の周辺から放熱し断熱手段とし
ては不十分であり、十分なアニーリング効果は得られて
いない。また、特開平4ー71276号公報によると、
断熱手段として用いているシート上のガラス繊維は吸湿
性があり、屋外に設置する太陽電池モジュールの断熱剤
には適していない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the case of Japanese Patent Laid-Open No. 276, the heat insulating means is applied only to the back surface of the light receiving surface, which is insufficient as heat insulating means for radiating heat from the periphery of the solar cell element, and a sufficient annealing effect is not obtained. Further, according to Japanese Patent Laid-Open No. 4-71276,
The glass fiber on the sheet used as the heat insulating means has a hygroscopic property and is not suitable as a heat insulating agent for a solar cell module installed outdoors.

【0004】特開昭60ー60777号公報では、0、
8μm以上の波長の光を熱吸収層で熱エネルギーに変換
し、集熱板、集熱管を通して集めることを特徴としてお
り、熱吸収層で吸収した熱エネルギーを直接、非結晶シ
リコン太陽電池素子の光劣化の回復に用いることは考案
されていない。
In JP-A-60-60777, 0,
The feature is that light with a wavelength of 8 μm or more is converted into heat energy by a heat absorption layer and collected through a heat collecting plate and a heat collecting tube. It has not been devised for use in recovery from deterioration.

【0005】従来、非晶質シリコン太陽電池モジュール
を屋外に設置した場合に於いて、太陽からの光エネルギ
ーを有効に利用して光劣化を自然に、しかも効果的に回
復させるような熱アニーリング方法は考案されていな
い。
Conventionally, when an amorphous silicon solar cell module is installed outdoors, a thermal annealing method for effectively and effectively recovering photodegradation by effectively utilizing the light energy from the sun. Has not been devised.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、断熱手段を駆使して、太陽からの光エネルギー
を非晶質太陽電池モジュールの熱アニーリングに極力有
効に使うことを追求し、非晶質シリコン太陽電池素子の
受光面を除いて断熱材で被覆されたような太陽電池モジ
ュールを想到し、本発明に到達した。
Means for Solving the Problems As a result of intensive investigations by the present inventors, the inventors have sought to utilize light energy from the sun as effectively as possible for thermal annealing of an amorphous solar cell module by making full use of a heat insulating means. The present invention has been accomplished by contriving a solar cell module that is covered with a heat insulating material except for the light receiving surface of an amorphous silicon solar cell element.

【0007】すなわち、本発明は、非晶質シリコン太陽
電池素子において該素子の受光面を除いて断熱材で被覆
してなることを特徴とする太陽電池モジュール、であ
り、また、赤外線を選択的に吸収し、熱に変換する熱吸
収体を、非晶質シリコン太陽電池素子の上面側に取り付
けてなることを特徴とする太陽電池モジュール、であ
る。本発明において、断熱材として用いられるものに
は、吸湿性の少ないもの例えば発泡性のプラスチック、
あるいは発泡性の無機物質を用いるのが好ましいが、こ
れに限るものではない。また、ここで言う断熱材は、太
陽電池素子の受光面の裏面とそれ以外で材質が異なって
いても良い。この様な非晶質シリコン太陽電池モジュー
ルに於いては、電気的エネルギーに変換されなかった太
陽光エネルギーを熱に変換させ、太陽電池素子の温度を
アニーリングが効果的に起こる温度にまで上昇させ、高
温に保つことができる。
That is, the present invention is a solar cell module characterized in that an amorphous silicon solar cell element is covered with a heat insulating material except for the light receiving surface of the element, and infrared rays are selectively emitted. A solar cell module, characterized in that a heat absorber that absorbs into and is converted into heat is attached to the upper surface side of the amorphous silicon solar cell element. In the present invention, what is used as a heat insulating material is one having a low hygroscopic property, for example, foamable plastic,
Alternatively, it is preferable to use a foamable inorganic substance, but the invention is not limited to this. In addition, the material of the heat insulating material may be different between the back surface of the light receiving surface of the solar cell element and the other surface. In such an amorphous silicon solar cell module, sunlight energy that has not been converted to electrical energy is converted to heat, and the temperature of the solar cell element is raised to a temperature at which annealing effectively occurs. Can be kept at high temperature.

【0008】また、非晶質シリコン太陽電池素子の上面
に透明性の赤外線吸収シートを形成させ、太陽からの赤
外線を吸収し熱に変換できるような太陽電池モジュール
を提案する。このような非晶質太陽電池モジュールに於
いては、波長が赤外部にある光のエネルギーを熱エネル
ギーに変換し太陽電池素子の温度をアニーリングが効果
的に起こる温度まで上昇させることができる。
Further, a solar cell module is proposed in which a transparent infrared absorbing sheet is formed on the upper surface of an amorphous silicon solar cell element to absorb infrared rays from the sun and convert them into heat. In such an amorphous solar cell module, the energy of light having a wavelength in the infrared region can be converted into thermal energy, and the temperature of the solar cell element can be raised to a temperature at which annealing effectively occurs.

【0009】[0009]

【実施例】【Example】

(実施例1および比較例1〜2) (1) 非晶質シリコン太陽電池素子の受光面を除いて断熱
材で被覆されたような太陽電池モジュールの一例を示し
た図1について説明する。非晶質シリコン太陽電池素子
1、透明性表面保護材3、及び裏面保護材4をラミネー
ト剤2で接着した。ここで、透明性表面保護材として青
板硝子を、裏面保護材としてテドラーを用いた。その
後、接着剤5により断熱材6および7を接着した。
(Example 1 and Comparative Examples 1 and 2) (1) FIG. 1 showing an example of a solar cell module which is covered with a heat insulating material except the light-receiving surface of an amorphous silicon solar cell element will be described. The amorphous silicon solar cell element 1, the transparent surface protection material 3, and the back surface protection material 4 were bonded with the laminating agent 2. Here, soda-lime glass was used as the transparent surface protection material, and Tedlar was used as the back surface protection material. Then, the heat insulating materials 6 and 7 were bonded by the adhesive 5.

【0010】接着剤5としてはシリコンゴム系のコーキ
ング剤、断熱材6および7には同一材質のウレタンゴム
を用いた。そして、シリコンゴム系のコーキング剤であ
る接着剤8により、アルミニウム製のフレーム9を取付
け、電極の取り出しを行い太陽電池モジュール1を作製
した。 (2) 比較例1として、断熱材で被覆しない非晶質シリコ
ン太陽電池モジュールの一例を示した図4について説明
する。
Silicone caulking agent was used as the adhesive 5, and urethane rubber of the same material was used for the heat insulating materials 6 and 7. Then, the frame 9 made of aluminum was attached by the adhesive 8 which was a caulking agent of silicon rubber type, and the electrodes were taken out to fabricate the solar cell module 1 . (2) As Comparative Example 1, FIG. 4 showing an example of an amorphous silicon solar cell module not covered with a heat insulating material will be described.

【0011】非晶質シリコン太陽電池素子1、透明性表
面保護材3及び裏面保護材4をラミネート材2で接着し
た。その後、シリコンゴム系のコーキング剤である接着
剤5により、アルミニウム製のフレーム6を取り付け、
電極の取り出しを行い、太陽電池モジュール4を作製し
た。ここで、透明性表面保護材、裏面保護材、接着剤5
については、太陽電池モジュール1と同一素材を用い
た。 (3) さらに別の比較例2として、断熱材で裏面のみを被
覆した非晶質シリコン太陽電池モジュールの一例を示し
た図5について説明する。
The amorphous silicon solar cell element 1, the transparent front surface protective material 3 and the back surface protective material 4 were adhered with a laminate material 2. After that, the aluminum frame 6 is attached by the adhesive 5 which is a silicone rubber caulking agent,
The electrodes were taken out and the solar cell module 4 was produced. Here, the transparent surface protection material, the back surface protection material, and the adhesive 5
For, the same material as the solar cell module 1 was used. (3) As yet another Comparative Example 2, FIG. 5 showing an example of an amorphous silicon solar cell module in which only the back surface is covered with a heat insulating material will be described.

【0012】非晶質シリコン太陽電池素子1、透明性表
面保護材3、及び裏面保護材4をラミネート材2で接着
した。その後、接着剤5により断熱材6を接着した。そ
の後、シリコンゴム系のコーキング剤である接着剤7に
より、アルミニウム製のフレーム8を取り付け、電極の
取り出しを行い、太陽電池モジュール5を作製した。こ
こで、透明性表面保護材、裏面保護材、断熱材、接着剤
5、7については、太陽電池モジュール1と同一素材を
用いた。
The amorphous silicon solar cell element 1, the transparent surface protection material 3 and the back surface protection material 4 were adhered with a laminate material 2. Then, the heat insulating material 6 was bonded by the adhesive 5. After that, the aluminum frame 8 was attached with the adhesive 7 which is a silicone rubber-based caulking agent, and the electrodes were taken out to fabricate the solar cell module 5 . Here, the same material as the solar cell module 1 was used for the transparent surface protective material, the back surface protective material, the heat insulating material, and the adhesives 5 and 7.

【0013】これら太陽電池モジュール1、4および5
を用いて光劣化実験を行った。光劣化実験は特開平4ー
71276にならい、以下のように行った。
These solar cell modules 1, 4 and 5
A photo-deterioration experiment was carried out using. The photodegradation experiment was carried out as follows according to Japanese Patent Laid-Open No. 4-71276.

【0014】太陽電池の受光面側をアルミホイルで覆
い、屋外に設置した架台(太陽電池の受光面が真南に向
き、かつ地平面と37度の角度になるようにしたもの)
に全天日射計、及びサーミスターともに設置し、太陽の
日射量、及び気温が測定できるようにした。
A pedestal installed outdoors by covering the light-receiving surface side of the solar cell with aluminum foil (so that the light-receiving surface of the solar cell faces to the true south and forms an angle of 37 degrees with the ground plane).
A solar pyranometer and a thermistor were installed in the plant so that the solar radiation and temperature could be measured.

【0015】また、モジュールの電流ー電圧曲線を測定
するために、市販のパソコン、ディスプレイ、プリンタ
ー、及びIーVカーブトレーサーを取り付けた。
Further, in order to measure the current-voltage curve of the module, a commercially available personal computer, display, printer and IV curve tracer were attached.

【0016】この様な系で、晴天日の正午で日射量が1
00mW/cm2 で安定している時にモジュールの受光
面を覆っているアルミホイルを剥し、太陽電池表面の温
度が安定化したと考えられる10分後にモジュールの電
流ー電圧曲線と日射量を測定し、実効変換効率を求めた
ところ、太陽電池モジュール1が、6.0%、太陽電池
モジュール4が5.8%、太陽電池モジュール5が5.
7%であった。測定後、電流ー電圧曲線の最適負荷に相
当する抵抗を接続した後、約4カ月間屋外に放置し、あ
る晴天日の正午で、前述の測定時とほぼ同条件の時にモ
ジュールの実効変換効率を求めたところ、太陽電池モジ
ュール1が5.5%、太陽電池モジュール4が4.9
%、太陽電池モジュール5が5.0%であった。
With such a system, the amount of solar radiation is 1 at noon on a clear day.
When it is stable at 00 mW / cm 2 , peel off the aluminum foil covering the light-receiving surface of the module, and measure the current-voltage curve and solar radiation of the module 10 minutes after the temperature of the solar cell surface is considered to have stabilized. The effective conversion efficiency was calculated to be 6.0% for the solar cell module 1.
Module 4 is 5.8%, solar cell module 5 is 5.
It was 7%. After the measurement, connect a resistor corresponding to the optimum load of the current-voltage curve, and then leave it outdoors for about 4 months. At noon on a sunny day, the module's effective conversion efficiency under the same conditions as the above measurement. I was asked for, solar cells Moji
5.5% for module 1 and 4.9 for solar cell module 4
%, And the solar cell module 5 was 5.0%.

【0017】即ち、光劣化の度合いは、太陽電池モジュ
ール1が8.3%、太陽電池モジュール4が15.5
%、太陽電池モジュール5が12.3%であった。この
時、同時に温度計をこれら太陽電池モジュールの裏面に
セットし、安定したところでその値を測定したところ、
太陽電池モジュール4に対して太陽電池モジュール1
温度は14℃高く、太陽電池モジュール5に対して太陽
電池モジュール1の温度は7℃高かった。
That is, the degree of photodegradation depends on the solar cell module.
Module 1 is 8.3%, solar cell module 4 is 15.5
%, And the solar cell module 5 was 12.3%. At this time, at the same time, a thermometer was set on the back surface of these solar cell modules, and when the value was measured when it was stable,
Temperature of the solar cell module 1 for a solar cell module 4 high 14 ° C., solar the solar cell module 5
The temperature of the battery module 1 was 7 ° C. higher.

【0018】(実施例2)赤外線を選択的に吸収し、熱
に変換する熱吸収体を非晶質シリコン太陽電池素子の上
面側に取り付けた太陽電池モジュールの一例を示した図
2について説明する。
Example 2 FIG. 2 showing an example of a solar cell module in which a heat absorber that selectively absorbs infrared rays and converts it into heat is attached to the upper surface side of an amorphous silicon solar cell element will be described. .

【0019】非晶質シリコン太陽電池素子1、赤外線選
択的集熱剤シート3、及び裏面保護材6をラミネート材
2で接着した。ここで、赤外線選択的集熱シートとし
て、熱吸収樹脂フィルムを、裏面保護材としてテドラー
を用いた。その後、透明性接着剤4により、透明性表面
保護材5と接着した。ここで、透明性表面保護材として
青板硝子を用いた。その後、シリコンゴム系のコーキン
グ剤である接着剤7によりアルミニウム性のフレーム8
を取り付け、電極の取り出しを行い太陽電池モジュール
を作製した。
The amorphous silicon solar cell element 1, the infrared selective heat collecting agent sheet 3 and the back surface protective material 6 were adhered with a laminate material 2. Here, a heat absorbing resin film was used as the infrared selective heat collecting sheet, and a Tedlar was used as the back surface protective material. After that, the transparent adhesive 4 was used to adhere the transparent surface protective material 5. Here, soda lime glass was used as the transparent surface protective material. After that, an aluminum frame 8 is formed by an adhesive 7 which is a silicone rubber caulking agent.
Attach the solar cell module to remove the electrode
2 was produced.

【0020】このようにして作製した太陽電池モジュー
ル2の光劣化試験を実施例1と同様の方法で行ったとこ
ろ、モジュール設置後、10分の実効変換効率は、5.
9%であり、約4カ月後の実効変換効率は5.1%であ
った。即ち、光劣化の度合いは、13.6%であった。
この時、同時に温度計を本太陽電池モジュールの裏面に
セットし、安定したところでその値を測定したところ、
太陽電池モジュール4に対して太陽電池モジュール2
温度は5℃高かった。
The solar cell module thus produced
When the photodegradation test of Rule 2 was performed in the same manner as in Example 1, the effective conversion efficiency of 10 minutes after the module was installed was 5.
It was 9%, and the effective conversion efficiency after about 4 months was 5.1%. That is, the degree of photodegradation was 13.6%.
At this time, at the same time, a thermometer was set on the back surface of this solar cell module, and when the value was measured when it was stable,
The temperature of the solar cell module 2 was 5 ° C. higher than that of the solar cell module 4 .

【0021】(実施例3)赤外線を選択的に吸収し、熱
に変換する熱吸収体を非晶質シリコン太陽電池素子の上
面側に取り付けた太陽電池モジュールに於いて、受光面
を除いて断熱剤で被覆されたことを特徴とする太陽電池
モジュールの一例を示した図3について説明する。
(Example 3) In a solar cell module in which a heat absorber that selectively absorbs infrared rays and converts it into heat is attached to the upper surface side of an amorphous silicon solar cell element, heat insulation is performed except for the light receiving surface. FIG. 3 showing an example of the solar cell module characterized by being coated with the agent will be described.

【0022】非晶質シリコン太陽電池素子1、赤外線選
択的集熱剤シート3、及び裏面保護材6をラミネート材
2で接着した。ここで、赤外線選択的集熱シートとし
て、熱吸収樹脂フィルムを、裏面保護材としてテドラー
を用いた。その後、透明性接着剤4により、透明性表面
保護材5と接着した。ここで、透明性表面保護材として
青板硝子を用いた。その後、シリコンゴム系のコーキン
グ剤である接着剤7により、断熱材8及び9を接着し
た。ここで、断熱材8、9は同一材質のウレタンゴムを
用いた。そして、シリコンゴム系のコーキング剤である
接着剤10により、アルミニウム製のフレーム11を取
付け、電極の取り出しを行い太陽電池モジュール3を作
製した。
The amorphous silicon solar cell element 1, the infrared selective heat collecting agent sheet 3, and the back surface protective material 6 were adhered with the laminating material 2. Here, a heat absorbing resin film was used as the infrared selective heat collecting sheet, and a Tedlar was used as the back surface protective material. After that, the transparent adhesive 4 was used to adhere the transparent surface protective material 5. Here, soda lime glass was used as the transparent surface protective material. After that, the heat insulating materials 8 and 9 were bonded by the adhesive 7 which is a silicone rubber caulking agent. Here, the heat insulating materials 8 and 9 are made of urethane rubber of the same material. Then, the frame 11 made of aluminum was attached by the adhesive 10 which is a silicone rubber-based caulking agent, and the electrodes were taken out to fabricate the solar cell module 3 .

【0023】このようにして作製した太陽電池モジュー
ル3の光劣化試験を実施例1と同様の方法で行ったとこ
ろ、モジュール設置後、10分の実効変換効率は、6.
0%であり、約4カ月後の実効変換効率は5.6%であ
った。即ち光劣化の度合いは、6.7%であった。この
時、温度計を本太陽電池モジュールの裏面にセットし、
安定したところでその値を測定したところ、太陽電池モ
ジュール4に対して太陽電池モジュール3の温度は18
℃高く、太陽電池モジュール5に対して太陽電池モジュ
ール1の温度は11℃高かった。
Solar cell module produced in this way
When the photodegradation test of Rule 3 was performed in the same manner as in Example 1, the effective conversion efficiency of 10 minutes after the module was installed was 6.
It was 0%, and the effective conversion efficiency after about 4 months was 5.6%. That is, the degree of photodegradation was 6.7%. At this time, set the thermometer on the back of this solar cell module,
Was measuring the value at which stable, solar battery mode
The temperature of the solar cell module 3 is 18 for Joule 4 .
℃ high, solar cell module to the solar cell module 5
The temperature of Tool 1 was 11 ° C. higher.

【0024】なお、上記実施例1〜3で用いた非結晶シ
リコン太陽電池モジュール1〜5の変換効率は、全てほ
ぼ同定度のものを用いた。
The conversion efficiencies of the amorphous silicon solar cell modules 1 to 5 used in the above-mentioned Examples 1 to 3 were all about the degree of identification.

【0025】[0025]

【発明の効果】非晶質シリコン太陽電池モジュールにお
いて、非晶質シリコン太陽電池素子の受光面の裏面側の
みに断熱手段を施すよりも、受光面を除いた全体を断熱
材で被覆した場合に、効果的に太陽電池素子の放熱を減
少させ、太陽電池素子の温度をより高温に保て、長時間
屋外で使用した場合に、高効率のアニーリングが可能に
なり、光劣化をより効果的に回復させることができる。
同様に、赤外線を選択的に吸収し、熱に変換する熱吸収
体を非晶質シリコン太陽電池素子の上面側に取り付ける
ことにより、長時間屋外で使用した場合に、高効率のア
ニーリングが可能になり、光劣化をより効果的に回復さ
せることができる。
In the amorphous silicon solar cell module, when the whole of the amorphous silicon solar cell element excluding the light receiving surface is covered with a heat insulating material rather than heat insulating means only on the back surface side of the light receiving surface. , Effectively reduce the heat dissipation of the solar cell element, keep the temperature of the solar cell element higher, and enable high-efficiency annealing when used outdoors for a long time, making the light deterioration more effective. Can be recovered.
Similarly, by attaching a heat absorber that selectively absorbs infrared rays and converts it into heat, it is possible to perform highly efficient annealing when used outdoors for a long time. Therefore, the photodegradation can be recovered more effectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の太陽電池モジュール1の断面図FIG. 1 is a sectional view of a solar cell module 1 of the present invention.

【図2】本発明の太陽電池モジュール2の断面図FIG. 2 is a sectional view of the solar cell module 2 of the present invention.

【図3】本発明の太陽電池モジュール3の断面図FIG. 3 is a sectional view of the solar cell module 3 of the present invention.

【図4】比較例の太陽電池モジュール4の断面図FIG. 4 is a cross-sectional view of a solar cell module 4 of a comparative example.

【図5】比較例の太陽電池モジュール5の断面図FIG. 5 is a cross-sectional view of a solar cell module 5 of a comparative example.

【符号の説明】[Explanation of symbols]

1 太陽電池素子 2 ラミネート材 1 Solar cell element 2 Laminate material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 信弘 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuhiro Fukuda 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非晶質シリコン太陽電池素子において該
素子の受光面を除いて断熱材で被覆してなることを特徴
とする太陽電池モジュール。
1. A solar cell module comprising an amorphous silicon solar cell element, which is covered with a heat insulating material except the light receiving surface of the element.
【請求項2】 赤外線を選択的に吸収し、熱に変換する
熱吸収体を、非晶質シリコン太陽電池素子の上面側に取
り付けてなることを特徴とする太陽電池モジュール。
2. A solar cell module, wherein a heat absorber that selectively absorbs infrared rays and converts it into heat is attached to the upper surface side of the amorphous silicon solar cell element.
JP5335504A 1993-12-28 1993-12-28 Solar battery module with natural deterioration recover function Pending JPH07202230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5335504A JPH07202230A (en) 1993-12-28 1993-12-28 Solar battery module with natural deterioration recover function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5335504A JPH07202230A (en) 1993-12-28 1993-12-28 Solar battery module with natural deterioration recover function

Publications (1)

Publication Number Publication Date
JPH07202230A true JPH07202230A (en) 1995-08-04

Family

ID=18289321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5335504A Pending JPH07202230A (en) 1993-12-28 1993-12-28 Solar battery module with natural deterioration recover function

Country Status (1)

Country Link
JP (1) JPH07202230A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525264B2 (en) 2000-07-21 2003-02-25 Sharp Kabushiki Kaisha Thin-film solar cell module
JP2014112586A (en) * 2012-12-05 2014-06-19 Sanyo Electric Co Ltd Solar cell panel and method of manufacturing solar cell module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525264B2 (en) 2000-07-21 2003-02-25 Sharp Kabushiki Kaisha Thin-film solar cell module
DE10134901B4 (en) * 2000-07-21 2010-11-11 Sharp K.K. Transmissive thin-film solar cell module with a transparent substrate, a translucent section and a translucent sealing layer
JP2014112586A (en) * 2012-12-05 2014-06-19 Sanyo Electric Co Ltd Solar cell panel and method of manufacturing solar cell module

Similar Documents

Publication Publication Date Title
JP4667406B2 (en) Solar cell module and manufacturing method thereof
CN202957252U (en) Solar cell module
CN101911306B (en) Photoluminescent backing sheet for photovoltaic modules
EP0788171A2 (en) Heat collector with solar cell and passive solar apparatus
JPH11103086A (en) Solar battery module
JPH0262953B2 (en)
WO1995022843A1 (en) Improvement in solar cell modules and method of making same
KR101592544B1 (en) Solar cell module with snow melting function
US20140338730A1 (en) Photovoltaic module with heater
JP2002270880A (en) Solar battery module and its manufacturing method
CN205621751U (en) High printing opacity solar PV modules shocks resistance
CN202562085U (en) Flat hollow solar thermoelectric integrated device
JP2002043594A (en) Optical transmission type thin film solar cell module
JPS62281377A (en) Solar battery module
WO2017049798A1 (en) Pid-resistant and wind sand resistant crystalline silicon solar cell assembly
CN104241425B (en) High heat dissipation photovoltaic module of symmetrical structure
JPS5854679A (en) Solar battery device
CN207568012U (en) A kind of strong solar energy photovoltaic glass curtain wall of translucency
JPH07202230A (en) Solar battery module with natural deterioration recover function
JP2022516341A (en) Hybrid solar panels for generating electrical and thermal energy
AU2017215677B2 (en) Photovoltaic assembly
CN210110807U (en) Double-sided photovoltaic module and photovoltaic power generation system
CN210073875U (en) Solar curtain wall assembly and solar curtain wall
JPH1056189A (en) Solar battery module
JPH1019388A (en) Hybrid type panel and building equipped with this hybrid type panel