JPH07201459A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JPH07201459A
JPH07201459A JP33816793A JP33816793A JPH07201459A JP H07201459 A JPH07201459 A JP H07201459A JP 33816793 A JP33816793 A JP 33816793A JP 33816793 A JP33816793 A JP 33816793A JP H07201459 A JPH07201459 A JP H07201459A
Authority
JP
Japan
Prior art keywords
aluminum nitride
temperature
palladium
heating element
metal heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33816793A
Other languages
Japanese (ja)
Inventor
Tamao Yamamoto
玲緒 山本
Kenichiro Miyahara
健一郎 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP33816793A priority Critical patent/JPH07201459A/en
Publication of JPH07201459A publication Critical patent/JPH07201459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

PURPOSE:To provide temperature control in high accurate and further to improve a follow-up property relating to setting a temperature by providing a metal heating unit layer of high electric conductivity, having high adhesive strength, in an aluminum nitride sintered base body surface of good heat conductivity. CONSTITUTION:By using a metal heating unit mainly composed of Ag-Pd alloy containing palladium in a specific range, even when repeated a heating/cooling cycle, adhesive strength to an aluminum nitride base body is not decreased, and further high accurate and quick temperature control can be attained. That is, by forming a metal heating unit layer, mainly composed of alloy with 0.3:99.7 to 40:60 weight ratio of palladium to silver by consisting of palladium and silver, in a surface of the aluminum nitride sintered body, a high accurate further quick increasing/decreasing temperature speed is obtained, and further temperature distribution can be uniformly obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規なセラミックヒー
ターに関する。詳しくは、高精度且つ迅速な昇温速度、
降温速度を有し、均一な温度分布を可能としたセラミッ
クヒーターである。
FIELD OF THE INVENTION The present invention relates to a novel ceramic heater. In detail, high-accuracy and rapid heating rate,
It is a ceramic heater that has a cooling rate and enables a uniform temperature distribution.

【0002】[0002]

【従来の技術】窒化アルミニウムセラミックス基体上あ
るいは基体間に、金属発熱体層を形成したセラミックヒ
ーターは、単位面積当たりの発熱量を高く取れるという
点で優れており、小型、軽量化ができ、耐熱性も高いた
め、家庭電化製品、各種製造装置等に広く利用され始め
ている。
2. Description of the Related Art Ceramic heaters having a metal heating element layer formed on or between aluminum nitride ceramic substrates are excellent in that they can generate a large amount of heat per unit area, and can be made smaller and lighter and heat resistant. Since it has high properties, it is beginning to be widely used in home appliances, various manufacturing equipment, and the like.

【0003】しかしながら、上記セラミックヒーターに
おいては、例えば、高精度且つ迅速な昇温速度、降温速
度を必要とする医学、化学、生物工学分野向けの加熱冷
却、恒温装置には応用しにくいという問題があった。
However, the above-mentioned ceramic heater has a problem that it is difficult to apply it to, for example, heating / cooling and thermostatic devices for the fields of medicine, chemistry and biotechnology, which require a highly accurate and rapid temperature rising / falling rate. there were.

【0004】一方、窒化アルミニウム焼結体は、その表
面の金属に対する濡れ特性が悪く、金属発熱体の密着性
が悪いという欠点を有し、かかる欠点を解消するために
パラジウムと白金よりなる合金を金属発熱体として使用
したセラミックヒーターが提案されている。
On the other hand, the aluminum nitride sintered body has a drawback that the surface has a poor wetting property with respect to the metal and the adhesion of the metal heating element is poor, and in order to eliminate such a drawback, an alloy of palladium and platinum is used. A ceramic heater used as a metal heating element has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記合
金を使用したセラミックヒーターは、窒化アルミニウム
焼結体に対する密着性は改良されるものの、高精度且つ
迅速な温度制御に関しては、未だ改良の余地があった。
However, although the ceramic heater using the above alloy has improved adhesion to the aluminum nitride sintered body, there is still room for improvement in high precision and quick temperature control. It was

【0006】[0006]

【課題を解決するための手段】本発明者は、上記問題を
解決すべく鋭意研究した結果、特定範囲でパラジウムを
含有するAg−Pd合金を主成分とする金属発熱体を使
用することにより、加熱/冷却サイクルを繰り返しても
窒化アルミニウム基体への密着強度が低下せず、しか
も、高精度且つ迅速な温度制御を可能にしたセラミック
ヒーターが得られることを見い出し、本発明を完成する
に至った。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that by using a metal heating element whose main component is an Ag--Pd alloy containing palladium in a specific range, The inventors have found that a ceramic heater can be obtained in which the adhesion strength to an aluminum nitride substrate does not decrease even when a heating / cooling cycle is repeated and the temperature can be controlled with high accuracy and speed, and the present invention has been completed. .

【0007】本発明は、窒化アルミニウム焼結体表面
に、パラジウム及び銀よりなり、パラジウムと銀との重
量比が0.3:99.7〜40:60の合金を主成分と
する金属発熱体層を形成したセラミックヒーターであ
る。
The present invention is directed to a metal heating element which is composed of palladium and silver on the surface of an aluminum nitride sintered body, and whose main component is an alloy having a weight ratio of palladium to silver of 0.3: 99.7 to 40:60. It is a layered ceramic heater.

【0008】本発明において、窒化アルミニウム焼結体
は、セラミックヒーターとして公知の材質、形状のもの
が特に制限なく使用される。例えば、材質としては、熱
伝導度が160W/m・K(室温)以上のものが好適で
ある。
In the present invention, the aluminum nitride sintered body may be of any known material and shape as a ceramic heater and may be used without particular limitation. For example, a material having a thermal conductivity of 160 W / m · K (room temperature) or higher is suitable.

【0009】また、形状は使用目的に応じて、板状、円
筒状等の任意の形状を採り得るが、後述する金属発熱体
形成用のペーストを印刷する際の容易性より、表面が平
担な形状が好ましい。
The shape may be an arbitrary shape such as a plate shape or a cylindrical shape depending on the purpose of use, but the surface is flat because of the ease of printing a paste for forming a metal heating element described later. Preferred shapes are preferred.

【0010】本発明の特徴は、かかる窒化アルミニウム
焼結体の表面に、パラジウム及び銀よりなり、パラジウ
ムと銀との重量比が0.3:99.7〜40:60、好
ましくは、6:94〜27:73の合金を主成分とする
金属発熱体層を形成したことにある。即ち、パラジウム
の割合が0.3より少ない場合は、形成される金属発熱
体の機械的性質が十分でなく、窒化アルミニウム焼結体
表面への密着性が低下する。
A feature of the present invention is that the surface of such an aluminum nitride sintered body is made of palladium and silver, and the weight ratio of palladium to silver is 0.3: 99.7 to 40:60, preferably 6 :. This is because a metal heating element layer containing an alloy of 94 to 27:73 as a main component was formed. That is, when the ratio of palladium is less than 0.3, the mechanical properties of the metal heating element to be formed are not sufficient, and the adhesion to the surface of the aluminum nitride sintered body decreases.

【0011】従って、セラミックヒーターの温度制御を
精度よく行うことができないばかりでなく、耐久性も低
下する。
Therefore, not only the temperature of the ceramic heater cannot be controlled accurately, but also the durability is lowered.

【0012】また、パラジウムの割合が、40を越えた
場合は、得られるセラミックヒーターの発熱体の加熱/
冷却速度が遅くなり、精度よく昇温、冷却を行うことが
できなくなる。また、該発熱体の固有抵抗率が50μΩ
・cm以上となり、最初の印加電力がかけにくくなり
(高電圧、低電流となるので)昇温時の立ち上がりが遅
くなという問題が生じる。更に、電極部分のリード接合
のためのロウ材および半田濡れ性が悪くなり、他の装置
への組み込みが困難となる。
When the ratio of palladium exceeds 40, heating / heating of the heating element of the obtained ceramic heater is performed.
The cooling rate becomes slow, and it becomes impossible to accurately raise and cool the temperature. The specific resistance of the heating element is 50 μΩ.
-Because it becomes cm or more, it becomes difficult to apply the first applied power (because of high voltage and low current), and there is a problem that the rise at the time of temperature rise is delayed. Further, the wettability of the brazing material and the solder for joining the electrodes to the leads is deteriorated, which makes it difficult to incorporate the brazing material into other devices.

【0013】本発明において、上記組成の金属発熱体層
を窒化アルミニウム焼結体表面に形成する方法は、特に
制限されないが、一般には、粒径1.5〜2.7μmの
パラジウム粉と粒径1.1〜2.3μmの銀粉を重量比
でPd/Ag=0.3/99.7〜40/60の割合で
配合し、これを有機ビヒクルと共に混練・分散してペー
ストを作成し、該ペーストを基体上にスクリーン印刷等
の方法で塗布した後、乾燥、焼成する方法が挙げられ
る。
In the present invention, the method of forming the metal heating element layer having the above composition on the surface of the aluminum nitride sintered body is not particularly limited, but in general, a palladium powder having a particle diameter of 1.5 to 2.7 μm and a particle diameter are used. Silver powder of 1.1 to 2.3 μm was mixed in a weight ratio of Pd / Ag = 0.3 / 99.7 to 40/60, and this was kneaded and dispersed with an organic vehicle to prepare a paste. Examples include a method in which the paste is applied on the substrate by a method such as screen printing, and then dried and baked.

【0014】上記方法において、有機ビヒクルとして
は、エチルセルロース、ジ−n−ブチルフタレート、ブ
チルカルビトールアセテート等が好適に使用される。ま
た、粘度調節のためにテレピネオール等の有機溶剤を添
加してもよい。
In the above method, as the organic vehicle, ethyl cellulose, di-n-butyl phthalate, butyl carbitol acetate and the like are preferably used. Further, an organic solvent such as terpineol may be added to adjust the viscosity.

【0015】更に、上記合金組成に対して、2〜7重量
%のTi、Zrなどの活性金属、10重量%以下のガラ
ス成分を添加することは窒化アルミニウム焼結体表面に
形成される金属発熱体層の密着性を向上させる点から好
ましい。
Further, the addition of 2 to 7% by weight of an active metal such as Ti and Zr to the above alloy composition and 10% by weight or less of a glass component is equivalent to heat generation of metal formed on the surface of the aluminum nitride sintered body. It is preferable from the viewpoint of improving the adhesion of the body layer.

【0016】また、ペースト塗布、乾燥後の焼成条件
は、適宜決定すればよく、大気中で、810〜870℃
の温度範囲で、10〜180分程度が適当である。
The firing conditions after applying and drying the paste may be appropriately determined, and in the air, it is 810 to 870 ° C.
In the temperature range of, about 10 to 180 minutes is suitable.

【0017】本発明において、かかる金属発熱体層のパ
ターンは、特に制限されるものではないが、線状のパタ
ーンを一定の間隔で配列したものが好適である。
In the present invention, the pattern of the metal heating element layer is not particularly limited, but a linear pattern arranged at regular intervals is preferable.

【0018】また、金属発熱体層の厚みは、パターンの
幅、含有されるパラジウムの割合、印加電圧等に応じて
適宜決定すればよい。
The thickness of the metal heating element layer may be appropriately determined according to the width of the pattern, the ratio of palladium contained, the applied voltage and the like.

【0019】[0019]

【発明の効果】以上のように、本発明は、熱伝導性が良
好な窒化アルミニウム焼結体基体表面に、高い密着強度
で、電気伝導率の高い金属発熱体層を有するため、高精
度の温度制御が可能で、温度設定に対する追随性に優れ
たものである。
As described above, according to the present invention, a metal heating element layer having a high adhesion strength and a high electric conductivity is provided on the surface of an aluminum nitride sintered body substrate having a good thermal conductivity. It is possible to control the temperature and has excellent followability to the temperature setting.

【0020】従って、冷却器と組み合わせることによ
り、迅速な昇温/降温が可能な加熱冷却器を提供できる
ようになった。
Therefore, it has become possible to provide a heating / cooling device capable of rapidly raising / lowering the temperature by combining with the cooling device.

【0021】[0021]

【実施例】以下に、実施例を挙げて本発明を更に詳細に
説明するが、本発明はこれらの実施例に何等限定される
ものではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0022】実施例1〜7、比較例1〜2 表1に示す配合にしたがって、平均粒径2.0μm のパ
ラジウム粉末と平均粒径1.0μmの銀粉末を有機ビヒ
クルと共に、3本ロール機にて混練・分散を行ってぺー
ストを得た。このペーストを窒化アルミニウム焼結体基
体上に、図1に示したような形状でスクリーン印刷し
た。
Examples 1 to 7 and Comparative Examples 1 to 2 According to the formulations shown in Table 1, a palladium powder having an average particle size of 2.0 μm and a silver powder having an average particle size of 1.0 μm together with an organic vehicle were used in a three-roll machine. The mixture was kneaded and dispersed to obtain a paste. This paste was screen-printed on an aluminum nitride sintered body substrate in the shape shown in FIG.

【0023】印刷後、100℃×30分間乾燥した後、
大気中850℃×30分焼成し、焼結体表面に金属発熱
体層を形成した。形成された発熱体の総長さは290m
mで、巾は250μm、厚みは14μmである。なお、
実施例6は、アルゴン中850℃×30分焼成した。
After printing, after drying at 100 ° C. for 30 minutes,
It was fired in the air at 850 ° C. for 30 minutes to form a metal heating element layer on the surface of the sintered body. The total length of the heating element formed is 290 m
m, the width is 250 μm, and the thickness is 14 μm. In addition,
Example 6 was fired in argon at 850 ° C. for 30 minutes.

【0024】まず、この抵抗発熱体の半田濡れ性を評価
した。また、このメタライズした基体について−65℃
×30分〜125℃×30分のヒートサイクルテストを
行った。テスト終了後、3mm幅のニッケルリードをロ
ウ付けし、90度ピールテストを行い、メタライズの密
着強度を測定した。これらの結果を表2に示した。
First, the solder wettability of this resistance heating element was evaluated. In addition, regarding this metallized substrate, -65 ° C
A heat cycle test was conducted for 30 minutes to 125 ° C for 30 minutes. After the test was completed, a nickel lead having a width of 3 mm was brazed and a 90 degree peel test was performed to measure the adhesion strength of the metallization. The results are shown in Table 2.

【0025】次に、図2に断面図として示すように、上
記窒化アルミニウム焼結体1の表面に金属発熱体層2が
形成されたセラミックヒーターの面上に、熱電対5、5
´を装着した窒化アルミニウム焼結体基板1´を重ね、
更に10℃の冷却水が流れているアルミニウム製冷却板
7を用意して、加熱・冷却器を作成し、その特性試験を
行った。
Next, as shown in a sectional view in FIG. 2, thermocouples 5 and 5 are formed on the surface of the ceramic heater having the metal heating layer 2 formed on the surface of the aluminum nitride sintered body 1.
Stack the aluminum nitride sintered substrate 1'with the
Further, an aluminum cooling plate 7 in which cooling water at 10 ° C. is flowing was prepared, a heating / cooling device was prepared, and its characteristic test was conducted.

【0026】尚、上記の加熱・冷却器の大きさは巾45
×奥行30×高さ25mmである。昇温時には、外部電
極に電力を印加した。降温時には、印加電力を切ると同
時に加熱器をただちに冷却器7にのせて冷却した。図2
の5(発熱体中央部)に熱電対を設置し、温度変化を測
定し、この測定温度と設定温度との差を温度精度として
評価した。
The size of the heating / cooling device is 45 in width.
X depth 30 x height 25 mm. Electric power was applied to the external electrodes when the temperature was raised. When the temperature was lowered, the applied power was turned off, and at the same time, the heater was immediately placed on the cooler 7 for cooling. Figure 2
A thermocouple was installed at No. 5 (center of the heating element), the temperature change was measured, and the difference between the measured temperature and the set temperature was evaluated as the temperature accuracy.

【0027】尚、発熱抵抗体への通電は定格200V×
20Aのサイリスタを用いた電力制御で行った。
The heating resistor is energized at a rated voltage of 200V ×
Power control was performed using a 20 A thyristor.

【0028】また、図3に示すようなヒートパターン、
即ち、20℃から100℃まで8秒で加熱し10分保持
し、次に、10℃まで18秒で冷却し、さらに10分間
保持するプログラムを組み、電力を印加した時の実際の
昇温に要する時間T1と、100℃で10分間保持後た
だちに印加電力を切り、冷却板にのせた時、10℃まで
の降温に要する時間T2とを測定した。また、別の熱電
対を図2の5´(発熱体と通電部との境い目)に設置
し、5の位置が100℃の時、5´の位置との温度差
(温度分布精度)を測定した。温度制御と測定の結果
を、表3に示す。表3中に記載の温度精度は、20℃か
ら100℃までに要する時間を8秒にプログラム設定し
た時の、プログラムスタートから20秒後に於ける設定
温度(100℃)と実温との差を示してある。
Further, a heat pattern as shown in FIG.
That is, a program is set up that heats from 20 ° C to 100 ° C in 8 seconds, holds for 10 minutes, then cools to 10 ° C in 18 seconds, holds for 10 minutes, and sets the actual temperature rise when power is applied. The time T1 required and the time T2 required for lowering the temperature to 10 ° C. when the applied power was turned off immediately after holding at 100 ° C. for 10 minutes and then placed on the cooling plate were measured. In addition, another thermocouple is installed at 5'of Fig. 2 (the boundary between the heating element and the current-carrying part), and the temperature difference (temperature distribution accuracy) from the 5'position is measured when the 5'position is 100 ° C. did. The results of temperature control and measurement are shown in Table 3. The temperature accuracy shown in Table 3 is the difference between the set temperature (100 ° C) and the actual temperature 20 seconds after the program starts when the time required from 20 ° C to 100 ° C is programmed to 8 seconds. It is shown.

【0029】比較例3 金属発熱体として、平均粒径2.5μmタングステン粉
末に有機ビヒクルを添加し、3本ロール機にて混練・分
散を行って抵抗体ペーストを得た。この抵抗体ペースト
を窒化アルミニウム焼結体基体上に図1に示したような
形状でスクリーン印刷し、N2/H2=2/1の雰囲気中
1400℃×30分焼成し、抵抗発熱体を得た。この時
の発熱体抵抗値は、50Ωであった。
Comparative Example 3 As a metal heating element, an organic vehicle was added to tungsten powder having an average particle diameter of 2.5 μm, and the mixture was kneaded and dispersed by a three-roll machine to obtain a resistor paste. This resistor paste was screen-printed on an aluminum nitride sintered body substrate in the shape shown in FIG. 1 and fired at 1400 ° C. for 30 minutes in an atmosphere of N 2 / H 2 = 2/1 to form a resistance heating element. Obtained. The resistance value of the heating element at this time was 50Ω.

【0030】この抵抗発熱体について、実施例と同一条
件で評価試験および特性試験を行い、半田濡れ性、ヒー
トサイクルテスト後のメタライズの密着強度および加熱
/冷却速度を比較した。結果を表2及び表3にまとめて
示した。
This resistance heating element was subjected to an evaluation test and a characteristic test under the same conditions as in the examples, and the solder wettability, the adhesion strength of metallization after the heat cycle test and the heating / cooling rate were compared. The results are summarized in Tables 2 and 3.

【0031】比較例3 抵抗体成分として、白金18重量%/パラジウム82重
量%の組成を有する0.1μmの粉末に軟化点700
℃、結晶化温度800℃のガラスフィレット8重量%を
混合して、抵抗体ペーストを得た。この抵抗体ペースト
を窒化アルミニウム焼結体基板上に、図1に示したよう
な形状でスクリーン印刷し、実施例と同様に焼成し、抵
抗発熱体を得た。この時の発熱抵抗体は、119Ωであ
った。
Comparative Example 3 As a resistor component, a 0.1 μm powder having a composition of 18% by weight of platinum / 82% by weight of palladium has a softening point of 700.
C. and 8% by weight of glass fillet having a crystallization temperature of 800.degree. C. were mixed to obtain a resistor paste. This resistor paste was screen-printed on the aluminum nitride sintered body substrate in the shape as shown in FIG. 1 and fired in the same manner as in Example to obtain a resistance heating element. The heating resistor at this time was 119Ω.

【0032】この抵抗発熱体について、実施例と同一条
件で評価試験および特性試験を行い、半田濡れ性、ヒー
トサイクルテスト後のメタライズの密着強度および加熱
/冷却速度を比較した。結果を表2及び表3にまとめて
示した。
The resistance heating element was subjected to an evaluation test and a characteristic test under the same conditions as in the examples, and the solder wettability, the adhesion strength of the metallization after the heat cycle test, and the heating / cooling rate were compared. The results are summarized in Tables 2 and 3.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of drawings]

【図1】金属発熱体層のパターンFIG. 1 Pattern of metal heating element layer

【図2】本発明の代表的な態様のセラミックヒーターと
冷却器を組み合わせた態様の断面図
FIG. 2 is a sectional view of an embodiment in which a ceramic heater and a cooler of a typical embodiment of the present invention are combined.

【図3】ヒートパターンを示すグラフFIG. 3 is a graph showing a heat pattern

【符号の説明】[Explanation of symbols]

1 窒化アルミニウム焼結体 1´ 熱電対を有する窒化アルミニウム焼結体 2 金属発熱体 3 通電部 4 電極 5 熱電対 5´ 熱電対 6 冷却水 7 冷却器 8 印加電源 1 Aluminum Nitride Sintered Body 1'Aluminum Nitride Sintered Body with Thermocouple 2 Metal Heating Element 3 Current-carrying Part 4 Electrode 5 Thermocouple 5'Thermocouple 6 Cooling Water 7 Cooler 8 Applied Power

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒化アルミニウム焼結体表面に、パラジウ
ム及び銀よりなり、パラジウムと銀との重量比が0.
3:99.7〜40:60の合金を主成分とする金属発
熱体層を形成したセラミックヒーター。
1. A surface of an aluminum nitride sintered body is composed of palladium and silver, and the weight ratio of palladium to silver is 0.1.
A ceramic heater having a metal heating element layer containing an alloy of 3: 99.7 to 40:60 as a main component.
JP33816793A 1993-12-28 1993-12-28 Ceramic heater Pending JPH07201459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33816793A JPH07201459A (en) 1993-12-28 1993-12-28 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33816793A JPH07201459A (en) 1993-12-28 1993-12-28 Ceramic heater

Publications (1)

Publication Number Publication Date
JPH07201459A true JPH07201459A (en) 1995-08-04

Family

ID=18315548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33816793A Pending JPH07201459A (en) 1993-12-28 1993-12-28 Ceramic heater

Country Status (1)

Country Link
JP (1) JPH07201459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108941C2 (en) * 2000-02-25 2003-05-15 Toshiba Lighting & Technology Heater and image processing device using the heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108941C2 (en) * 2000-02-25 2003-05-15 Toshiba Lighting & Technology Heater and image processing device using the heater

Similar Documents

Publication Publication Date Title
TWI462629B (en) Ceramic heater and method of securing a thermocouple thereto
US20140110637A1 (en) Thick film resistive heater compositions comprising ag & ruo2, and methods of making same
JPS60500837A (en) thick film resistor circuit
US4057777A (en) Termination for electrical resistor and method of making same
CN211670999U (en) Thick film heater of electric automobile heat discharge system
RU2755943C1 (en) Method for producing thick-film resistors
JPH04300249A (en) Resistor for aluminum nitride heater and resistance paste composition
JPH07201459A (en) Ceramic heater
JP2002246305A (en) Hot plate unit
JP2002246160A (en) Hot plate unit
JP2537606B2 (en) Ceramic Heater
JP3885265B2 (en) Manufacturing method of ceramic circuit board
JP4557595B2 (en) Ceramic heater and manufacturing method thereof
JP2003223971A (en) Ceramic heater and wafer heating device and fixing device to use the same
Moroz Thick film systems for challenging applications
RU2770906C1 (en) Method for producing thick-film resistors
JPH0369873B2 (en)
JP2009059755A (en) Electrode for ntc thermistor
Sergent Hybrid microelectronics technology
JP4809171B2 (en) Wafer heating device
US3458352A (en) Method of continuously curing resistor elements
JP2003223970A (en) Wafer heating device
JPS62180980A (en) Ceramic heater
JPH04317481A (en) Heating element for aln ceramic heater and its formation
JPH07111898B2 (en) Ceramic heater