JPH0720039A - Magnetooptical effect observing device - Google Patents

Magnetooptical effect observing device

Info

Publication number
JPH0720039A
JPH0720039A JP5162695A JP16269593A JPH0720039A JP H0720039 A JPH0720039 A JP H0720039A JP 5162695 A JP5162695 A JP 5162695A JP 16269593 A JP16269593 A JP 16269593A JP H0720039 A JPH0720039 A JP H0720039A
Authority
JP
Japan
Prior art keywords
sample
microscope
line
measured
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5162695A
Other languages
Japanese (ja)
Inventor
Kyosuke Yasuda
享祐 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5162695A priority Critical patent/JPH0720039A/en
Publication of JPH0720039A publication Critical patent/JPH0720039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a magnetooptical effect observing device which can observe the entire visual field at a high magnification when the surface of a sample is observed under a microscope from an oblique direction. CONSTITUTION:In a magnetooptical effect observing device which observes the surface of a magnetic material sample 14 to be measured through a microscope 15 at a high magnification by irradiating the surface of the sample 14 with polarized light obliquely made incident to the sample 14 and detecting the rotational angle of the plane of polarization from reflected light from the surface of the sample 14 as the magnetization distribution on the surface of the sample 14, a line camera 17 is mounted on the eye piece section of the microscope 15 so that the line sensor section of the camera 17 can become parallel with the surface of the sample 14 and, at the same time, a moving mechanism 18 which can finely move the sample 14 in the direction of the incident and reflected light rays in a plane parallel to the surface of the sample 14 is provided. The line picture information of the surface of the sample 14 is successively read and stored by interlocking the line synchronizing signal of the camera 17 with the fine movement of the sample 14 by means of the mechanism 18 and the stored plane picture information is projected on a monitor 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は被測定磁性材試料面の面
内磁化分布が観察可能な磁気光学効果観測装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical effect observation device capable of observing an in-plane magnetization distribution of a sample surface of a magnetic material to be measured.

【0002】[0002]

【従来の技術】磁気光学効果観測装置の観測原理を以下
に述べる。
2. Description of the Related Art The observation principle of a magneto-optical effect observation device will be described below.

【0003】図2は磁気光学効果観測装置の観測原理図
を示す。図2において、1は照射光光源、2は偏光子、
3は被測定磁性材試料、4は検光子である。
FIG. 2 shows an observation principle of the magneto-optical effect observation device. In FIG. 2, 1 is an irradiation light source, 2 is a polarizer,
Reference numeral 3 is a magnetic material sample to be measured, and 4 is an analyzer.

【0004】即ち、照射光光源1からの照射光は偏光子
2によって直線偏光成分が抽出され試料3の表面に照射
される。試料3の表面反射光は同図に矢印Aで示す試料
3の磁化の方向に応じて偏光面が僅かに回転する。この
偏向光の回転角を検光子4によって検出する。試料3の
磁化方向と偏光子2と検光子4の偏光面の相対関係を適
宜調整することにより試料3の磁化方向は明暗情報とし
て可視化観察することができる。
That is, the linearly polarized light component of the irradiation light from the irradiation light source 1 is extracted by the polarizer 2 and is irradiated onto the surface of the sample 3. The light reflected on the surface of the sample 3 has its polarization plane slightly rotated depending on the direction of magnetization of the sample 3 shown by an arrow A in FIG. The rotation angle of this deflected light is detected by the analyzer 4. By appropriately adjusting the magnetization direction of the sample 3 and the relative relationship between the polarization planes of the polarizer 2 and the analyzer 4, the magnetization direction of the sample 3 can be visually observed as bright and dark information.

【0005】このような磁気光学効果は被測定試料の磁
化方向と入反射光光軸が一致する場合に生じる効果なの
で磁化方向が面内にある試料では必然的にこのように斜
め観察することが必要となる。
Since such a magneto-optical effect occurs when the magnetization direction of the sample to be measured and the incident / reflected light optical axis coincide with each other, it is inevitable that the sample having the in-plane magnetization direction is obliquely observed in this way. Will be needed.

【0006】なお、実際の装置では観測像の感度向上の
ため照射光は適宜レンズによって集光照射したりあるい
は輝度の高いレーザ光光源が使用される。また通常試料
面の拡大観測のため顕微鏡が使用される。
Incidentally, in an actual apparatus, in order to improve the sensitivity of an observation image, the irradiation light is appropriately focused and irradiated by a lens, or a laser light source having high brightness is used. A microscope is usually used for magnifying observation of the sample surface.

【0007】[0007]

【発明が解決しようとする課題】しかし、顕微鏡による
拡大観測では倍率が高くなればなるほど顕微鏡焦点深度
が浅くなるので、このような斜め観測の場合視野内の観
測画像の合焦点領域は極端に制限されるという欠点があ
った。
However, in magnified observation with a microscope, the higher the magnification, the shallower the depth of focus of the microscope. Therefore, in such oblique observation, the focused area of the observed image within the field of view is extremely limited. There was a drawback that it was done.

【0008】本発明は上記の事情に鑑みてなされたもの
で、顕微鏡による斜め試料面観察において視野内全領域
にわたり高倍率観測が可能な磁気光学効果観測装置を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a magneto-optical effect observation device capable of performing high-magnification observation over the entire region in the visual field when observing an oblique sample surface with a microscope.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明の磁気光学効果観測装置は、被測定磁性材試料
表面に斜め入射偏光光を照射し、この被測定磁性材試料
表面の反射光から偏光面回転角を検出し、この偏光面回
転角を試料面磁化分布として顕微鏡によって拡大観察す
る磁気光学効果観測装置において、顕微鏡接眼部にライ
センサ部が試料面に平行になるようにラインカメラを装
着し、かつ被測定磁性材試料を試料面に平行な面で入反
射光線方向に微動させることを可能とする移動機構を具
備し、かつ該ラインカメラのライン同期信号と移動機構
による微動量を連動させ被測定磁性材試料面の線画像情
報を逐次読み込み蓄積し、この蓄積した平面画像情報を
モニタ上に写し出すことを可能としたことを特徴とする
ものである。
In order to achieve the above object, the magneto-optical effect observation device of the present invention irradiates the surface of a magnetic material sample to be measured with obliquely incident polarized light and reflects the surface of the magnetic material sample to be measured. In a magneto-optical effect observation device that detects the polarization plane rotation angle from light and magnifies and observes this polarization plane rotation angle as a sample plane magnetization distribution with a microscope, a line is placed so that the licensor section is parallel to the sample plane on the microscope eyepiece. It is equipped with a camera and equipped with a moving mechanism that allows the magnetic material sample to be measured to move in a direction parallel to the sample surface in the direction of the incident / reflected light beam. The feature is that the line image information of the sample surface of the magnetic material to be measured can be sequentially read and accumulated by interlocking the amounts, and the accumulated plane image information can be displayed on the monitor.

【0010】[0010]

【作用】上記手段により、本発明では顕微鏡で斜め平面
を観察した場合、顕微鏡による合焦点領域が直線帯状に
存在することを利用し、これをラインカメラによって線
画像として取り込み、試料面を適宜移動させ次々と線画
像を取り込み最終的な試料面画像を構築し、これをモニ
タ上に再生することを主たる特徴とするものである。
By the above means, in the present invention, when the oblique plane is observed by the microscope, the fact that the focusing area by the microscope exists in the shape of a straight line is used, and this is taken in as a line image by the line camera, and the sample surface is moved appropriately. The main feature is that line images are taken in one after another to construct a final sample surface image and reproduced on a monitor.

【0011】従来のこの種装置では高倍率観測になると
顕微鏡の焦点深度が浅くなるため観測画像全体にわたっ
て合焦点観察することは不可能であった。したがって比
較的低倍率で観測せざるを得なかった。
In the conventional apparatus of this type, it becomes impossible to perform in-focus observation over the entire observation image because the depth of focus of the microscope becomes shallow in high-magnification observation. Therefore, it had to be observed at a relatively low magnification.

【0012】これに対し本発明観測装置によれば高倍率
において顕微鏡視野領域全体にわたり合焦点の画像を得
ることができる。
On the other hand, according to the observation apparatus of the present invention, it is possible to obtain an in-focus image over the entire microscope visual field region at high magnification.

【0013】[0013]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0014】図1は、本発明の一実施例を示す構成図で
ある。図1において、11は照射光光源、12は偏光
子、13は集光レンズ、14は被測定磁性材試料、15
は顕微鏡、16は検光子、17はラインカメラ、18は
移動機構、19はコントローラ、20はモニタである。
前記試料14を除く、照射光光源11、偏光子12、集
光レンズ13、顕微鏡15、検光子16、ラインカメラ
17、移動機構18、コントローラ19、モニタ20に
より本実施例の磁気光学効果観測装置が構成される。
FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, 11 is an irradiation light source, 12 is a polarizer, 13 is a condenser lens, 14 is a magnetic material sample to be measured, and 15
Is a microscope, 16 is an analyzer, 17 is a line camera, 18 is a moving mechanism, 19 is a controller, and 20 is a monitor.
The magneto-optical effect observation device of the present embodiment, except for the sample 14, including the irradiation light source 11, the polarizer 12, the condenser lens 13, the microscope 15, the analyzer 16, the line camera 17, the moving mechanism 18, the controller 19 and the monitor 20. Is configured.

【0015】本実施例で図2の装置と異なる装置機構部
は、ラインカメラ17と、これと連動する移動機構18
および両者を駆動制御し、試料面の面信号を得てこれを
メモリ部に書き込み、さらにモニタ20上に試料面画像
として映し出すという機能を有するコントローラ19、
モニタ20である。
In this embodiment, a device mechanism portion different from the device of FIG. 2 is a line camera 17 and a moving mechanism 18 interlocking with the line camera 17.
And a controller 19 having a function of driving and controlling both of them, obtaining a surface signal of the sample surface, writing this in the memory section, and displaying it as a sample surface image on the monitor 20.
The monitor 20.

【0016】さらに詳しく説明すれば、ここで顕微鏡1
5の接眼部に装着されるラインカメラ17内にあるライ
ンセンサ部は試料面反射光軸に垂直でかつ試料面14に
平行になるよう設定される。また移動機構18は入反射
光軸方向に移動しかつ移動機構18による微動量がライ
ンカメラ17のライン同期信号と連動してコントローラ
19によって駆動される。
More specifically, the microscope 1 will be described here.
The line sensor unit in the line camera 17 attached to the eyepiece 5 is set so as to be perpendicular to the sample surface reflection optical axis and parallel to the sample surface 14. Further, the moving mechanism 18 moves in the incident / reflecting optical axis direction, and the amount of fine movement by the moving mechanism 18 is driven by the controller 19 in association with the line synchronization signal of the line camera 17.

【0017】本実施例における磁気光学効果観測原理を
以下に述べる。
The principle of magneto-optical effect observation in this embodiment will be described below.

【0018】即ち、照射光光源11からの照射光は偏光
子12によって直線偏光成分が抽出され試料14の表面
に照射される。試料14の表面反射光は図1に矢印で示
す試料14の磁化の方向に応じて偏光面が僅かに回転す
る。そしてこの偏向光の回転角を検光子16によって検
出する。すなわち試料14の磁化方向と偏光子12と検
光子16の偏光面の相対関係を適宜調整することにより
磁化の方向は明暗画像として可視観測することができ
る。
That is, the linearly polarized light component of the irradiation light from the irradiation light source 11 is extracted by the polarizer 12 and is irradiated on the surface of the sample 14. The light reflected from the surface of the sample 14 has its polarization plane slightly rotated according to the direction of magnetization of the sample 14 shown by the arrow in FIG. Then, the rotation angle of this deflected light is detected by the analyzer 16. That is, by appropriately adjusting the magnetization direction of the sample 14 and the relative relationship between the polarization planes of the polarizer 12 and the analyzer 16, the magnetization direction can be visually observed as a bright and dark image.

【0019】図1では照射光光源11からの照射光を集
光照射するための集光レンズ13、および試料面14の
拡大像を得るための顕微鏡15が含まれているが、これ
らは従来装置で一般的に使用されるものである。
Although FIG. 1 includes a condenser lens 13 for converging and irradiating the irradiation light from the irradiation light source 11, and a microscope 15 for obtaining an enlarged image of the sample surface 14, these are conventional devices. Are commonly used in.

【0020】次に、本実施例で従来装置と異なる装置機
構部として新たに設けられたラインカメラ17、移動機
構18、コントローラ19、モニタ20についてその動
作を説明する。
Next, the operation of the line camera 17, the moving mechanism 18, the controller 19 and the monitor 20 which are newly provided as the device mechanism portion different from the conventional device in this embodiment will be described.

【0021】図1から明らかなように顕微鏡15で斜め
平面を観察した場合、顕微鏡15による合焦点領域は視
野内において直線帯状に存在する。この直線帯状の合焦
点領域は顕微鏡15と試料14面の配置から入反射光光
軸に垂直でかつ試料14面に平行となる。この合焦点帯
状領域にラインカメラ17のラインセンサ部を合わせる
ことで試料14面の合焦点線画像を得ることができる。
そしてこの線画像はコントローラ19が具備するメモリ
部に蓄積される。次に、移動機構18により被測定試料
14を試料面に平行な面で入反射光線方向に微動させ、
この線画像を次々に取り込みメモリ部に蓄積することで
試料14面の合焦点走査画像を得ることができる。そし
てこの合焦点試料面走査画像をモニタ20上に再生する
ことで従来不可能であった高倍率での試料面の磁化状態
の観察が可能となる。
As is apparent from FIG. 1, when the oblique plane is observed by the microscope 15, the focusing area by the microscope 15 exists in a linear band shape in the visual field. Due to the arrangement of the microscope 15 and the surface of the sample 14, this linear band-shaped focusing area is perpendicular to the optical axis of the incident / reflected light and parallel to the surface of the sample 14. An in-focus image of the surface of the sample 14 can be obtained by aligning the line sensor section of the line camera 17 with the in-focus zone.
Then, this line image is stored in the memory unit included in the controller 19. Next, the moving mechanism 18 finely moves the sample 14 to be measured in the direction of the incident / reflected light on a plane parallel to the sample surface,
By capturing the line images one after another and accumulating them in the memory unit, a focused scanning image of the surface of the sample 14 can be obtained. Then, by reproducing this in-focus sample surface scan image on the monitor 20, it becomes possible to observe the magnetization state of the sample surface at a high magnification, which has been impossible in the past.

【0022】なお、本実施例では照射光光源11からの
照射光の進行方向に偏光子12、レンズ13と配置され
ているが、その測定原理から明らかなように前後入れ替
わっても同じ効果を得ることが可能である。また検光子
16は顕微鏡15内部に組み込んだ例を示したがこれも
顕微鏡15の対物レンズと試料14面の間あるいはライ
ンカメラ17と顕微鏡15の間に配しても同じ効果を得
ることができる。
In the present embodiment, the polarizer 12 and the lens 13 are arranged in the traveling direction of the irradiation light from the irradiation light source 11, but the same effect can be obtained even if they are switched before and after as is clear from the measurement principle. It is possible. Further, the example in which the analyzer 16 is incorporated in the microscope 15 is shown, but the same effect can be obtained also by disposing the analyzer 16 between the objective lens of the microscope 15 and the surface of the sample 14 or between the line camera 17 and the microscope 15. .

【0023】[0023]

【発明の効果】以上述べたように本発明によれば、従来
の磁気光学効果観測装置では不可能であった試料面磁化
状態の高倍率顕微鏡観察を可能とした。また従来の装置
では斜め観察のため必然的に傾斜方向に短縮された画像
となるのに対し、本発明によれば上記線画像倍率と移動
機構移動量を適宜選定することによって縦横倍率の等し
い画像を容易に得ることができる。
As described above, according to the present invention, it becomes possible to observe the sample surface magnetization state with a high magnification microscope, which is impossible with the conventional magneto-optical effect observation apparatus. Further, in the conventional apparatus, the image is inevitably shortened in the tilt direction due to the oblique observation, whereas according to the present invention, the image having the same vertical and horizontal magnification can be obtained by appropriately selecting the linear image magnification and the movement amount of the moving mechanism. Can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】従来の磁気光学効果観測装置の観測原理を示す
構成図である。
FIG. 2 is a configuration diagram showing an observation principle of a conventional magneto-optical effect observation device.

【符号の説明】[Explanation of symbols]

1…照射光光源、2…偏光子、3…被測定磁性材試料、
4…検光子、11…照射光光源、12…偏光子、13…
集光レンズ、14…被測定磁性材試料、15…顕微鏡、
16…検光子、17…ラインカメラ、18…移動機構、
19…コントローラ、20…モニタ。
1 ... Irradiation light source, 2 ... Polarizer, 3 ... Magnetic material sample to be measured,
4 ... Analyzer, 11 ... Irradiation light source, 12 ... Polarizer, 13 ...
Condensing lens, 14 ... Magnetic material sample to be measured, 15 ... Microscope,
16 ... Analyzer, 17 ... Line camera, 18 ... Moving mechanism,
19 ... Controller, 20 ... Monitor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定磁性材試料表面に斜め入射偏光光
を照射し、この被測定磁性材試料表面の反射光から偏光
面回転角を検出し、この偏光面回転角を試料面磁化分布
として顕微鏡によって拡大観察する磁気光学効果観測装
置において、顕微鏡接眼部にライセンサ部が試料面に平
行になるようにラインカメラを装着し、かつ被測定磁性
材試料を試料面に平行な面で入反射光線方向に微動させ
ることを可能とする移動機構を具備し、かつ該ラインカ
メラのライン同期信号と移動機構による微動量を連動さ
せ被測定磁性材試料面の線画像情報を逐次読み込み蓄積
し、この蓄積した平面画像情報をモニタ上に写し出すこ
とを可能としたことを特徴とする磁気光学効果観測装
置。
1. The surface of a magnetic material sample to be measured is irradiated with obliquely incident polarized light, the polarization plane rotation angle is detected from the reflected light from the surface of the magnetic material sample to be measured, and this polarization plane rotation angle is used as a sample plane magnetization distribution. In a magneto-optical effect observation device for magnifying observation with a microscope, a line camera is attached to the microscope eyepiece so that the licensor is parallel to the sample surface, and the magnetic material sample to be measured is reflected and reflected on the surface parallel to the sample surface. It is equipped with a moving mechanism that makes it possible to make fine movements in the light beam direction, and the line synchronization signal of the line camera and the fine movement amount by the moving mechanism are interlocked to sequentially read and store the line image information of the magnetic material sample surface to be measured. A magneto-optical effect observation device characterized in that it is possible to display the accumulated planar image information on a monitor.
JP5162695A 1993-06-30 1993-06-30 Magnetooptical effect observing device Pending JPH0720039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5162695A JPH0720039A (en) 1993-06-30 1993-06-30 Magnetooptical effect observing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5162695A JPH0720039A (en) 1993-06-30 1993-06-30 Magnetooptical effect observing device

Publications (1)

Publication Number Publication Date
JPH0720039A true JPH0720039A (en) 1995-01-24

Family

ID=15759545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5162695A Pending JPH0720039A (en) 1993-06-30 1993-06-30 Magnetooptical effect observing device

Country Status (1)

Country Link
JP (1) JPH0720039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088271A1 (en) * 2004-03-12 2005-09-22 Nanofilm Technologie Gmbh Imaging ellipsometer with a synchronized sample advance and ellipsometric measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088271A1 (en) * 2004-03-12 2005-09-22 Nanofilm Technologie Gmbh Imaging ellipsometer with a synchronized sample advance and ellipsometric measuring method

Similar Documents

Publication Publication Date Title
US4734578A (en) Two-dimensional scanning photo-electric microscope
US6778323B2 (en) Confocal microscope
KR100474100B1 (en) Confocal microscope and height measurement method using the same
JPH08160305A (en) Laser scanning microscope
JPH0150844B2 (en)
JPS6345543A (en) Test apparatus for unconformability and occlusion of surface of transparent material element
JPH0659230A (en) Rubbing inspecting device
JP2000275027A (en) Slit confocal microscope and surface shape measuring apparatus using it
JP2013050379A (en) Hardness-testing machine
US6341035B1 (en) Confocal microscope
WO2016132451A1 (en) Microscope
JP5322368B2 (en) Microscope system, observation method and observation program
JP4603177B2 (en) Scanning laser microscope
JP2003295065A (en) Microscope apparatus
JPH07324923A (en) Device for projecting test pattern on surface under test
CN116519595A (en) Microscopic device for detecting macroscopic defects of wafer
JPH0720039A (en) Magnetooptical effect observing device
JPH10260359A (en) Image rotating device
JPH10288741A (en) Microscope
JP2006030070A (en) Film thickness inspection device
JP3644997B2 (en) Laser processing equipment
JP2003295063A (en) Microscope apparatus
CN219122497U (en) Shooting device
CN220063797U (en) Microscopic device for detecting macroscopic defects of wafer
JPH08190053A (en) Confocal scanning optical microscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees