JPH07199804A - Topographical map generating device employing three-dimensional information obtained by interference type synthetic aperture radar - Google Patents

Topographical map generating device employing three-dimensional information obtained by interference type synthetic aperture radar

Info

Publication number
JPH07199804A
JPH07199804A JP5334256A JP33425693A JPH07199804A JP H07199804 A JPH07199804 A JP H07199804A JP 5334256 A JP5334256 A JP 5334256A JP 33425693 A JP33425693 A JP 33425693A JP H07199804 A JPH07199804 A JP H07199804A
Authority
JP
Japan
Prior art keywords
dimensional information
information
data
output
synthetic aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5334256A
Other languages
Japanese (ja)
Other versions
JP2596364B2 (en
Inventor
Hiroshi Shinohara
博 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5334256A priority Critical patent/JP2596364B2/en
Publication of JPH07199804A publication Critical patent/JPH07199804A/en
Application granted granted Critical
Publication of JP2596364B2 publication Critical patent/JP2596364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To generate a highly precise topographical map by compensating for the distortion of a three-dimensional topographical information expressed by the height data taken by an interference type synthetic aperture radar employing a specific method, transforming the coordinate system and compensating shadow. CONSTITUTION:An interference type synthetic aperture radar(SAR) computes the phase differences of SAR image data and converts the SAR image to height data 23 based on the attitude sensor data of a flying object. A foreshortening compensation section 18 of the topographical map generating device compensates for the front tilting phenomenon from the data 23. A pixel size compensation section 19 performs sampling of the output, i.e., three- dimensional data 24, based on a platform velocity information 29 so that the pixel sizes of range/azimuth become the same. Then, a geometric deformation compensation section 20 compensates for the geometric deformation of the output of the section 19 based on a Doppler center frequency 30. A coordinate conversion section 21 converts the output of the section 20 into the topographical map coordinates based on a GPS information 31. The output of the section 21, which is the shadow in the three dimensional information, is replaced by the data which are observed from a different direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、航空機、人工衛生等の
飛翔体に搭載される干渉型合成開口レーダ装置(干渉型
SAR)で得た3次元情報の歪を補正して、高い精度の
地形図を作成する地形図作成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention corrects distortion of three-dimensional information obtained by an interferometric synthetic aperture radar device (interferometric SAR) mounted on a flying object such as an aircraft and artificial hygiene to obtain high accuracy. The present invention relates to a topographic map creating device for creating a topographic map.

【0002】[0002]

【従来の技術】従来、地形図(1/25,000〜1/
10,000相当の等高線図)を作成するためには、光
学カメラを用いた航空測量やステレオ視が行われてい
た。しかし、これら手法では、標高情報を抽出するまで
に原理的に多くの時間が必要であり、また、精度が十分
でなかったり、雲天時/夜間観測できないという問題が
あった。この問題を解決するために、合成開口レーダを
用いた地形図作成方法が特開昭63−262578号公
報に示されている。干渉型SARによれば、必要な時、
リアルタイムで情報が収得できる。これは、干渉型SA
Rが計算幾処理で標高が求められるのに対し、従来の測
量は、等高線図を作成した後標高を求めるためである。
合成開口レーダについては、特開昭62−3676号公
報、特開昭62−8081号公報等に示されている。
2. Description of the Related Art Conventionally, topographic maps (1 / 25,000-1 / 1 /
In order to create a contour map equivalent to 10,000), aerial survey and stereo vision using an optical camera were performed. However, in these methods, there is a problem that a lot of time is required in principle until the altitude information is extracted, the accuracy is not sufficient, and cloud hour / night observation cannot be performed. In order to solve this problem, a topographic map preparation method using a synthetic aperture radar is disclosed in Japanese Patent Laid-Open No. 63-262578. According to the interference SAR, when needed,
Information can be obtained in real time. This is an interference SA
This is because the elevation is obtained by the calculation process of R, whereas the conventional survey is to obtain the elevation after creating the contour map.
Synthetic aperture radars are disclosed in Japanese Patent Laid-Open Nos. 62-3676 and 62-8081.

【0003】[0003]

【発明が解決しようとする課題】しかし、干渉型SAR
で得た地形に関する3次元情報には、各種の要因(飛翔
体の速度、姿勢、フォーショートニング歪み、シャドー
等)で歪みが含まれている。特に、干渉型SARが慣性
航法装置を持たない小型航空機に搭載された場合には3
次元情報は大きな歪を含んでいおり、この3次元情報そ
のままでは高い精度の地形図は作成できなかった。
However, the interference type SAR
The three-dimensional information on the terrain obtained in step 1 includes distortions due to various factors (the speed, attitude of the flying object, for shortening distortion, shadow, etc.). In particular, if the interferometric SAR is mounted on a small aircraft that does not have an inertial navigation system, 3
Dimensional information contains a large amount of distortion, and it was not possible to create a highly accurate topographic map with this three-dimensional information as it is.

【0004】図5は、干渉型SARで得られる3次元情
報における主要な歪を表した概念図である。図5(a)
は、飛翔体速度の変動によるピクセルサイズの歪みを表
している。(b)は、フォーショートニングによるフォ
ーショートニング歪み(山頂の位置ずれ)を表わしてい
る。符号105は実際の山の側面像を示し、符号106
はその山が干渉型SARで処理されたときに得られるそ
の山の像であり、フォーショートニング歪を受けてい
る。(c)は、電波の照射方向が進行方向直角軸からず
れたことによる幾何変形歪みを表している。(d)は、
干渉型SARで得られる画像ピクセル113は、飛翔体
進行方向を基準とする座標系に投影して得られるから、
地形図座標系(緯度,経度)112からΔθだけずれて
いることを表わしている。(e)は、シャドー115に
より地形図データに欠落が表われることを示している。
なお、飛翔体のピッチ、ロール、ヨー各軸の動揺は、干
渉SARの干渉処理部で補正されており、図5(a)〜
(e)には影響を与えないものとする。図5(a)〜
(e)に概念図で示した3次元情報の歪を補正解決しな
い限り、干渉型SARの出力の3次元情報を用いて広い
地域の地形図を作成することは可能である。
FIG. 5 is a conceptual diagram showing the main distortion in the three-dimensional information obtained by the interference SAR. Figure 5 (a)
Represents the pixel size distortion due to the fluctuation of the flying body velocity. (B) represents the for shortening distortion (shift of the peaks) due to the for shortening. Reference numeral 105 indicates an actual side view of the mountain, and reference numeral 106
Is an image of the mountain obtained when the mountain is processed by the interferometric SAR, and is subjected to for shortening distortion. (C) represents the geometric deformation distortion caused by the deviation of the radio wave irradiation direction from the axis perpendicular to the traveling direction. (D) is
Since the image pixel 113 obtained by the interference SAR is obtained by projecting on the coordinate system with the flight object traveling direction as a reference,
This indicates that the topographic map coordinate system (latitude, longitude) 112 is deviated by Δθ. (E) indicates that the shadow 115 causes a drop in the topographic map data.
The pitch, roll, and yaw motions of the flying object are corrected by the interference processing unit of the interference SAR, as shown in FIG.
It does not affect (e). FIG. 5 (a)-
As long as the distortion of the three-dimensional information shown in the conceptual diagram in (e) is not corrected and corrected, it is possible to create a topographical map of a wide area using the three-dimensional information of the output of the interference SAR.

【0005】[0005]

【課題を解決するための手段】前述の課題を解決するた
めに本発明が提供する手段は、飛翔体から地上に向かっ
て電波を放射し、この地上からの反射波を受信すること
により地形に関する3次元情報を抽出する干渉型合成開
口レーダ装置から得た3次元情報を用いる地形図作成装
置において、前記干渉型合成開口レーダで生成された標
高情報を前記3次元情報として受け、該3次元情報のフ
ォーショートニング歪みを補正するフォーショートニン
グ補正部と、前記飛翔体の速度情報を基に前記フォーシ
ョートニング補正部の出力の3次元情報のピクセルサイ
ズを補正するピクセルサイズ補正部と、前記飛翔体のド
ップラセンタ周波数情報を基に前記ピクセルサイズ補正
部の出力の3次元情報の幾何変形を補正する幾何変形補
正部と、前記飛翔体の位置を示すGPS情報を基に前記
幾何変形補正部の出力の3次元情報の座標系をSAR座
標系から地形図座標系に変換する座標変換部と、この座
標変換部の出力の3次元情報におけるシーン内に含まれ
るシャドーを他方向から観測したデータに置き換える地
形図合成部とを有し、この地形図合成部の出力の3次元
情報を地形図情報として出力することを特徴とする地形
図作成装置である。
Means for Solving the Problems The means provided by the present invention for solving the above-mentioned problems relate to the terrain by radiating radio waves from a flying object toward the ground and receiving reflected waves from the ground. In a topographic map creating apparatus using three-dimensional information obtained from an interferometric synthetic aperture radar apparatus for extracting three-dimensional information, the elevation information generated by the interferometric synthetic aperture radar is received as the three-dimensional information, and the three-dimensional information is obtained. Of the four-shortening distortion, a pixel size correction unit that corrects the pixel size of the three-dimensional information of the output of the four-shortening correction unit based on the velocity information of the flying object, and the dot of the flying object. A geometric deformation correction unit that corrects the geometric deformation of the three-dimensional information output from the pixel size correction unit based on the placenta frequency information; A coordinate conversion unit that converts the coordinate system of the three-dimensional information output from the geometric deformation correction unit from the SAR coordinate system to the topographic map coordinate system based on the GPS information indicating the position of the coordinate transformation unit, and the three-dimensional information output from the coordinate transformation unit. And a topographic map synthesizing unit that replaces the shadows included in the scene with the data observed from another direction, and outputs three-dimensional information of the output of this topographic map synthesizing unit as topographic map information. It is a creation device.

【0006】[0006]

【実施例】次に、図面を参照して、本発明による地形図
作成装置の一実施例を詳細に説明する。図1はその実施
例と干渉型SARの接続関係を示す図、図2はその実施
例の地形図作成装置の構成を示すブロック図である。こ
の実施例は航空機等の飛翔体に搭載されているが、干渉
型SARだけを飛翔体に搭載し、実施例は地上に設置し
て、干渉型SARで取得した3次元情報をオフラインで
実施例に供給しても同様に作動させることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a topographic map producing apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a connection relationship between the embodiment and the interference type SAR, and FIG. 2 is a block diagram showing a configuration of a topographic map creating apparatus of the embodiment. Although this embodiment is mounted on a flying object such as an aircraft, only the interference SAR is mounted on the flying object, and the embodiment is installed on the ground, and the three-dimensional information acquired by the interference SAR is applied offline. It can be operated in the same manner when supplied to.

【0007】図1において、17は干渉型合成開口レー
ダ装置を表わしている。干渉処理部7は、画像処理部6
出力のデータ12,13を入力し、それぞれのアンテナ
1,2に対応したSAR画像データの位相差を算出した
後に、飛翔体から送られる飛翔体の姿勢センサデータ1
6(ピッチ,ロール,ヨーのデータ)を基にSAR画像
について高精度な補正を行い、さらにSAR画像を標高
データに変換した後、その標高データ(標高情報)23
を地形に関する3次元データとして実施例の地形図作成
装置15に供給する。
In FIG. 1, reference numeral 17 represents an interferometric synthetic aperture radar device. The interference processing unit 7 includes the image processing unit 6
After output data 12 and 13 are input and the phase difference between the SAR image data corresponding to the respective antennas 1 and 2 is calculated, the attitude sensor data 1 of the flying body sent from the flying body
The SAR image is corrected with high accuracy based on 6 (pitch, roll, yaw data), and the SAR image is further converted into altitude data, and then the altitude data (elevation information) 23
Is supplied to the topographic map generator 15 of the embodiment as three-dimensional data regarding the topography.

【0008】地形図作成装置15は、図2の構成であ
り、補正用データ29〜32を基に3次元情報について
以下の補正を実施する。
The topographic map generator 15 has the configuration shown in FIG. 2 and performs the following correction on the three-dimensional information based on the correction data 29 to 32.

【0009】フォーショートニング補正部18は、図5
(b)に示すような前倒し(フォーショートニング)現
象を標高データ23から補正する。補正は(1)式で実
施される。各パラメータの定義は図3による。P1は山
102の頂上、破線107は点P1に関する飛翔体10
1から等距離Lの軸跡、P2は等距離の軸跡107とゼ
ロ標高線100との交点である。補正量は(y2
1 )である。y1 は、補正前のビクセル位置、y2
正しいピクセル位置である。この処理でグランドレンジ
変換も同時に行われる。
The foreshortening correction unit 18 is shown in FIG.
The forward movement (four shortening) phenomenon as shown in (b) is corrected from the altitude data 23. The correction is performed by the equation (1). The definition of each parameter is as shown in FIG. P1 is the top of the mountain 102, and the broken line 107 is the flying object 10 relating to the point P1.
The axis trace of equidistant L from 1 and P2 are the intersections of the axis trace 107 of equal distance and the zero elevation line 100. The correction amount is (y 2
y 1 ). y 1 is a pixel position before correction, and y 2 is a correct pixel position. In this process, ground range conversion is also performed at the same time.

【0010】 y2 =L・sinθ2 ,θ2 =cos-1{(H−h)/L}...(1) 次にピクセルサイズ補正部29は、フォーショートニン
グ補正部18の出力の3次元データ24を、飛翔体速度
情報29を基に、レンジ/アジマスのピクセルサイズが
同一になるようにサンプリングする。このサンプリング
により、P1 <P4 <P7 <P10であった図5(a)の
ピクセルはP1 =P4 =P7 =P10になる。このサンプ
リングは、各ピクセルデータ(Pi ,Pi+1 )の間を補
間し、一定間隔ΔP(=アジマスピクセルサイズ)毎に
データをリサンプリングして行われる。
Y 2 = L · sin θ 2 , θ 2 = cos −1 {(H−h) / L}. . . (1) Next, the pixel size correction unit 29 samples the three-dimensional data 24 output from the four shortening correction unit 18 based on the flying body velocity information 29 so that the pixel size of the range / azimuth becomes the same. By this sampling, the pixel of FIG. 5A where P 1 <P 4 <P 7 <P 10 becomes P 1 = P 4 = P 7 = P 10 . This sampling is performed by interpolating between pixel data (P i , P i + 1 ) and re-sampling the data at regular intervals ΔP (= azimuth pixel size).

【0011】次に、幾何変形補正部20は、ドップラセ
ンタ周波数30に基づき、ピクセルサイズ補正部19の
出力の3次元データ25について、飛翔体の偏流角(飛
翔体の機軸と進行方向とが平面においてなす角)による
アンテナビーム照射方向のずれによる歪みを補正する。
つまり、アンテナビームは、飛翔体に固定されており、
図5(c)の太線111方向を見ているにもかかわらず
画像上では破線110に画像化される。よって移動量Δ
Lを求める必要がある。
Next, the geometrical deformation correction unit 20 uses the Doppler center frequency 30 to determine the drift angle of the flying object (the axis of the flying object and the traveling direction are flat with respect to the three-dimensional data 25 output from the pixel size correcting unit 19). The distortion caused by the deviation of the irradiation direction of the antenna beam due to
In other words, the antenna beam is fixed to the flying object,
Although the direction of the thick line 111 in FIG. 5C is viewed, the image is converted into a broken line 110 on the image. Therefore, the amount of movement Δ
It is necessary to find L.

【0012】 sinφ=(Fd/Fc)・{C/(2Vcosθ)} φ:偏流角(ヘッディング角) θ:オフナディア角 V:飛翔体速度 Fd:ドップラセンタ周波数 Fc:送信周波数 SARデータよりFd(30)を求めると、上式により
計算してφが求められる。φが分れば、太線111は一
意的に決定され、ΔLが求められる。
Sin φ = (Fd / Fc) · {C / (2Vcosθ)} φ: drift angle (heading angle) θ: off-nadir angle V: flying object velocity Fd: Doppler center frequency Fc: transmission frequency Fd (from SAR data) When 30) is calculated, φ is calculated by the above equation. If φ is known, the thick line 111 is uniquely determined, and ΔL is obtained.

【0013】衛星40から送られるGPS(Groba
l Positionig System)信号を飛翔
体のGPS装置で受け、GPSデータ31が座標変換部
21へ与えられる。座標変換部21はGPSデータ21
に基づきΔθを求め、地形図座標に変換する。この段階
の出力信号27は汎用地形図と同等になっている。
GPS (Global) transmitted from the satellite 40
The 1 Positioning System) signal is received by the GPS device of the flying object, and the GPS data 31 is given to the coordinate conversion unit 21. The coordinate conversion unit 21 uses the GPS data 21.
Δθ is calculated based on and converted into topographic map coordinates. The output signal 27 at this stage is equivalent to the general-purpose topographic map.

【0014】しかし、SARによる3次元情報にはシャ
ドー{図5(e)参照}があり、別の方向から観察した
データと合成する必要がある。これが地形図合成部22
の機能である。図(4)に示すように、共通の図形10
3について複数の3次元データを生成し、各3次元デー
タについて有効データと無効データ(シャドー部分)部
分104,105を認識しておく必要である。図4の例
では、(a)の情報と(b)の情報とを合成して(c)
の情報を生成する。この処理は以下の手順で実施する。
However, three-dimensional information by SAR has shadows (see FIG. 5 (e)), and it is necessary to combine it with data observed from another direction. This is the topographic map synthesis unit 22
Is a function of. As shown in FIG. (4), the common figure 10
It is necessary to generate a plurality of three-dimensional data for 3 and to recognize valid data and invalid data (shadow portion) portions 104 and 105 for each three-dimensional data. In the example of FIG. 4, the information of (a) and the information of (b) are combined to create (c).
To generate the information. This process is performed according to the following procedure.

【0015】SAR画像103上でシャドー部10
4,105を検出する。スレショルドレベルを設定し、
スレショルドレベル以上のランクは”1”フラグをた
て、以下のランク(シャドー)は”0”フラグをたて
る。シャドー検出フラグ情報32は干渉型SAR17か
ら供給される。
The shadow portion 10 on the SAR image 103
4, 105 are detected. Set the threshold level,
Ranks above the threshold level are flagged as "1", and ranks (shadows) below are flagged as "0". The shadow detection flag information 32 is supplied from the interference SAR 17.

【0016】”1”のフラグがたつピクセルの標高デ
ータは有効とし、”0”のフラグがたつピクセルの標高
は無効とする。
Elevation data of pixels having a "1" flag is valid, and elevation data of pixels having a "0" flag is invalid.

【0017】[0017]

【発明の効果】以上に説明したように、本発明によれ
ば、干渉型合成開口レーダで取得した標高データで表わ
させる地形に関する3次元情報の歪を高い精度で補正し
た地形図を作成できる。そこで、本発明の装置を採用す
れば、1/25,000〜1/10,000相当の等高
線図を取得することができ、従来の光学カメラを用いた
航空測量に比べ、短時間に定価格で汎用地形図を提供で
きる。
As described above, according to the present invention, it is possible to create a topographic map in which the distortion of the three-dimensional information about the topography represented by the elevation data acquired by the interferometric synthetic aperture radar is corrected with high accuracy. . Therefore, if the device of the present invention is adopted, a contour map equivalent to 1 / 25,000 to 1 / 10,000 can be obtained, and compared to aerial survey using a conventional optical camera, a fixed price can be obtained in a short time. Can provide general-purpose topographic maps.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による地形図作成装置の一実施例と干渉
型SARとの接続関係を示すブロック図である。
FIG. 1 is a block diagram showing a connection relationship between an embodiment of a topographic map creating apparatus according to the present invention and an interference SAR.

【図2】その実施例の地形図作成装置の構成を示すブロ
ック図である。
FIG. 2 is a block diagram showing a configuration of a topographic map creating apparatus of the embodiment.

【図3】図2の実施例におけるフォーショートニング補
正の概念を示す図である。
FIG. 3 is a diagram showing a concept of for shortening correction in the embodiment of FIG.

【図4】図2の実施例におけるシャドー補正の概念を示
す図である。
FIG. 4 is a diagram showing a concept of shadow correction in the embodiment of FIG.

【図5】干渉型SARで取得される地形に関する3次元
情報に含まれる主要な歪みの概念を示す図である。
FIG. 5 is a diagram showing a concept of main distortion included in three-dimensional information about the terrain acquired by the interference SAR.

【符号の説明】[Explanation of symbols]

1,2アンテナ部 3 オフナディア角設定部 4,5 送受信部 6 画像処理部 7 干渉処理部 8,9 送受信信号 10,11 ビデオ信号 12,13 SAR画像データ信号 15 地形図作成装置 17 干渉型SAR 18 フォーショートニング補正部 19 ピクセルサイズ補正部 20 幾何変形補正部 21 座標変換部 22 地形図合成部 29 飛翔体速度情報 30 ドップラセンタ周波数 31 GPS信号 32 シャドー検出フラグ情報 1, 2 antenna section 3 off-nadir angle setting section 4, 5 transmitting / receiving section 6 image processing section 7 interference processing section 8, 9 transmission / reception signal 10, 11 video signal 12, 13 SAR image data signal 15 topographic map creation device 17 interference type SAR 18 For shortening correction unit 19 Pixel size correction unit 20 Geometric deformation correction unit 21 Coordinate conversion unit 22 Topographic map synthesis unit 29 Flying body velocity information 30 Doppler center frequency 31 GPS signal 32 Shadow detection flag information

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 飛翔体から地上に向かって電波を放射
し、この地上からの反射波を受信することにより地形に
関する3次元情報を抽出する干渉型合成開口レーダ装置
から得た3次元情報を用いる地形図作成装置において、 前記干渉型合成開口レーダで生成された標高情報を前記
3次元情報として受け、該3次元情報のフォーショート
ニング歪みを補正するフォーショートニング補正部と、
前記飛翔体の速度情報を基に前記フォーショートニング
補正部の出力の3次元情報のピクセルサイズを補正する
ピクセルサイズ補正部と、前記飛翔体のドップラセンタ
周波数情報を基に前記ピクセルサイズ補正部の出力の3
次元情報の幾何変形を補正する幾何変形補正部と、前記
飛翔体の位置を示すGPS情報を基に前記幾何変形補正
部の出力の3次元情報の座標系をSAR座標系から地形
図座標系に変換する座標変換部と、この座標変換部の出
力の3次元情報におけるシーン内に含まれるシャドーを
他方向から観測したデータに置き換える地形図合成部と
を有し、 この地形図合成部の出力の3次元情報を地形図情報とし
て出力することを特徴とする地形図作成装置。
1. Use of three-dimensional information obtained from an interferometric synthetic aperture radar device that emits radio waves from a flying object toward the ground and receives reflected waves from the ground to extract three-dimensional information about the terrain. In the topographic map creating apparatus, a foreshortening correction unit that receives elevation information generated by the interferometric synthetic aperture radar as the three-dimensional information and corrects foreshortening distortion of the three-dimensional information,
A pixel size correction unit that corrects the pixel size of the three-dimensional information of the output of the foreshortening correction unit based on the velocity information of the flying object, and an output of the pixel size correction unit based on Doppler center frequency information of the flying object Of 3
A geometrical deformation correction unit that corrects geometrical deformation of the dimensional information, and a coordinate system of three-dimensional information output from the geometrical deformation correction unit based on GPS information indicating the position of the flying object is changed from the SAR coordinate system to the topographic map coordinate system. It has a coordinate transformation unit for transformation and a topographic map synthesis unit that replaces shadows contained in the scene in the three-dimensional information output from this coordinate transformation unit with data observed from another direction. A topographic map creation device characterized by outputting three-dimensional information as topographic map information.
【請求項2】 前記幾何変形補正部は、前記飛翔体から
与えられる前記飛翔体の偏流角を利用して、前記干渉型
合成開口レーダのアンテナビーム照射方向が該干渉型合
成開口レーダの進行方向からずれていることに起因する
前記3次元情報の幾何変形を補正することを特徴とする
請求項1に記載の地形図作成装置。
2. The geometric deformation correction section utilizes the drift angle of the flying object given from the flying object so that the antenna beam irradiation direction of the interference type synthetic aperture radar is the traveling direction of the interference type synthetic aperture radar. The topographic map creation apparatus according to claim 1, wherein geometric deformation of the three-dimensional information due to deviation is corrected.
JP5334256A 1993-12-28 1993-12-28 Topographic map generator using three-dimensional information obtained from interferometric synthetic aperture radar Expired - Lifetime JP2596364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5334256A JP2596364B2 (en) 1993-12-28 1993-12-28 Topographic map generator using three-dimensional information obtained from interferometric synthetic aperture radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5334256A JP2596364B2 (en) 1993-12-28 1993-12-28 Topographic map generator using three-dimensional information obtained from interferometric synthetic aperture radar

Publications (2)

Publication Number Publication Date
JPH07199804A true JPH07199804A (en) 1995-08-04
JP2596364B2 JP2596364B2 (en) 1997-04-02

Family

ID=18275307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5334256A Expired - Lifetime JP2596364B2 (en) 1993-12-28 1993-12-28 Topographic map generator using three-dimensional information obtained from interferometric synthetic aperture radar

Country Status (1)

Country Link
JP (1) JP2596364B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113615A (en) * 1995-10-24 1997-05-02 Nec Corp Interferometry sar system
JPH09189762A (en) * 1996-01-08 1997-07-22 Mitsubishi Electric Corp Method for observing variation of ground surface using radar and synthetic aperture radar and transponder therefor
US6150972A (en) * 1998-08-03 2000-11-21 Sandia Corporation Process for combining multiple passes of interferometric SAR data
JP2004191053A (en) * 2002-12-06 2004-07-08 Mitsubishi Electric Corp Synthetic aperture radar device and numerical altitude model creation method
KR100441590B1 (en) * 2003-04-18 2004-07-23 (주)충청측량설계공사 Method of generating DEM for Topography Measurement using InSAR
JP2007114101A (en) * 2005-10-21 2007-05-10 Mitsubishi Space Software Kk Radar image processor, structure height calculation method, radar image identifying method, structure height calculation program, and radar image identification program
JP2008215981A (en) * 2007-03-02 2008-09-18 Nec Corp Fmcw-system synthetic aperture radar, drift angle detection method, program and storage medium
JP2010048651A (en) * 2008-08-21 2010-03-04 Mitsubishi Electric Corp Radar image processor
WO2017126547A1 (en) * 2016-01-22 2017-07-27 日本電気株式会社 Image processor, image processing method and image processing program
CN108983232A (en) * 2018-06-07 2018-12-11 中南大学 A kind of InSAR two dimension earth's surface deformation monitoring method based on adjacent rail data
JP2018205006A (en) * 2017-05-31 2018-12-27 株式会社パスコ Ground deformation observation device and ground deformation observation program
CN111208512A (en) * 2020-01-15 2020-05-29 电子科技大学 Interferometric measurement method based on video synthetic aperture radar
CN112050725A (en) * 2020-09-14 2020-12-08 广东省核工业地质局测绘院 Surface deformation monitoring method fusing InSAR and GPS
JP2021021703A (en) * 2019-07-30 2021-02-18 株式会社パスコ Displacement correction processing device and displacement correction processing program
RU2748760C2 (en) * 2020-11-09 2021-05-31 Виктор Андреевич Кузнецов Method for obtaining three-dimensional radar image of earth surface in two-pass interferometric shooting mode from unmanned aerial vehicle
US20220308203A1 (en) * 2021-03-24 2022-09-29 R2 Space, LLC Synthetic aperture radar simulation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GPS FOR PHOTOGRAMMETRY\\\9702067=1993 *
SAR GEOCODING DATA AND SYSTEMS\\\9702066=1993 *
TOPOGRAPHIC MAPPING USING RADER INTERFEROMETRY PROCESSING TECHNIQUES\\\9701984=1993 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113615A (en) * 1995-10-24 1997-05-02 Nec Corp Interferometry sar system
JPH09189762A (en) * 1996-01-08 1997-07-22 Mitsubishi Electric Corp Method for observing variation of ground surface using radar and synthetic aperture radar and transponder therefor
US6150972A (en) * 1998-08-03 2000-11-21 Sandia Corporation Process for combining multiple passes of interferometric SAR data
JP2004191053A (en) * 2002-12-06 2004-07-08 Mitsubishi Electric Corp Synthetic aperture radar device and numerical altitude model creation method
KR100441590B1 (en) * 2003-04-18 2004-07-23 (주)충청측량설계공사 Method of generating DEM for Topography Measurement using InSAR
JP4688626B2 (en) * 2005-10-21 2011-05-25 三菱スペース・ソフトウエア株式会社 Radar image processing apparatus, structure height calculation method, radar image identification method, structure height calculation program, and radar image identification program
JP2007114101A (en) * 2005-10-21 2007-05-10 Mitsubishi Space Software Kk Radar image processor, structure height calculation method, radar image identifying method, structure height calculation program, and radar image identification program
JP2008215981A (en) * 2007-03-02 2008-09-18 Nec Corp Fmcw-system synthetic aperture radar, drift angle detection method, program and storage medium
JP2010048651A (en) * 2008-08-21 2010-03-04 Mitsubishi Electric Corp Radar image processor
WO2017126547A1 (en) * 2016-01-22 2017-07-27 日本電気株式会社 Image processor, image processing method and image processing program
JP2018205006A (en) * 2017-05-31 2018-12-27 株式会社パスコ Ground deformation observation device and ground deformation observation program
CN108983232A (en) * 2018-06-07 2018-12-11 中南大学 A kind of InSAR two dimension earth's surface deformation monitoring method based on adjacent rail data
JP2021021703A (en) * 2019-07-30 2021-02-18 株式会社パスコ Displacement correction processing device and displacement correction processing program
CN111208512A (en) * 2020-01-15 2020-05-29 电子科技大学 Interferometric measurement method based on video synthetic aperture radar
CN111208512B (en) * 2020-01-15 2022-06-07 电子科技大学 Interferometric measurement method based on video synthetic aperture radar
CN112050725A (en) * 2020-09-14 2020-12-08 广东省核工业地质局测绘院 Surface deformation monitoring method fusing InSAR and GPS
RU2748760C2 (en) * 2020-11-09 2021-05-31 Виктор Андреевич Кузнецов Method for obtaining three-dimensional radar image of earth surface in two-pass interferometric shooting mode from unmanned aerial vehicle
US20220308203A1 (en) * 2021-03-24 2022-09-29 R2 Space, LLC Synthetic aperture radar simulation

Also Published As

Publication number Publication date
JP2596364B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
JP2596364B2 (en) Topographic map generator using three-dimensional information obtained from interferometric synthetic aperture radar
US4489322A (en) Radar calibration using direct measurement equipment and oblique photometry
CN110108984B (en) Spatial relationship synchronization method for multiple sensors of power line patrol laser radar system
US9927513B2 (en) Method for determining the geographic coordinates of pixels in SAR images
WO2021036066A1 (en) Remote sensing system based on satellite formation, and constellation system
US9110170B1 (en) Terrain aided navigation using multi-channel monopulse radar imaging
KR102028324B1 (en) Synthetic Aperture Radar Image Enhancement Method and Calculating Coordinates Method
CN107886531B (en) Virtual control point acquisition method based on laser ranging and object space matching
CN110488292B (en) Remote sensing system based on satellite formation
EP1200800A1 (en) Terrain navigation apparatus
JP2590689B2 (en) Interferometric synthetic aperture radar system and terrain change observation method
CN110068817B (en) Terrain mapping method, instrument and system based on laser ranging and InSAR
CN111522005A (en) Deformation monitoring and terrain reconstruction method
CN108225282B (en) Remote sensing camera stereo mapping method and system based on multivariate data fusion
KR20190084730A (en) Sar and sar signal processor for squinted spotlight mode under nonlinear flight path and method thereof
JP2655136B2 (en) Interferometric synthetic aperture radar image processing method and interferometric synthetic aperture radar apparatus
JP4019149B2 (en) Radio wave arrival direction identification system
CN111638514B (en) Unmanned aerial vehicle height measurement method and unmanned aerial vehicle navigation filter
JPH09230039A (en) Interference synthetic aperture radar equipment and terrain height measuring method using the synthetic aperture radar equipment
KR102028323B1 (en) Synthetic Aperture Radar Image Enhancement Apparatus and System
JP3301292B2 (en) Interferometric high-resolution radar device and terrain height measuring method using high-resolution radar device
US20230087890A1 (en) Navigation apparatus and position determination method
JP3353571B2 (en) Earth shape measurement device
CN114022545B (en) Airborne SAR image non-control-point real-time positioning method suitable for complex terrain
JPH07110377A (en) Radar target searching device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 16

EXPY Cancellation because of completion of term