JPH0719925B2 - Conductive thin film - Google Patents

Conductive thin film

Info

Publication number
JPH0719925B2
JPH0719925B2 JP60041960A JP4196085A JPH0719925B2 JP H0719925 B2 JPH0719925 B2 JP H0719925B2 JP 60041960 A JP60041960 A JP 60041960A JP 4196085 A JP4196085 A JP 4196085A JP H0719925 B2 JPH0719925 B2 JP H0719925B2
Authority
JP
Japan
Prior art keywords
thin film
layer
charge transfer
acceptor
donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60041960A
Other languages
Japanese (ja)
Other versions
JPS61202420A (en
Inventor
寧 森
正典 坂本
公一 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60041960A priority Critical patent/JPH0719925B2/en
Publication of JPS61202420A publication Critical patent/JPS61202420A/en
Publication of JPH0719925B2 publication Critical patent/JPH0719925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/121Charge-transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は導電性薄膜に関し、さらに詳しくは、得られる
薄膜が電荷移動錯体層を含み、優れた導電性と実用性を
具備した導電性薄膜に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a conductive thin film, and more specifically to a conductive thin film containing a charge transfer complex layer in the resulting thin film and having excellent conductivity and practicality. .

[発明の技術的背景とその問題点] 導電性化合物は金属に取って代わる可能性を秘めてお
り、今日の導電性分子材料の研究においては電荷移動の
概念が取り入れられ、この電荷移動の多用性は大いに注
目されている。特に電子供与体(以下、ドナーと称す
る)と電子受容体(以下、アクセプターと称する)間の
電荷移動力により二種の分子が結合した電荷移動錯体は
導電性及び常磁性等の特性を有している。そのため、固
体の電荷移動錯体は新材料となり得る可能性を持ち、近
年特に有機金属及び有機超電導体として注目を集めてい
る有機物の殆どがこの錯体である。さらに、その他の無
機化合物中にも、導電性を有し且つ反応生に富む電荷移
動錯体が生み出されている。
[Technical Background of the Invention and its Problems] Conductive compounds have the potential to replace metals, and the concept of charge transfer has been adopted in the research of conductive molecular materials today, and this charge transfer is frequently used. Sex has received a lot of attention. In particular, a charge transfer complex in which two kinds of molecules are bonded by the charge transfer force between an electron donor (hereinafter referred to as a donor) and an electron acceptor (hereinafter referred to as an acceptor) has properties such as conductivity and paramagnetism. ing. Therefore, the solid charge transfer complex has a possibility of becoming a new material, and most of the organic substances which have recently attracted attention as organic metals and organic superconductors are these complexes. Furthermore, a charge transfer complex having conductivity and rich in reaction products has been produced in other inorganic compounds.

しかし、現在まで得られている電荷移動錯体は物性研究
の目的上作られたものにとどまり、その殆どが単結晶体
である。また、単結晶体の多くは針状結晶の小さなもの
であり、大きなものであっても数mm×数mm×10数mm程度
でしかない。しかもこの結晶を得るには長時間(月のオ
ーダ)を要するため実用性を欠く。更には、従来、ドナ
ー及びアクセプターを溶媒に溶かし、拡散法、徐冷法又
は電気化学的方法により電荷移動錯体層を基板上に形成
していたが、いずれの方法によっても溶媒中に含まれる
不純物の混入を避けることができなかった。
However, the charge transfer complexes obtained so far are limited to those made for the purpose of studying physical properties, and most of them are single crystals. Most of the single crystals are small needle-like crystals, and even large ones are only about several mm × several mm × 10 several mm. Moreover, it takes a long time (on the order of a month) to obtain this crystal, which is not practical. Further, conventionally, a donor and an acceptor were dissolved in a solvent, and a charge transfer complex layer was formed on a substrate by a diffusion method, a slow cooling method, or an electrochemical method. However, in any method, the impurities contained in the solvent are mixed. I couldn't avoid it.

一方、電荷移動錯体をそのまま蒸着して形成された導電
性薄膜についても報告されているが、十分な膜質及び配
向性を有する電荷移動錯体の薄膜は未だ得られていな
い。
On the other hand, a conductive thin film formed by directly depositing a charge transfer complex has been reported, but a thin film of a charge transfer complex having sufficient film quality and orientation has not been obtained yet.

[発明の目的] 本発明の目的は、前記した問題点を解消し、優れた導電
性と実用性を具備した電荷移動錯体から成る導電性薄膜
を提供することにある。
[Object of the Invention] An object of the present invention is to solve the above problems and provide a conductive thin film comprising a charge transfer complex having excellent conductivity and practicality.

[発明の概要] 本発明の導電性薄膜は、ドナーとアクセプターが交互に
薄膜状に積層され且つ少なくとも各薄層間の接触界面で
電荷移動錯体層が形成されてなることを特徴とする。
[Summary of the Invention] The conductive thin film of the present invention is characterized in that a donor and an acceptor are alternately laminated in a thin film form, and a charge transfer complex layer is formed at least at a contact interface between the thin layers.

即ち、本発明は、電荷移動錯体を構成するドナーとアク
セプターを各々交互に直接基板上に薄膜状に積層し、そ
の結果、該基板上で直接電荷移動錯体層を形成し且つ該
錯体自体をその錯体層面に平行に導電性が生じるように
配向させることを始めて可能としたものである。さら
に、本発明は、薄膜状の電荷移動錯体層を多数形成する
ことにより薄膜全体の導電性を著しく向上させることが
可能な導電性薄膜に関するものである。
That is, according to the present invention, the donor and the acceptor constituting the charge transfer complex are alternately laminated directly on the substrate in a thin film form, and as a result, the charge transfer complex layer is directly formed on the substrate and the complex itself is formed. It was possible for the first time to orient the film so that conductivity was generated parallel to the surface of the complex layer. Further, the present invention relates to a conductive thin film capable of significantly improving the conductivity of the whole thin film by forming a large number of thin film charge transfer complex layers.

以下、本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

本発明に係るアクセプターは有機物でも無機物であって
もよい。このうち有機物のアクセプターとしては、例え
ば、7,7,8,8−テトラシアノキノジメタン(TCNQ)、2
−メチル−7,7,8,8−テトラシアノキノジメタン(MTCN
Q)、2,5−ジメチル−7,7,8,8−テトラシアノキノジメ
タン(DMTCNQ)、2,5−ジエチル−7,7,8,8−テトラシア
ノキノジメタン(DETCNQ)、2−メトキシ−7,7,8,8−
テトラシアノキノジメタン(MOTCNQ)、2,5−ジメトキ
シ−7,7,8,8−テトラシアノキノジメタン(DMOTCNQ)、
2−メトキシ−5−エトキシ−7,7,8,8−テトラシアノ
キノジメタン(MOEOTCNQ)、2−メトキシジヒドロジオ
キサベンゾ−7,7,8,8−テトラシアノキノジメタン(MOD
OTCNQ)、2−クロロ−7,7,8,8−テトラシアノキノジメ
タン(CTCNQ)、2−ブロモ−7,7,8,8−テトラシアノキ
ノジメタン(BTCNQ)、2,5−ジブロモ−7,7,8,8−テト
ラシアノキノジメタン(DBTCNQ)、2,5−ジヨード−7,
7,8,8−テトラシアノキノジメタン(DITCNQ)、2−ク
ロロ−5−メチル−7,7,8,8−テトラシアノキノジメタ
ン(CMTCNQ)、2−ブロモ−5−メチル−7,7,8,8−テ
トラシアノキノジメタン(BMTCNQ)、2−ヨード−5−
メチル−7,7,8,8−テトラシアノキノジメタン(IMTCN
Q)、11,11,12,12−テトラシアノ−2,6−ナフトキノジ
メタン(TNAP)、1,1,2,3,4,4−ヘキサシアノブタジエ
ン(HCB)、ナトリウム 13,13,14,14−テトラシアノジ
フェノキノジメタン(NaTCNQ)、テトラシアノエチレン
(TCNE)、o−ベンゾキノン、p−ベンゾキノン、2,6
−ナフトキノン、ジフェノキノン、テトラシアノジキノ
ン(TCNDQ)、p−フルオラニル、テトラクロロジフェ
ノキノンが挙げられる。
The acceptor according to the present invention may be organic or inorganic. Among these, as the acceptor of organic matter, for example, 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2
-Methyl-7,7,8,8-tetracyanoquinodimethane (MTCN
Q), 2,5-dimethyl-7,7,8,8-tetracyanoquinodimethane (DMTCNQ), 2,5-diethyl-7,7,8,8-tetracyanoquinodimethane (DETCNQ), 2 -Methoxy-7,7,8,8-
Tetracyanoquinodimethane (MOTCNQ), 2,5-dimethoxy-7,7,8,8-tetracyanoquinodimethane (DMOTCNQ),
2-Methoxy-5-ethoxy-7,7,8,8-tetracyanoquinodimethane (MOEOTCNQ), 2-methoxydihydrodioxabenzo-7,7,8,8-tetracyanoquinodimethane (MOD
OTCNQ), 2-chloro-7,7,8,8-tetracyanoquinodimethane (CTCNQ), 2-bromo-7,7,8,8-tetracyanoquinodimethane (BTCNQ), 2,5-dibromo -7,7,8,8-Tetracyanoquinodimethane (DBTCNQ), 2,5-diiodo-7,
7,8,8-Tetracyanoquinodimethane (DITCNQ), 2-chloro-5-methyl-7,7,8,8-tetracyanoquinodimethane (CMTCNQ), 2-bromo-5-methyl-7, 7,8,8-Tetracyanoquinodimethane (BMTCNQ), 2-iodo-5-
Methyl-7,7,8,8-tetracyanoquinodimethane (IMTCN
Q), 11,11,12,12-tetracyano-2,6-naphthoquinodimethane (TNAP), 1,1,2,3,4,4-hexacyanobutadiene (HCB), sodium 13,13,14, 14-tetracyanodiphenoquinodimethane (NaTCNQ), tetracyanoethylene (TCNE), o-benzoquinone, p-benzoquinone, 2,6
-Naphthoquinone, diphenoquinone, tetracyanodiquinone (TCNDQ), p-fluoranyl, tetrachlorodiphenoquinone.

他方、無機物のアクセプターとしては、例えば、ヨウ素
(I2)、臭素(Br2)、塩素(Cl2)、塩化第2鉄(FeCl
3)、塩化アルミニウム(AlCl3)、塩化ニッケル(NiCl
2)、塩化アンチモン(SbCl5)、酸化クロム(CrO3)、
酸化モリブデン(MoO3)、5フッ化アンチモン(Sb
F5)、5フッ化ヒ素(AsF5)が挙げられる。
On the other hand, as the acceptor of the inorganic substance, for example, iodine (I 2 ), bromine (Br 2 ), chlorine (Cl 2 ), ferric chloride (FeCl 2
3 ), aluminum chloride (AlCl 3 ), nickel chloride (NiCl
2 ), antimony chloride (SbCl 5 ), chromium oxide (CrO 3 ),
Molybdenum oxide (MoO 3 ), antimony pentafluoride (Sb
F 5), include pentafluoride arsenic (AsF 5).

本発明に係るドナーに関しても、有機物及び無機物のい
ずれであってもよい。このうち、有機物のドナーとして
は、例えば、テトラチアフルバレン(TTF)、ジメチル
テトラチアフルバレン(DMTTF)、テトラメチルチアフ
ルバレン(TMTTF)、ヘキサメチレンテトラチアフルバ
レン(HMTTF)、ジセレナジチアフルバレン(DSDTF)、
ジメチルジセレナジチアフルバレン(DMDSDTF)、ヘキ
サメチレンジセレナジチアフルバレン(HMDSDTF)、テ
トラセレナフルバレン(TSF)、テトラメチルテトラセ
レナフルバレン(TMTSF)、ヘキサメチレンテトラセレ
ナフルバレン(HMTSF)、テトラセレノテトラセン(TS
T)、キノリン(Q)、N−メチルキノリニウムヨーダ
イド(NMQ)、アクリジン(Ad)、N−メチルフェナジ
ニウム メチルスルフェイト(NMP)、1,2−ジ(N−エ
チル−4−ピリジニウム)エチル ヨーダイド((DEP
E)2+▲I2- 2▼)が挙げられる。
The donor according to the present invention may be either an organic substance or an inorganic substance. Of these, examples of organic donors include tetrathiafulvalene (TTF), dimethyltetrathiafulvalene (DMTTF), tetramethylthiafulvalene (TMTTF), hexamethylenetetrathiafulvalene (HMTTF), diselenadithiafulvalene (DSDTF). ),
Dimethyl diselena dithiafulvalene (DMDSDTF), hexamethylene diselena dithiafulvalene (HMDSDTF), tetraselena fullvalene (TSF), tetramethyl tetraselena fullvalene (TMTSF), hexamethylene tetraselena fullvalene (HMTSF), tetra Selenotetracene (TS
T), quinoline (Q), N-methylquinolinium iodide (NMQ), acridine (Ad), N-methylphenazinium methylsulfate (NMP), 1,2-di (N-ethyl-4-) Pyridinium) ethyl iodide ((DEP
E) 2+ ▲ I 2- 2 ▼ ) and the like.

他方、無機物のドナーとしては、例えば、リチウム、ナ
トリウム、カリウム、ルビジウム、セシウム、銀、銅、
2酸化窒素、アンモニアが挙げられる。
On the other hand, as the inorganic donor, for example, lithium, sodium, potassium, rubidium, cesium, silver, copper,
Examples include nitric oxide and ammonia.

本発明の導電性薄膜は上記のドナーとアクセプターが交
互に薄膜状に積層された構造を有するが、ドナーとアク
セプターの組合せは両者とも有機物若しくは両者とも無
機物である場合のみならず、有機物と無機物の組合せか
らなるものであってもよい。本発明の薄膜におけるドナ
ーとアクセプターが交互に積層された構造としては、全
てのドナー分子とアクセプター分子が結合して錯体を形
成したために、ドナー層及びアクセプター層の各単独層
が消失した電荷移動錯体層(以下、DA層と称する)のみ
からなる積層構造;ドナー層とアクセプター層との接触
界面にDA層を有する積層構造;及びドナー層若しくはア
クセプター層のいずれか一つとDA層からなる積層構造
(ドナー分子又はアクセプター分子のいずれかが過少量
であったために、錯体形成に関与できなかったドナー分
子又はアクセプター分子からなるいずれかの層のみが残
存している)を挙げ得る。いずれにしても、上記積層構
造においては、積層されたドナー層及びアクセプター層
からなる薄膜の界面に少なくとも電荷移動錯体層が形成
されているが、積層後経時的に全てのドナー分子とアク
セプター分子が錯体を形成することによって、積層され
た薄膜全体に電荷移動錯体層が形成されていてもよい。
The conductive thin film of the present invention has a structure in which the above-mentioned donor and acceptor are alternately laminated in a thin film, but the combination of the donor and the acceptor is not limited to the case where both are organic substances or both are inorganic substances; It may consist of a combination. The structure of the thin film of the present invention in which donors and acceptors are alternately laminated is a charge transfer complex in which all the donor layers and the acceptor layers have disappeared because all the donor molecules and the acceptor molecules are bound to form a complex. A layered structure composed of only a layer (hereinafter referred to as a DA layer); a layered structure having a DA layer at a contact interface between a donor layer and an acceptor layer; and a layered structure composed of one of a donor layer and an acceptor layer and a DA layer ( There is only a layer of either donor or acceptor molecules that could not participate in the complex formation because either the donor or acceptor molecules were in too small an amount). In any case, in the above laminated structure, at least the charge transfer complex layer is formed at the interface of the thin film composed of the donor layer and the acceptor layer that are laminated. By forming a complex, the charge transfer complex layer may be formed over the entire stacked thin films.

本発明の導電性薄膜は、ドナー分子若しくはアクセプタ
ー分子の積層時間及び積層回数の設定の仕方により、所
望の膜厚及び積層数とすることができる。
The conductive thin film of the present invention can have a desired film thickness and a desired number of layers depending on how to set the time and the number of layers of the donor molecule or the acceptor molecule.

この積層回数、即ち、積層数は、ドナー層及びアクセプ
ター層を各々一層形成する(積層数1)だけであっても
よいが、さらに数多く積層してもよい。少なくとも、積
み重ねられた各層の界面に形成された電荷移動錯体層
は、この界面に平行に電流を生じる配向性を有するため
に、積層数が多くなる程上記界面数が多くなり、本発明
の薄膜の導電性が向上する。
The number of times of stacking, that is, the number of stacks may be such that only one donor layer and one acceptor layer are formed (the number of stacks is 1), but a larger number may be stacked. At least, the charge transfer complex layer formed at the interface between the stacked layers has an orientation that generates a current in parallel with this interface, and thus the number of interfaces increases as the number of layers increases, and the thin film of the present invention is formed. Conductivity is improved.

本発明の電荷移動錯体から成る導電性薄膜は、通常基板
上に形成されるが、この基板としては、従来から薄膜形
成のために使用されているものであればいかなるもので
あってもよく、好ましくはガラス、金属(Au、Ag、Al、
Cu等)が例示される。
The conductive thin film composed of the charge transfer complex of the present invention is usually formed on a substrate, but this substrate may be any one conventionally used for thin film formation, Preferably glass, metal (Au, Ag, Al,
Cu, etc.) are exemplified.

本発明の導電性薄膜は、ドナー分子とアクセプター分子
を真空中で交互に基板上に積層させることにより得ら
れ、これによって、基板上に直接電荷移動錯体層が形成
される。更には、同様の操作を繰返して積層を続けるこ
とにより多層にわたるDA層が形成される。この導電性薄
膜を形成する方法としては、各種の方法を採択すること
ができる。該方法としては、真空蒸着法、スパッター
法、イオンプレーティング法及びクラスターイオンビー
ム蒸着法等が挙げられるが、最も好ましい方法は真空蒸
着法である。この方法によれば、有機ドナー分子及び有
機アクセプター分子を分解することなく薄膜を形成する
ことができる。
The conductive thin film of the present invention is obtained by alternately stacking a donor molecule and an acceptor molecule on a substrate in vacuum, whereby a charge transfer complex layer is directly formed on the substrate. Further, the same operation is repeated to continue the lamination to form a DA layer having multiple layers. Various methods can be adopted as a method for forming the conductive thin film. Examples of the method include a vacuum vapor deposition method, a sputtering method, an ion plating method and a cluster ion beam vapor deposition method, and the most preferable method is the vacuum vapor deposition method. According to this method, a thin film can be formed without decomposing the organic donor molecule and the organic acceptor molecule.

真空蒸着法により本発明の導電性薄膜を形成するに際し
ては、真空中でドナーとアクセプターを交互に蒸着する
が、この場合、蒸発ボートと基板の間に設けたシャッタ
の開閉によって、蒸発物質の種類および蒸着膜の膜厚の
制御を行なう、なお、膜厚は真空槽中の基板近傍に設け
た水晶振動子膜厚計を用いてモニタする。シャッタの開
閉操作により、1層の厚さは最低100Å程度まで制御可
能である。
When forming the conductive thin film of the present invention by the vacuum vapor deposition method, the donor and the acceptor are alternately deposited in a vacuum. In this case, the type of the vaporized substance is changed by opening and closing a shutter provided between the vaporizing boat and the substrate. And controlling the film thickness of the deposited film. The film thickness is monitored by using a quartz oscillator film thickness meter provided near the substrate in the vacuum chamber. By opening and closing the shutter, the thickness of one layer can be controlled to a minimum of about 100Å.

蒸着時の真空度は、通常10-5〜10-8Torrである。また、
蒸着時の基板温度は、通常室温以下液体窒素温度までの
範囲である。なお、ドナー層若しくはアクセプター層の
厚さを400Åに設定した場合にこの一層の形成に要する
時間は約1分である。
The degree of vacuum during vapor deposition is usually 10 −5 to 10 −8 Torr. Also,
The substrate temperature during vapor deposition is usually in the range of room temperature or lower to the liquid nitrogen temperature. In addition, when the thickness of the donor layer or the acceptor layer is set to 400 Å, the time required for forming this layer is about 1 minute.

スパッター法により本発明の導電性薄膜を形成するに際
しては、ドナー物質、アクセプター物質の微結晶粉末を
プレス等により固めたもの若しくは結晶そのものをター
ゲットとして用いる。スパッター時の背圧は10-5〜10-8
Torrであり、基板温度は室温から液体窒素温度までの範
囲で行なう。キャリアガスとしてはアルゴンを用いる。
積層の制御はターゲット上に設けたシャッタの開閉を薄
膜モニタの表示に応じて行なうことにより実行する。
When the conductive thin film of the present invention is formed by the sputter method, a fine crystal powder of a donor substance or an acceptor substance hardened by pressing or the like or a crystal itself is used as a target. Back pressure during spattering is 10 -5 to 10 -8
Torr, the substrate temperature is from room temperature to liquid nitrogen temperature. Argon is used as the carrier gas.
The stacking control is performed by opening and closing a shutter provided on the target according to the display on the thin film monitor.

イオンプレーティング法により本発明の導電性薄膜を形
成するに際しては、ドナー物質、アクセプター物質をガ
ス化(加熱等により)させ、真空槽に導入する。積層の
制御は、導入ガスのバルブの開閉により行なう。
When the conductive thin film of the present invention is formed by the ion plating method, the donor substance and the acceptor substance are gasified (by heating or the like) and introduced into a vacuum chamber. The stacking is controlled by opening and closing the valve of the introduced gas.

クラスターイオンビーム蒸着法により本発明の導電性薄
膜を形成するに際しては、ドナー用、アクセプター用の
ルツボを2個設け、それらの上に設置したシャッタによ
り積層を行なう。
When forming the conductive thin film of the present invention by the cluster ion beam vapor deposition method, two crucibles for a donor and an acceptor are provided, and lamination is performed by a shutter installed on them.

上記のように、本発明では薄膜の構造を、ドナー層とア
クセプター槽との交互積層体とすることにより、この積
層により形成される電荷移動錯体自体をDA層の膜面に平
行に導電性が生じるように配向させることを可能とした
ものである。さらに、上記薄膜中の各層の厚さを可能な
限り薄くすることにより、一定の大きさの導電性薄膜に
おいて多数の電荷移動錯体層を形成し得る結果、薄膜全
体の導電層の割合が増し、薄膜全体としての導電性を著
しく向上させ得る。
As described above, in the present invention, the structure of the thin film is an alternating laminated body of the donor layer and the acceptor tank, so that the charge transfer complex itself formed by the lamination has conductivity in parallel with the film surface of the DA layer. It is possible to orient as it occurs. Furthermore, by making the thickness of each layer in the thin film as thin as possible, a large number of charge transfer complex layers can be formed in a conductive thin film of a certain size, resulting in an increase in the ratio of the conductive layer in the entire thin film. The conductivity of the thin film as a whole can be significantly improved.

[発明の効果] 本発明の導電性薄膜によれば、得られる薄膜層は膜面に
平行に電流が流れるように錯体自体を配向してなるもの
であるため、従来の導電性薄膜と比較して錯体層の配向
性が格段に向上し、優れた導電性を有するようになる。
さらに、ドナー層とアクセプター層を交互に積層して導
電層を多数形成し得るため、従来よりも一層高い導電性
を有する薄膜が得られるとともに、積層数及び積層時間
の調整により所望の導電率を有する導電性薄膜を得るこ
とができる。
[Effects of the Invention] According to the conductive thin film of the present invention, the obtained thin film layer is such that the complex itself is oriented so that the current flows in parallel to the film surface. As a result, the orientation of the complex layer is remarkably improved, and the complex layer has excellent conductivity.
Furthermore, since a large number of conductive layers can be formed by alternately stacking donor layers and acceptor layers, a thin film having higher conductivity than before can be obtained, and the desired conductivity can be obtained by adjusting the number of layers and the time for lamination. It is possible to obtain a conductive thin film having the same.

さらに、従来の電荷移動錯体の結晶は小さく、且つその
形成に長時間を必要としたのに対し、本発明の電荷移動
錯体から成る導電性薄膜は短時間に且つ所望の大きさに
形成し得るため、極めて実用性が高く、その実用価値は
極めて大である。
Further, while the crystal of the conventional charge transfer complex is small and it takes a long time to form it, the conductive thin film comprising the charge transfer complex of the present invention can be formed into a desired size in a short time. Therefore, it is extremely practical and its practical value is extremely large.

また、従来の導電性薄膜は既に形成した電荷移動錯体を
溶媒に溶かした後該錯体自体を蒸着して形成されたもの
であるため、溶媒中の不純物が介入し易かったが、本発
明においては、溶媒を用いることなく直接ドナーとアク
セプターを交互に基盤上に積層させて電荷移動錯体層を
形成することができるため不純物が介入するおそれはな
く、高品質の導電性薄膜が得られる。
Further, since the conventional conductive thin film is formed by dissolving the already formed charge transfer complex in a solvent and then depositing the complex itself, impurities in the solvent are likely to intervene. Since a charge transfer complex layer can be formed by alternately stacking a donor and an acceptor on a substrate directly without using a solvent, there is no risk of impurities intervening, and a high quality conductive thin film can be obtained.

従って本発明の電荷移動錯体から成る導電性薄膜は結線
用導体等に広く利用でき、その工業的価値は大である。
Therefore, the conductive thin film comprising the charge transfer complex of the present invention can be widely used as a conductor for connection and the like, and its industrial value is great.

以下において、実施例を掲げて本発明を更に詳しく説明
する。
Hereinafter, the present invention will be described in more detail with reference to examples.

[発明の実施例] 実施例1 テトラチアフルバレン(TTF)、テトラシアノキノジメ
タン(TCNQ)をそれぞれ、特級アセトニトリルを用いて
再沈殿精製した。精製したTTF、TCNQを真空槽中に設置
したタングステンボートにそれぞれ50mgずつ充てんし
た。スライドガラスを長さ15mmに切断し、これを中性洗
剤、アセトン及びトリクレンにより脱脂洗浄し、金のク
シ型電極(巾0.5mm、長さ10mm、間隔2mm、厚み1000Å)
をこのスライドガラス上に真空蒸着した。上記の電極付
スライドガラスを真空槽中のボートの上部15cmの位置に
ホルダで保持した。真空度が10-6Torrに達するまで排気
した後、TCNQボートに通電し、ボート温度が200℃に安
定した後、シャッタを開いてガラス基板にTCNQを蒸着し
た。膜厚は、予め触針式膜厚計によって較正した水晶振
動式膜厚計によりモニタした。TCNQの膜厚が所定の値に
達した後、シャッタを閉じ通電を停止した。次に、TTF
のボートに通電し、ボート温度を120℃に安定させた後
シャッタを開き、TCNQ上にTTFを蒸着して所定の膜厚に
達した後、シャッタを閉じ通電を停止した。TCNQ及びTT
Fのそれぞれの膜厚を400Åに設定して上記の蒸着操作を
3回ずつ繰り返した。
[Examples of the Invention] Example 1 Tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) were reprecipitated and purified using special grade acetonitrile. The purified TTF and TCNQ were filled in a tungsten boat installed in a vacuum chamber at 50 mg each. Cut the slide glass to a length of 15 mm, degrease and wash it with neutral detergent, acetone and trichlene, and gold comb type electrode (width 0.5 mm, length 10 mm, interval 2 mm, thickness 1000 Å)
Was vacuum-deposited on this slide glass. The above-mentioned slide glass with electrodes was held by a holder at a position 15 cm above the boat in the vacuum chamber. After evacuating until the degree of vacuum reached 10 −6 Torr, the TCNQ boat was energized, the boat temperature was stabilized at 200 ° C., and then the shutter was opened to deposit TCNQ on the glass substrate. The film thickness was monitored by a crystal vibrating type film thickness meter which was previously calibrated by a stylus type film thickness meter. After the film thickness of TCNQ reached a predetermined value, the shutter was closed and the energization was stopped. Then TTF
After the boat was energized to stabilize the boat temperature at 120 ° C., the shutter was opened, TTF was vapor-deposited on TCNQ to reach a predetermined film thickness, and then the shutter was closed to stop energization. TCNQ and TT
Each film thickness of F was set to 400 Å, and the above vapor deposition operation was repeated three times.

なお、以上の蒸着操作の間、基板温度は、基板ホルダに
溶接した銅パイプに液体窒素を流すことにより、100Kに
保った。上記蒸着操作に要した時間は約20分であった。
During the above vapor deposition operation, the substrate temperature was kept at 100 K by flowing liquid nitrogen through a copper pipe welded to the substrate holder. The time required for the vapor deposition operation was about 20 minutes.

形成された、厚み2500Åの膜の赤外及び可視紫外吸収ス
ペクトルの測定によりTTFとTCNQが電荷移動錯体を形成
していることを確認した。
It was confirmed that TTF and TCNQ formed a charge transfer complex by measuring infrared and visible-ultraviolet absorption spectra of the formed 2500 Å-thick film.

更に、上記の膜のX線回折を測定したところ結晶性を示
すピークは現われなかったためこの薄膜がアモルファス
的であることが判明した。
Further, when X-ray diffraction of the above film was measured, no peak showing crystallinity appeared, and it was found that this thin film was amorphous.

次に、予め蒸着した金電極を用いクライオスタット中で
一定電流(10μA)を通電し2端子法により導電率
(σ)の測定を室温から80Kにわたって行なった。室温
での導電率は5Scm-1で、80Kでは0.5Scm-1であり、半導
体的温度依存性を示した。
Next, a constant current (10 μA) was applied in a cryostat using a gold electrode deposited in advance, and the conductivity (σ) was measured from room temperature to 80 K by the two-terminal method. The conductivity at room temperature was 5 Scm -1 , and at 80K it was 0.5 Scm -1 , showing semiconductor-like temperature dependence.

実施例2 基板温度を室温に保ったことを除き実施例1と同様に真
空蒸着を行なった。得られた膜のX線回折を測定したと
ころ、TTF/TCNQ錯体単結晶の(002)面に相当する回折
ピークが得られ、膜中での錯体の界面方向の配向が認め
られた。導電率σは、室温で10Scm-1で、80Kで1Scm-1
あり、結晶性向上による導電性の向上が認められた。
Example 2 Vacuum deposition was performed in the same manner as in Example 1 except that the substrate temperature was kept at room temperature. When the X-ray diffraction of the obtained film was measured, a diffraction peak corresponding to the (002) plane of the TTF / TCNQ complex single crystal was obtained, and the orientation of the complex in the interface direction was recognized. The conductivity σ is a 10Scm -1 at room temperature, a 1Scm -1 at 80K, improvement in conductivity due to crystallinity increase was observed.

実施例3 下表の電子供与体(D)と電子受容体(A)を用いて基
板温度を室温に保ったことを除き実施例1と同様に真空
蒸着を行なった後、室温における導電率σを測定した。
測定結果は下表のとおりである。但し、基板の温度は室
温に保った。
Example 3 After performing vacuum deposition in the same manner as in Example 1 except that the substrate temperature was kept at room temperature using the electron donor (D) and the electron acceptor (A) shown in the table below, the conductivity σ at room temperature was obtained. Was measured.
The measurement results are shown in the table below. However, the temperature of the substrate was kept at room temperature.

実施例4 TTF及びTCNQの微結晶粉末1gずつを、それぞれ直径50mm
厚さ2mmのステンレス(SUS 304)円板上に均一に広げ、
これらを真空プレス機により10kg/cm2の圧力でプレスし
てスパッター用ターゲットを作製した。
Example 4 1 g each of TTF and TCNQ microcrystalline powders, each having a diameter of 50 mm
Spread it evenly on a 2 mm thick stainless steel (SUS 304) disc.
These were pressed with a vacuum press machine at a pressure of 10 kg / cm 2 to prepare a sputtering target.

上記の2個のターゲットをスパッター装置に設置し、こ
れらターゲットの上方20mmの位置に積層制御用のシャッ
タを設けた。
The above two targets were set in a sputtering apparatus, and a shutter for stacking control was provided at a position 20 mm above these targets.

基板としては、実施例1と同じ金のクシ形電極付ガラス
板を用いた。基板ホルダは、循還水による冷却を行な
い、基板温度を18±1℃に保った。
As the substrate, the same glass plate with a comb-shaped electrode as in Example 1 was used. The substrate holder was cooled by circulating water to keep the substrate temperature at 18 ± 1 ° C.

スパッター用真空槽を10-6Torrにまで排気した後、キャ
リアガスであるアルゴンを分圧10-3Torrで真空槽中に導
入した。次にTCNQターゲットのシャッタを開いた後、1
3.56MHzの高周波(出力10W)によりスパッタ用真空槽中
にプラズマを発生させて、基板上にTCNQの薄膜を形成し
た。形成された薄膜の膜厚は、プラズマ放電1分で〜50
0Åであった。
After evacuation of the sputter vacuum chamber to 10 -6 Torr, a carrier gas, argon, was introduced into the vacuum chamber at a partial pressure of 10 -3 Torr. Then after opening the TCNQ target shutter, 1
Plasma was generated in the sputtering vacuum chamber with a high frequency of 3.56 MHz (output 10 W) to form a thin film of TCNQ on the substrate. The thickness of the formed thin film is ~ 50 in 1 minute of plasma discharge.
It was 0Å.

次に、TCNQのシャッタを閉じ、TTFのシャッタを開き、T
CNQと同一条件にて前記TCNQ薄膜上にTTF薄膜を形成し
た。TTF層は、1.5分のスパッターにより〜500Åの膜厚
で形成された。次に再び膜厚500ÅのTCNQ層、膜厚500Å
のTTF層を、さらに膜厚500ÅのTCNQ層を各々順次積層
し、合計2500Åの積層膜を形成した。
Next, close the TCNQ shutter, open the TTF shutter, and
A TTF thin film was formed on the TCNQ thin film under the same conditions as CNQ. The TTF layer was formed to a thickness of ~ 500Å by sputtering for 1.5 minutes. Then again TCNQ layer with film thickness 500Å, film thickness 500Å
And a TCNQ layer having a film thickness of 500Å were sequentially laminated to form a laminated film having a total thickness of 2500Å.

金電極を利用して導電率を測定したところ、σ=8Scm-1
の値が得られた。
When the conductivity was measured using a gold electrode, σ = 8Scm -1
The value of was obtained.

実施例5 グラファイトのスパッター用ターゲット(直径100mm、
厚さ5mm)を用い、アルゴンのキャリアガスによって厚
さ1000Åのグラファイト薄膜をRFスパッター法によりガ
ラス基板上に形成した。ガラス基板には予め厚さ2000Å
の金のクシ形電極を蒸着により形成しておいた。スパッ
ターを、アルゴンガス圧50mmTorr、スパッタ電力10W及
びスパッター時間2分の条件で行なった。この際、基板
温度を20℃に保った。
Example 5 Graphite sputtering target (diameter 100 mm,
Using a carrier gas of argon, a graphite thin film having a thickness of 1000 Å was formed on a glass substrate by RF sputtering using a thickness of 5 mm). The glass substrate has a thickness of 2000Å
The gold comb-shaped electrode of 1 was formed by vapor deposition. The sputter was performed under the conditions of an argon gas pressure of 50 mmTorr, a sputtering power of 10 W and a sputtering time of 2 minutes. At this time, the substrate temperature was kept at 20 ° C.

気体導入端子を用いてスパッター装置に、ヨウ素ガスを
導入した。ヨウ素の圧力を100mmTorr及び時間10分でグ
ラファイトスパッター膜上に厚さ1000Åのヨウ素膜を形
成した。
Iodine gas was introduced into the sputtering apparatus using the gas introduction terminal. An iodine film having a thickness of 1000 Å was formed on the graphite sputtered film at a pressure of iodine of 100 mm Torr and a time of 10 minutes.

再びRFスパッター法によりヨウ素膜上に1000Åのグラフ
ァイト膜を形成し、グラファイト/ヨウ素/グラファイ
トの3層サンドイッチ構造の薄膜を形成した。
Again, a 1000 Å graphite film was formed on the iodine film by the RF sputtering method to form a thin film having a three-layer sandwich structure of graphite / iodine / graphite.

上記薄膜の導電率(σ)を4端子法により測定したとこ
ろσ1.2×103Scm-1(25℃)であった。
The conductivity (σ) of the above thin film was measured by the four-terminal method and found to be σ1.2 × 10 3 Scm −1 (25 ° C.).

フロントページの続き (56)参考文献 特開 昭54−27787(JP,A) 特開 昭57−83054(JP,A) 特開 昭54−18853(JP,A)Continuation of the front page (56) References JP-A-54-27787 (JP, A) JP-A-57-83054 (JP, A) JP-A-54-18853 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電子供与体と電子受容体が交互に薄膜状に
積層され且つ少なくとも各薄膜間の接触界面で電荷移動
錯体層が形成されており、当該電荷移動錯体層面に平行
に導電性が生じるように配向していることを特徴とする
導電性薄膜。
1. An electron donor and an electron acceptor are alternately laminated in a thin film form, and a charge transfer complex layer is formed at least at a contact interface between the thin films, and conductivity is parallel to the surface of the charge transfer complex layer. A conductive thin film which is oriented so as to occur.
JP60041960A 1985-03-05 1985-03-05 Conductive thin film Expired - Fee Related JPH0719925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60041960A JPH0719925B2 (en) 1985-03-05 1985-03-05 Conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60041960A JPH0719925B2 (en) 1985-03-05 1985-03-05 Conductive thin film

Publications (2)

Publication Number Publication Date
JPS61202420A JPS61202420A (en) 1986-09-08
JPH0719925B2 true JPH0719925B2 (en) 1995-03-06

Family

ID=12622753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60041960A Expired - Fee Related JPH0719925B2 (en) 1985-03-05 1985-03-05 Conductive thin film

Country Status (1)

Country Link
JP (1) JPH0719925B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862005B2 (en) * 1987-12-23 1999-02-24 富士通株式会社 Organic film fabrication method
JPH01289013A (en) * 1988-05-16 1989-11-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of organic functioning film
JP2855330B2 (en) * 1988-05-18 1999-02-10 富士通株式会社 Organic film fabrication method
JP5244456B2 (en) * 2003-09-26 2013-07-24 株式会社半導体エネルギー研究所 Light-emitting devices, electronic devices, mobile phones, lighting equipment
CN101771135B (en) 2003-09-26 2012-05-23 株式会社半导体能源研究所 Light-emitting device and manufacture method
KR101215279B1 (en) * 2004-05-21 2012-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 The lighting device
KR101152947B1 (en) * 2004-05-21 2012-06-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device
JP2006295104A (en) * 2004-07-23 2006-10-26 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device using the same
US7750560B2 (en) * 2004-10-01 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting-element
JP4999308B2 (en) * 2004-10-01 2012-08-15 株式会社半導体エネルギー研究所 Light emitting element and light emitting device
JP4799111B2 (en) * 2004-11-02 2011-10-26 株式会社半導体エネルギー研究所 Light emitting device
US7683532B2 (en) 2004-11-02 2010-03-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and light emitting device
JP4939809B2 (en) 2005-01-21 2012-05-30 株式会社半導体エネルギー研究所 Light emitting device
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP5170964B2 (en) * 2005-02-18 2013-03-27 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
WO2006101016A1 (en) 2005-03-23 2006-09-28 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
JP2011146662A (en) * 2009-04-15 2011-07-28 Mes Afty Corp METHOD OF MANUFACTURING SiC SEMICONDUCTOR ELEMENT

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021626B2 (en) * 1977-07-14 1985-05-28 松下電器産業株式会社 Semiconductive polymer composition
CA1085947A (en) * 1977-08-02 1980-09-16 Ching W. Tang Multilayer organic photovoltaic elements
JPS5783054A (en) * 1980-11-12 1982-05-24 Nippon Telegr & Teleph Corp <Ntt> Manufacture of conductive organic coloring thin film

Also Published As

Publication number Publication date
JPS61202420A (en) 1986-09-08

Similar Documents

Publication Publication Date Title
JPH0719925B2 (en) Conductive thin film
Dubey et al. Building a better Li‐garnet solid electrolyte/metallic Li interface with antimony
US4170662A (en) Plasma plating
US4105807A (en) Production of thin, stable, solid electrolyte films of high ionic conductivity
US4454495A (en) Layered ultra-thin coherent structures used as electrical resistors having low temperature coefficient of resistivity
Levasseur et al. Solid state microbatteries
Mounasamy et al. Sub-ppm level detection of trimethylamine using V2O3-Cu2O mixed oxide thin films
Mannequin et al. Composition of thin Ta2O5 films deposited by different methods and the effect of humidity on their resistive switching behavior
US3749658A (en) Method of fabricating transparent conductors
Lee et al. Co-sputter deposited Ta–Si diffusion barrier between Si and Cu: the effects of Si content on the barrier property
FR2762448A1 (en) POSITIVE ELECTRODE MATERIAL BASED ON TITANIUM OXYSULFIDE FOR ELECTROCHEMICAL GENERATOR AND PROCESS FOR PREPARING THE SAME
Ueyama et al. Preparation and electrical resistivities of tetrathiafulvalen (TTF) and tetraselenafulvalen salts with the [SnR2Cln] 2-n anions (n= 3 or 4: R= Et or Ph) and X-ray crystal structure of [TTF] 3 [SnEt2Cl4]
Sichel et al. Characteristics of the electrochromic materials Au-Wo 3 and Pt-Wo 3
Weaver et al. Adhesion of evaporated aluminium films with underlayers of nickel, cobalt and chromel
Hirakawa et al. Thickness-tuned superconductor–insulator transitions in quench-condensed Mo and MoRu films
US3408310A (en) Metal-organic alloy composition and process of making same
Zhang et al. Surface enhanced electronic transport. A new method to probe the possible interactions between C60 and non-alkali metals
JPH04366503A (en) Carbon cluster conductor
Meng et al. Interfacial microstructure of NiPt/SnIn/Cu sputtering target assembly after soldering
JPH0383291A (en) Switching memory composite function element
Takayama et al. Annealing Characteristics of AI-Light-Rare-Earth Alloy Thin Films for Microelectronic Conductor Lines
Popov et al. Composition of thin films deposited by magnetron sputtering of a Cu Sn alloy target
RO133426A2 (en) Sn-ni alloy thin films for anodes to be used in lithium-ion batteries and process for preparing the same
Nouchi et al. Resistance measurements of conducting C 60 monolayers formed on Au and Cu films
George et al. The effect of the annealing of electrode films on the electrical resistivity of thin aluminium films

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees