JPH07198856A - Method and apparatus for measuring concentration of particular radioactive substance in the air - Google Patents

Method and apparatus for measuring concentration of particular radioactive substance in the air

Info

Publication number
JPH07198856A
JPH07198856A JP5336732A JP33673293A JPH07198856A JP H07198856 A JPH07198856 A JP H07198856A JP 5336732 A JP5336732 A JP 5336732A JP 33673293 A JP33673293 A JP 33673293A JP H07198856 A JPH07198856 A JP H07198856A
Authority
JP
Japan
Prior art keywords
air
radiation
particle size
filter paper
count rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5336732A
Other languages
Japanese (ja)
Other versions
JP2810311B2 (en
Inventor
Sakae Furuhashi
栄 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP33673293A priority Critical patent/JP2810311B2/en
Publication of JPH07198856A publication Critical patent/JPH07198856A/en
Application granted granted Critical
Publication of JP2810311B2 publication Critical patent/JP2810311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure concentration of an object nuclide with high detecting performance by a relatively simple measurement when it is already known that a particle size of the nuclide to be the object is different from that of nuclide of natural radioactivity. CONSTITUTION:The air A containing particular radioactive substance is sucked, and the sucked air A is separated to first air A1 containing rough particle substance having a predetermined particle size or more and second air A2 containing fine particle substance having less than the predetermined particle size. The substance contained in the air A1 is collected on a first filter sheet 13c, and the substance contained in the air A2 is collected on a second filter sheet 23c. A radioactive ray emitted from the substance collected on the sheet 13c is detected by a first radioactive ray detector 14, a radioactive ray emitted from the substance collected on the sheet 13c is detected by a second radioactive ray detector 24, detected data of the detector 24 is measured mainly as natural radioactivity data, and detected data of the detector 14 is measured as radioactive data consisting of natural radioactivity and radioactivity except the natural radioactivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力施設等の放射性
物質取扱施設の空気中に浮遊する粒子状放射性物質の濃
度を測定する方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the concentration of particulate radioactive substances suspended in the air of radioactive substance handling facilities such as nuclear facilities.

【0002】[0002]

【従来の技術】従来、この種の放射性物質取扱施設で
は、空気中の粒子状放射性物質濃度の異常を早期に発見
し、施設従事者の放射線被ばくを防止するために空気汚
染のモニタリングを実施している。このモニタリングに
はいくつかの方法があるが、リアルタイム方式のものと
しては空気中に浮遊する粒子状放射性物質をろ紙上に捕
集し、その放射能を計測するダストモニタが一般的に用
いられている。従来のダストモニタのうち、例えば固定
ろ紙式ダストモニタの場合には、吸引ポンプによってモ
ニタリングすべき空気を集塵器に吸引して集塵器に保持
されたろ紙上に空気中の粒子状放射性物質を捕集する。
次いで捕集された粒子状放射性物質から放出される放射
線を放射線検出器で検出し、この検出値から単位時間当
りの計数率を計数率計により計測表示し、同時に記録計
にて記録する。計数率計には調整可能な警報出力機能を
有し、所望の計数率で警報を発するようになっている。
従って、このモニタでは吸引した空気中に浮遊する粒子
状放射性物質の殆ど全量を捕集し計測することになる。
2. Description of the Related Art Conventionally, in this type of radioactive material handling facility, abnormalities in the concentration of particulate radioactive material in the air have been detected early on, and air pollution has been monitored in order to prevent radiation exposure to facility workers. ing. There are several methods for this monitoring, but as a real-time method, a dust monitor that collects particulate radioactive substances floating in the air on a filter paper and measures the radioactivity is generally used. There is. Among the conventional dust monitors, for example, in the case of a fixed filter paper type dust monitor, the particulate radioactive material in the air is drawn onto the filter paper held by the dust collector by sucking the air to be monitored by the suction pump into the dust collector. To collect.
Then, the radiation emitted from the collected particulate radioactive substances is detected by a radiation detector, and the count rate per unit time is measured and displayed from the detected value by a count rate meter and simultaneously recorded by a recorder. The count rate meter has an adjustable alarm output function and issues an alarm at a desired count rate.
Therefore, this monitor collects and measures almost all the amount of the particulate radioactive material suspended in the sucked air.

【0003】一方、空気中には天然に存在する自然放射
能であるラドン娘核種の粒子が常に存在する。この自然
放射能の放射線による被ばくは不可避なことであるた
め、通常の放射線管理の上では対象外であり、原子力施
設等の放射線取扱施設での放射線管理は取り扱っている
粒子状放射性物質について実施すべきものである。この
ために、空気中の粒子状放射性物質濃度の測定は、本来
の放射線管理の目的である核種の濃度を求めるべきもの
である。上記従来のダストモニタでは、自然放射能であ
るラドン娘核種の粒子をも含めて捕集し、捕集した粒子
から放出する放射線を計測していた(例えば、実開昭5
8−151864、実開昭62−57195、実公平5
−18711)。
On the other hand, in the air, particles of radon daughter nuclide, which is a naturally occurring natural radioactivity, are always present. This natural radiation exposure to radiation is unavoidable and is not covered under normal radiation control.Radiation control at radiation handling facilities such as nuclear facilities should be carried out for the particulate radioactive materials being handled. Kimono. For this reason, the measurement of the concentration of particulate radioactive substances in the air should determine the concentration of nuclides, which is the original purpose of radiation control. The above-mentioned conventional dust monitor collects the particles of the radon daughter nuclide, which is a natural radioactivity, and measures the radiation emitted from the collected particles (for example, the actual development 5
8-151864, Kaikai 62-57195, Fair 5
-18711).

【0004】[0004]

【発明が解決しようとする課題】上記従来のダストモニ
タはモニタリングを要する核種の濃度がラドン娘核種の
濃度に比較して十分に高い場合には測定の目的を達成す
ることができるけれども、モニタリングを要する核種の
濃度がラドン娘核種の濃度に比較して同程度か或いは低
い場合には、そのままでは測定の目的を達成することが
できない問題があった。後者の場合の問題を解決し、測
定の目的を達成する手段としてこれまで幾つかの方法が
知られている。目的とする核種の半減期が比較的長い場
合には、空気集塵後のろ紙を保存し、時間経過ととも
にラドン娘核種の放射能が減衰した後に放射線計測を実
施し、目的とする核種の濃度を定量する方法が採られて
いる。しかしこの方法には空気集塵中にリアルタイムで
目的とする核種の濃度を知ることができない欠点があっ
た。
Although the above-mentioned conventional dust monitor can achieve the purpose of measurement when the concentration of the nuclide requiring monitoring is sufficiently higher than the concentration of the radon daughter nuclide, the monitoring is not possible. When the required concentration of the nuclide is similar to or lower than the concentration of the radon daughter nuclide, there is a problem that the measurement purpose cannot be achieved as it is. Several methods have been known so far as means for solving the problem in the latter case and achieving the purpose of measurement. If the half-life of the target nuclide is relatively long, store the filter paper after air dust collection and perform radiation measurement after the radioactivity of the radon daughter nuclide decays over time, and then measure the concentration of the target nuclide. Has been adopted. However, this method has a drawback that the concentration of the target nuclide cannot be known in real time during air dust collection.

【0005】この点を改良した、リアルタイムで目的と
する核種の濃度を知る方法として、例えば目的とする
核種とラドン娘核種の各放射線エネルギの違いを利用し
て弁別する方法や、ラドン娘核種の放出するα線とβ
線の数の比率がほぼ一定であることを利用して目的とす
る核種が放出する放射線の増加分を演算により定量する
方法等が知られている。しかし上記及びの方法は、
いずれも計測が複雑でしかも計測値のデータ処理が不可
欠であり、また目的とする核種の検出能力が十分でない
場合があった。
As a method for improving this point and knowing the concentration of a target nuclide in real time, for example, a method of discriminating by utilizing the difference in radiation energy between the target nuclide and the radon daughter nuclide, and a method of distinguishing the radon daughter nuclide Emitting α rays and β
There is known a method of quantifying an increase in radiation emitted by a target nuclide by calculation by utilizing the fact that the ratio of the number of lines is almost constant. However, the above and
In all cases, the measurement was complicated, data processing of the measured values was indispensable, and the detection ability of the target nuclide was sometimes insufficient.

【0006】本発明の目的は、目的とする核種を担持す
る空気中の粒子状物質の粒子径(以下、単に「核種の粒
子径」という)が自然放射能の核種の粒子径と異なるこ
とが既知であるときに、比較的簡単な計測で、目的とす
る核種の濃度を高い検出能力で測定する空気中の粒子状
放射性物質の濃度測定方法及びその装置を提供すること
にある。
The object of the present invention is that the particle size of the particulate matter in the air carrying the target nuclide (hereinafter, simply referred to as the “nuclide particle size”) is different from the particle size of the nuclide of natural radioactivity. It is an object of the present invention to provide a method and an apparatus for measuring the concentration of a particulate radioactive substance in the air, which, when known, measures the concentration of a target nuclide with a high detection ability by a relatively simple measurement.

【0007】[0007]

【課題を解決するための手段】本発明者は、図3に示す
ように自然放射能のラドン娘核種の空気力学的放射能中
央径(AMAD, Activity Median Aerodynamic Diamet
er)が約0.4〜0.6μmであって、ウラン燃料加工
施設におけるウラン核種のAMADが約3〜6μmであ
ることを知見し、空気力学的粒子径が異なる核種同士で
あれば、予め分級捕集することによって、個別に放射能
測定できることに着目し、本発明に到達した。
As shown in FIG. 3, the present inventor has found that the median diameter of aerodynamic activity of radon daughters having natural activity (AMAD, Activity Median Aerodynamic Diamet).
er) is about 0.4 to 0.6 μm and AMAD of the uranium nuclide at the uranium fuel processing facility is about 3 to 6 μm. The present invention has been achieved, focusing on the fact that radioactivity can be individually measured by classifying and collecting.

【0008】図1に示すように、本発明の空気中の粒子
状放射性物質の濃度測定方法は、粒子状放射性物質を含
む空気Aを吸引し、この吸引した空気Aを所定の粒子径
以上の粗粒子の物質を含む第1空気A1と所定の粒子径
未満の微粒子の物質を含む第2空気A2に分離し、第1
空気A1に含まれる粒子状物質を第1ろ紙13c上に捕
集し、第2空気A2に含まれる粒子状物質を第2ろ紙2
3c上に捕集し、第1ろ紙13cに捕集した粒子状放射
性物質から放出される放射線を第1放射線検出器14に
より検出し、第2ろ紙23cに捕集した粒子状放射性物
質から放出される放射線を第2放射線検出器24により
検出し、第2放射線検出器24の検出データを主として
自然放射能データとし、前記第1放射線検出器14の検
出データを自然放射能とそれ以外の放射能からなる放射
能データとして計測する方法である。
As shown in FIG. 1, the method for measuring the concentration of a particulate radioactive substance in the air of the present invention sucks air A containing the particulate radioactive substance, and sucks this sucked air A to a particle size of a predetermined value or more. The first air A 1 containing the substance of coarse particles and the second air A 2 containing the substance of fine particles having a particle size smaller than a predetermined particle size are separated into the first air A 1.
The particulate matter contained in the air A 1 is collected on the first filter paper 13c, and the particulate matter contained in the second air A 2 is collected in the second filter paper 2
Radiation emitted from the particulate radioactive material collected on the 3c and collected on the first filter paper 13c is detected by the first radiation detector 14, and is emitted from the particulate radioactive material collected on the second filter paper 23c. The radiation that is detected by the second radiation detector 24, the detection data of the second radiation detector 24 is mainly the natural activity data, and the detection data of the first radiation detector 14 is the natural activity and other activity. It is a method of measuring as radioactivity data consisting of.

【0009】また本発明の空気中の粒子状放射性物質の
濃度測定装置は、空気取込口10aと第1空気排出口1
0bと第2空気排出口10cとを有し、空気取込口10
aから取込んだ空気Aを所定の粒子径以上の粗粒子の物
質を含む第1空気A1と所定の粒子径未満の微粒子の物
質を含む第2空気A2に分離し、第1空気A1を第1空気
排出口10bにかつ第2空気A2を第2空気排出口10
cにそれぞれ排出可能に構成された分級器10と; 第
1空気排出口10bに接続され、第1空気A1に含まれ
る粒子状物質を第1ろ紙13cに捕集する第1集塵器1
3と; 第1集塵器13及び第1空気排出口10bを介
して第1空気A1を吸引する第1吸引ポンプ15と;
第1ろ紙13cに捕集した粒子状放射性物質から放出さ
れる放射線を検出する第1放射線検出器14と; 第1
放射線検出器14で検出された放射線の単位時間当りの
数を計数する第1計数率計19と; 第2空気排出口1
0cに接続され、第2空気A2に含まれる粒子状物質を
第2ろ紙23cに捕集する第2集塵器23と; 第2集
塵器23及び第2空気排出口10cを介して第2空気A
2を吸引する第2吸引ポンプ25と; 第2ろ紙23c
に捕集した粒子状放射性物質から放出される放射線を検
出する第2放射線検出器24と; 第2放射線検出器2
4で検出された放射線の単位時間当りの数を計数する第
2計数率計29と; 第1計数率計19の数値と第2計
数率計29の数値とを連続的に一括して記録する記録計
31と; 第1計数率計19及び/又は第2計数率計2
9の指示が所定の基準を越えるとき警報を発する警報器
32とを備えたものである。
Further, the concentration measuring apparatus for the particulate radioactive substances in the air of the present invention, the air intake port 10a and the first air discharge port 1
0b and the second air discharge port 10c, and the air intake port 10
The air A taken from a is separated into a first air A 1 containing a substance of coarse particles having a predetermined particle size or more and a second air A 2 containing a substance of fine particles having a particle size smaller than the predetermined particle size. 1 to the first air outlet 10b and the second air A 2 to the second air outlet 10b.
a classifier 10 configured to be capable of discharging to c respectively; a first dust collector 1 connected to the first air discharge port 10b and collecting the particulate matter contained in the first air A 1 to the first filter paper 13c
3; a first suction pump 15 for sucking the first air A 1 through the first dust collector 13 and the first air outlet 10b;
A first radiation detector 14 for detecting radiation emitted from the particulate radioactive material collected on the first filter paper 13c;
A first counting rate meter 19 for counting the number of radiation detected by the radiation detector 14 per unit time; a second air outlet 1
0c, and a second dust collector 23 that collects the particulate matter contained in the second air A 2 on the second filter paper 23c; and the second dust collector 23 and the second air outlet 10c. 2 air A
A second suction pump 25 for sucking 2; a second filter paper 23c
A second radiation detector 24 for detecting radiation emitted from the particulate radioactive material collected in the second radiation detector 2;
A second counting rate meter 29 for counting the number of radiations detected in 4 per unit time; and a numerical value of the first counting rate meter 19 and a numerical value of the second counting rate meter 29 are continuously and collectively recorded. A recorder 31 and a first counting rate meter 19 and / or a second counting rate meter 2
And an alarm device 32 for issuing an alarm when the instruction of 9 exceeds a predetermined standard.

【0010】なお分級器10が分離する粒子状物質の所
定の粒子径は1.0〜2.5μmの範囲にあることが好
ましく、特に2μmが好ましい。
The predetermined particle size of the particulate matter separated by the classifier 10 is preferably in the range of 1.0 to 2.5 μm, and particularly preferably 2 μm.

【0011】[0011]

【作用】測定すべき空気Aが分級器10で所定の粒子径
以上の粗粒子の物質を含む空気A1と所定の粒子径未満
の微粒子の物質を含む空気A2に分離され、それぞれろ
紙13cと23cに捕集される。検出器14及び24が
ろ紙に捕集された物質の放射線を個別に検出し、各放射
線が計数率計19及び29で計測され、その計数率が表
示される。図1では一例として計数率計19に「13.
5cpm」が、また計数率計29に「125cpm」が
表示されている。記録計31は2つの計数率計19及び
29の計測データを連続的に一括して記録する。特定核
種の空気力学的粒子径が既知で、これがラドン娘核種の
空気力学的粒子径と異なっていれば、計数率計29の計
測データを自然放射能のラドン娘核種の計数率、即ちバ
ックグラウンド放射能計数率として扱い、計数率計19
の計測データをバックグラウンド放射能と特定核種の放
射能からなる放射能計数率として扱うことにより、特定
核種の濃度を測定することができる。
The air A to be measured is separated by the classifier 10 into air A 1 containing a substance of coarse particles having a predetermined particle size or more and air A 2 containing a substance of fine particles having a particle size smaller than the predetermined particle size. And 23c. The detectors 14 and 24 individually detect the radiation of the substance collected on the filter paper, each radiation is measured by the counting rate meters 19 and 29, and the counting rate is displayed. In FIG. 1, as an example, the counting rate meter 19 displays “13.
5 cpm "and" 125 cpm "are displayed on the counting rate meter 29. The recorder 31 records the measurement data of the two count rate meters 19 and 29 continuously and collectively. If the aerodynamic particle size of the specific nuclide is known and this is different from the aerodynamic particle size of the radon daughter nuclide, the measurement data of the counting rate meter 29 is used as the counting rate of the natural radioactivity radon daughter nuclide, that is, the background. Treated as radioactivity counting rate, counting rate meter 19
The concentration of the specific nuclide can be measured by treating the measurement data of as a radioactivity counting rate composed of the background radioactivity and the radioactivity of the specific nuclide.

【0012】[0012]

【実施例】次に本発明の実施例を図面に基づいて詳しく
説明する。図1に示すように、本実施例の測定装置は単
一の分級器10と2系統の固定ろ紙式ダストモニタ2
0,30とを組合せた移動式測定装置である。分級器1
0はこの例では遠心力を利用したサイクロン分級器であ
って、空気取込口10aと第1空気排出口10bと第2
空気排出口10cを有する。空気取込口10aは水平方
向に空気Aを取込んで分級器内部で旋回流を生じるよう
に分級器上部側端に設けられ、第1空気排出口10bは
分級器の中心下部に設けられ、第2空気排出口10cは
この排出口10bと同心に分級器の中心上部に設けられ
る。この分級器10は空気取込口10aから取込んだ空
気Aを遠心力により所定の粒子径以上の粗粒子の物質を
含む第1空気A1と所定の粒子径未満の微粒子の物質を
含む第2空気A2に分離し、第1空気A1を第1空気排出
口10bにかつ第2空気A2を第2空気排出口10cに
それぞれ排出可能に構成される。この例では分級器10
は取込口10a、排出口10b及び10cの口径、空気
流入速度、分級器本体の内径等を適宜設定して所定の粒
子径が2μmとなるように設計されている。この所定の
粒子径と前記設定値との関係については、例えば「粉体
工学ハンドブック」第6版(朝倉書店、1972年)第
369頁に記載されている。第1空気排出口10bには
導管11を介して第1集塵器13の空気取込口13aが
接続され、第2空気排出口10cには導管21を介して
第2集塵器23の空気取込口23aが接続される。集塵
器13及び23の内部にはろ紙ホルダ13b及び23b
が配設され、ろ紙ホルダ13b及び23bには第1ろ紙
13c及び第2ろ紙23cがそれぞれ保持される。また
集塵器13及び23には検出部がろ紙13c及び23c
に対向するように第1放射線検出器14及び第2放射線
検出器24が固定される。この例では検出器14及び2
4はZnSシンチレーション検出器であって、ろ紙13
c及び23cに捕集した粒子状放射性物質から放出され
るα線をそれぞれ検出する。
Embodiments of the present invention will now be described in detail with reference to the drawings. As shown in FIG. 1, the measuring apparatus of this embodiment comprises a single classifier 10 and a fixed filter paper type dust monitor 2 of two systems.
It is a mobile measuring device in which 0 and 30 are combined. Classifier 1
In this example, 0 is a cyclone classifier using centrifugal force, and includes an air intake port 10a, a first air exhaust port 10b, and a second air exhaust port 10b.
It has an air outlet 10c. The air intake port 10a is provided at the upper end of the classifier so as to take in the air A in the horizontal direction and generate a swirling flow inside the classifier, and the first air discharge port 10b is provided at the lower center part of the classifier. The second air outlet 10c is provided concentrically with the outlet 10b at the upper center of the classifier. This classifier 10 includes a first air A 1 containing a substance of coarse particles having a predetermined particle size or more and a fine substance having a particle size of less than a predetermined particle size by centrifugal force to the air A taken from the air intake port 10a. It is configured such that it is separated into two airs A 2 and the first air A 1 can be discharged to the first air discharge port 10b and the second air A 2 can be discharged to the second air discharge port 10c. In this example, the classifier 10
Is designed such that the diameter of the inlet 10a, the outlets 10b and 10c, the air inflow speed, the inner diameter of the main body of the classifier and the like are appropriately set so that the predetermined particle diameter is 2 μm. The relationship between the predetermined particle size and the set value is described, for example, in "Powder Engineering Handbook", 6th edition (Asakura Shoten, 1972), page 369. The air inlet 13a of the first dust collector 13 is connected to the first air outlet 10b via the conduit 11, and the air of the second dust collector 23 is connected to the second air outlet 10c via the conduit 21. The intake port 23a is connected. Filter paper holders 13b and 23b are provided inside the dust collectors 13 and 23.
The first filter paper 13c and the second filter paper 23c are respectively held by the filter paper holders 13b and 23b. The dust collectors 13 and 23 have filter papers 13c and 23c.
The first radiation detector 14 and the second radiation detector 24 are fixed so as to face each other. In this example detectors 14 and 2
4 is a ZnS scintillation detector, which is a filter paper 13
The α rays emitted from the particulate radioactive substances collected in c and 23c are respectively detected.

【0013】集塵器13及び23の空気排出口13d及
び23dには導管12及び22を介して第1吸引ポンプ
15及び第2吸引ポンプ25が接続される。導管12の
途中には流量計16と圧力計17と流量調整弁18が介
装され、導管22の途中には流量計26と圧力計27と
流量調整弁28が介装される。検出器14及び24の各
検出出力は第1計数率計19及び第2計数率計29に接
続される。計数率計19及び29は検出器14及び24
の検出した放射線の単位時間当りの数を計数率としてそ
れぞれ計測し、表示するように構成される。計数率計1
9及び29の計測出力は単一の記録計31に接続され
る。図2に示すように、この記録計31は計数率計19
及び29から時々刻々入力するデータを連続して個別に
記録するようになっている。第1計数率計19の別の出
力及び第2計数率計29の別の出力には計数率計19又
は29の指示が所定の基準を越えると警報を発する警報
器32が接続される。計数率計19の指示が所定の基準
を越えるときとは、自然放射能のラドン娘核種以外の目
的とする核種があるレベル以上に空気中に含まれる場合
であり、計数率計29の指示が所定の基準を越えるとき
とは、自然放射能のラドン娘核種の濃度が異常に上昇し
た場合、或いは吸引ポンプ15が故障等で停止した場合
が挙げられる。前者のラドン娘核種の濃度が異常に上昇
した場合にはバックグラウンド放射能計数率が高くなり
過ぎて目的とする核種の検出能力が下がるため、また後
者の吸引ポンプ15が測定中に異常停止した場合には空
気A全量がろ紙23cに捕集されて計数率が異常上昇す
るため、それぞれ警報により測定を中止する等のアクシ
ョンを採ることができる。
A first suction pump 15 and a second suction pump 25 are connected to the air outlets 13d and 23d of the dust collectors 13 and 23 via conduits 12 and 22, respectively. A flow meter 16, a pressure gauge 17, and a flow rate adjusting valve 18 are installed in the conduit 12, and a flow meter 26, a pressure gauge 27, and a flow rate adjusting valve 28 are installed in the conduit 22. The respective detection outputs of the detectors 14 and 24 are connected to the first counting rate meter 19 and the second counting rate meter 29. Counting rate meters 19 and 29 are detectors 14 and 24.
The number of detected radiations per unit time is measured and displayed as a count rate. Counting rate meter 1
The measured outputs of 9 and 29 are connected to a single recorder 31. As shown in FIG. 2, the recorder 31 is a counting rate meter 19
The data input from moments 29 and 29 are recorded continuously and individually. An alarm 32 is connected to another output of the first counting rate meter 19 and another output of the second counting rate meter 29, which issues an alarm when the instruction of the counting rate meter 19 or 29 exceeds a predetermined standard. When the instruction of the counting rate meter 19 exceeds the predetermined standard, it means that the target nuclide other than the radon daughter nuclide of natural radioactivity is contained in the air at a certain level or more, and the instruction of the counting rate meter 29 is The time when the predetermined standard is exceeded may be the case where the concentration of the radon daughter nuclide of natural radioactivity is abnormally increased or the suction pump 15 is stopped due to a failure or the like. When the concentration of the radon daughter nuclide of the former rises abnormally, the background radioactivity count rate becomes too high and the ability to detect the target nuclide decreases, and the suction pump 15 of the latter also abnormally stopped during measurement. In this case, the total amount of the air A is collected by the filter paper 23c and the count rate abnormally rises. Therefore, it is possible to take an action such as stopping the measurement by an alarm.

【0014】このように構成された測定装置の使用方法
について説明する。 (a) 先ずこの測定装置をオフィス内の一般環境中に設置
した後、吸引ポンプ15及び25を運転し、流量計1
6,26及び圧力計17,27を監視しながら流量調整
弁18及び28を調整して、導管12及び22に毎分1
0リットルの空気と毎分90リットルの空気をそれぞれ
流込むように維持する。この結果、空気Aが分級器10
の空気取込口10aより取込まれ、分級器10により粒
子径2μm以上の粗粒子の物質を含む空気A1と粒子径
2μm未満の微粒子の物質を含む空気A2に分離され
る。空気A1には粒子径2μm未満の微粒子全体のうち
ほぼ空気A1の空気Aに対する流量比に等しい割合、即
ち約10%の物質が含まれる。空気A1は第1集塵器1
3に入り、ろ紙13cに捕集される。また空気A2は第
2集塵器23に入り、ろ紙23cに捕集される。
A method of using the thus-configured measuring device will be described. (a) First, after installing this measuring device in a general environment in an office, operate the suction pumps 15 and 25, and
6 and 26 and pressure gauges 17 and 27 while adjusting flow rate adjusting valves 18 and 28 to connect the conduits 12 and 22 to 1 minute per minute.
Maintain 0 liters of air and 90 liters of air per minute, respectively. As a result, the air A becomes the classifier 10
The air is taken in through the air intake port 10a and separated by the classifier 10 into air A 1 containing a substance of coarse particles having a particle diameter of 2 μm or more and air A 2 containing a substance of fine particles having a particle diameter of less than 2 μm. The air A 1 contains a substance in a proportion substantially equal to the flow rate ratio of the air A 1 to the air A, that is, about 10% of the whole fine particles having a particle diameter of less than 2 μm. Air A 1 is the first dust collector 1
3 and is collected by the filter paper 13c. Further, the air A 2 enters the second dust collector 23 and is collected by the filter paper 23c.

【0015】放射線検出器14及び24がそれぞれろ紙
13c及び23cに捕集された放射線を検出し、これら
の検出データは計数率計19及び29に入力される。計
数率計19及び29はその計数率を表示する。これらの
計数率計19及び29の数値は記録計31に入力して図
2(a)に示されるタイムチャートに記録される。図2
(a)において、符号c1は計数率計29で計測され、
時間の経過とともにプロットされた、主として粒子径が
2μm未満の微粒子の物質の計数率を示し、符号d1
計数率計19で計測され、時間の経過とともにプロット
された、主として粒子径が2μm以上の粗粒子の物質の
計数率を示す。ここではオフィスの空気中の放射性粒状
物質の濃度測定であったため、符号d1の計数率の基と
なるろ紙13cに捕集された粒子は、本来ろ紙23cに
捕集されるべき微粒子が上述したような割合で集塵器1
3に混じり込んだものがほとんどで、2μm以上の粗粒
子は少なく、自然放射能であるラドン娘核種の粒子のみ
が計測された。即ち、計数率に関して、符号c1の数
値:符号d1の数値の比率はほぼ10:1で一定に推移
することが判った。
The radiation detectors 14 and 24 detect the radiation collected on the filter papers 13c and 23c, respectively, and the detection data are input to the counting rate meters 19 and 29. Count rate meters 19 and 29 display the count rate. The numerical values of these counting rate meters 19 and 29 are input to the recorder 31 and recorded in the time chart shown in FIG. Figure 2
In (a), the code c 1 is measured by the counting rate meter 29,
The count rate of fine particle substances having a particle size of less than 2 μm is plotted with the passage of time, and the reference numeral d 1 is measured by a counting rate meter 19 and plotted with the passage of time, mainly the particle size is 2 μm or more. 3 shows the count rate of coarse-grained substances. Since the concentration of radioactive particulate matter in the air in the office was measured here, the particles collected on the filter paper 13c, which is the basis of the counting rate of the code d 1 , are the fine particles that should be collected on the filter paper 23c. Dust collector 1 at such a ratio
Most of them were mixed in 3, and there were few coarse particles of 2 μm or more, and only the particles of the radon daughter nuclide, which is a natural radioactivity, were measured. That is, regarding the counting rate, it was found that the ratio of the numerical value of the code c 1 to the numerical value of the code d 1 remained constant at about 10: 1.

【0016】(b) 次にこの測定装置をウラン燃料加工施
設のうち、ウランを非密封状態で取扱う作業場に設置し
た。上記(a)と同様にして導管12及び22に毎分10
リットルの空気と毎分90リットルの空気がそれぞれ流
込むように維持され、粒子径2μm以上の粗粒子の物質
を含む空気A1は第1集塵器13に入り、ろ紙13cに
捕集される。また粒子径2μm未満の微粒子の物質を含
む空気A2は第2集塵器23に入り、ろ紙23cに捕集
される。上記(a)と同様にろ紙13c及び23cに捕集
された物質から放出された放射線の検出器14及び24
の検出データにより計数率計19及び29はその計数率
を表示するとともに、これらの数値は記録計31に入力
して図2(b)に示されるタイムチャートに記録され
る。図2(b)において、符号c2は計数率計29で計
測された、主として粒子径が2μm未満の微粒子の物質
の計数率を示し、符号d2は計数率計19で計測され
た、主として粒子径が2μm以上の粗粒子の物質の計数
率を示す。ここではウランを非密封状態で取扱う作業場
の空気中の放射性粒状物質の濃度測定であったため、自
然放射能であるラドン娘核種の粒子を示す符号c2の計
数率はサンプリングを開始してから約2時間経過後はほ
ぼ一定に推移したが、自然放射能とそれ以外の核種の放
射能からなる符号d2の計数率は時間の経過とともに変
動した。
(B) Next, this measuring device was installed in a uranium fuel processing facility in a work space where uranium was handled in an unsealed state. In the same manner as in (a) above, the conduits 12 and 22 have a flow rate of 10
Air of 1 liter and air of 90 liters per minute are maintained so as to flow respectively, and the air A 1 containing the substance of coarse particles having a particle diameter of 2 μm or more enters the first dust collector 13 and is collected by the filter paper 13c. . Further, the air A 2 containing a substance of fine particles having a particle diameter of less than 2 μm enters the second dust collector 23 and is collected by the filter paper 23c. Detectors 14 and 24 for radiation emitted from the substances collected on the filter papers 13c and 23c as in (a) above.
The count rate meters 19 and 29 display the count rate according to the detection data of 1, and these numerical values are input to the recorder 31 and recorded in the time chart shown in FIG. 2B. In FIG. 2 (b), reference numeral c 2 indicates the counting rate of the substance of fine particles having a particle diameter of less than 2 μm, which is measured by the counting rate meter 29, and reference numeral d 2 is measured by the counting rate meter 19, mainly. The count rate of coarse particles having a particle diameter of 2 μm or more is shown. Here, since the concentration of radioactive particulate matter in the air of the workplace where uranium is handled in an unsealed state was measured, the counting rate of code c 2 indicating the particles of the radon daughter nuclide that is a natural radioactivity is about After 2 hours, it remained almost constant, but the count rate of code d 2 consisting of natural radioactivity and radioactivity of other nuclides fluctuated with time.

【0017】符号d2の計数率からバックグラウンドで
あるラドン娘核種の計数値の期待値d3を減算した、符
号eで示す斜線領域分だけ上記(a)の場合より増加し
た。特に時間t1、t2及びt3では計数率の増加が見ら
れ、ラドン娘核種以外の核種で空気が汚染されているこ
とが判明した。符号eに相当する計数率の時間的変化率
を演算することにより目的とする核種、即ちウランの濃
度を測定することができる。警報器32は前記時間変化
率が所定の値を越えると作動し、作業員に空気の放射能
汚染を報知する。
The expected value d 3 of the count value of the Radon daughter nuclide, which is the background, is subtracted from the count rate indicated by the reference numeral d 2, and the hatched area indicated by the reference numeral e is increased by an amount corresponding to the above case (a). Especially at times t 1 , t 2 and t 3 , the count rate increased, and it was found that the air was contaminated with nuclides other than the Radon daughter nuclide. The concentration of the target nuclide, that is, uranium can be measured by calculating the temporal change rate of the count rate corresponding to the code e. The alarm 32 is activated when the rate of change over time exceeds a predetermined value, and notifies the operator of radioactive contamination of the air.

【0018】なお、上記例では記録計31に2つの計数
率計19及び29から直接計測データが入力する場合に
ついて説明したが、計数率計19及び29の各出力をデ
ータ処理装置33に接続して、データ処理装置33が計
数率計29の出力からバックグラウンド放射能計数率を
推算し、かつ計数率計19の出力から特定核種の放射線
を演算するように構成してもよい。また、上記例では本
発明の装置のろ紙をろ紙ホルダに保持する固定ろ紙式ダ
ストモニタとして説明したが、本発明の装置はこれに限
らず、移動ろ紙式のものにも適用することができる。更
に、上記例では放射線検出器をα線検出器として説明し
たが、放射線検出器として目的に応じてβ線検出器等そ
の他検出器を用いることもできる。
In the above example, the case where the measurement data is directly input to the recorder 31 from the two counting rate meters 19 and 29 has been described, but each output of the counting rate meters 19 and 29 is connected to the data processing device 33. Then, the data processing device 33 may be configured to estimate the background radioactivity counting rate from the output of the counting rate meter 29 and calculate the radiation of the specific nuclide from the output of the counting rate meter 19. Further, in the above example, the fixed filter paper type dust monitor for holding the filter paper of the device of the present invention in the filter paper holder has been described, but the device of the present invention is not limited to this, and can be applied to a moving filter paper type. Furthermore, in the above example, the radiation detector was described as an α-ray detector, but a β-ray detector or other detector may be used as the radiation detector depending on the purpose.

【0019】[0019]

【発明の効果】以上述べたように、本発明によれば、図
3に示すように目的とする核種の粒子径が自然放射能の
核種の粒子径と異なることが既知のときに、両者を分級
器に吸引して粒子径により分離して、2系統のダストモ
ニタに通し、個別にろ紙に捕集し、これらの放射線を個
別に検出し、計数率を計測し、その結果を総合して判断
することにより、比較的簡単な計測で目的核種の濃度を
高い検出能力で測定することができる。
As described above, according to the present invention, when it is known that the particle size of the target nuclide is different from the particle size of the natural radionuclide as shown in FIG. It is sucked into a classifier, separated by particle size, passed through two dust monitors, individually collected on filter paper, these radiations are individually detected, the counting rate is measured, and the results are combined. By making a judgment, the concentration of the target nuclide can be measured with a high detection ability by a relatively simple measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の測定装置の構成図。FIG. 1 is a block diagram of a measuring apparatus of the present invention.

【図2】本発明の記録計で記録されたタイムチャート。FIG. 2 is a time chart recorded by the recorder of the present invention.

【図3】自然放射能であるラドン娘核種の粒子と特定核
種の粒子の分布図。
FIG. 3 is a distribution map of particles of a radon daughter nuclide and particles of a specific nuclide that are natural radioactivity.

【符号の説明】[Explanation of symbols]

10 分級器 10a 空気取込口 10b 第1空気排出口 10c 第2空気排出口 13,23 集塵器 13c,23c ろ紙 14,24 放射線検出器 15,25 吸引ポンプ 19,29 計数率計 31 記録計 32 警報器 33 データ処理装置 10 Classifier 10a Air intake port 10b First air discharge port 10c Second air discharge port 13,23 Dust collector 13c, 23c Filter paper 14,24 Radiation detector 15,25 Suction pump 19,29 Count rate meter 31 Recorder 32 alarm device 33 data processing device

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年8月18日[Submission date] August 18, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】一方、空気中には天然に存在する自然放射
能であるラドン娘核種の粒子が常に存在する。この自然
放射能の放射線による被ばくは不可避なことであるた
め、通常の放射線管理の上では対象外であり、原子力施
設等の放射線取扱施設での放射線管理は取り扱ってい
射性物質について実施すべきものである。このため
に、空気中の粒子状放射性物質濃度の測定は、本来の放
射線管理の目的である核種の濃度を求めるべきものであ
る。上記従来のダストモニタでは、自然放射能であるラ
ドン娘核種の粒子をも含めて捕集し、捕集した粒子から
放出する放射線を計測していた(例えば、実開昭58−
151864、実開昭62−57195、実公平5−1
8711)。
On the other hand, in the air, particles of radon daughter nuclide, which is a naturally occurring natural radioactivity, are always present. Since this exposure to radiation of natural radioactivity is that the inevitable, not subject is on top of the normal radiation management, radiation control of radiation handling facilities of nuclear facilities and the like that are dealt
And the like should be performed for radioactive materials. For this reason, the measurement of the concentration of particulate radioactive substances in the air should determine the concentration of nuclides, which is the original purpose of radiation control. The above-mentioned conventional dust monitor collects the particles of the radon daughter nuclide, which is a natural radioactivity, and measures the radiation emitted from the collected particles (for example, SAIKAI Sho 58-
151864, 62-57195, Shohei 5-1
8711).

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】なお分級器10が分離する粒子状物質の所
定の粒子径は1.0〜2.5μmの範囲にあることが好
ましい。
[0010] Note that the predetermined particle size of the particulate material classifier 10 is separated, it is good <br/> preferable in the range of 1.0 to 2.5 [mu] m.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】[0011]

【作用】測定すべき空気Aが分級器10で所定の粒子径
以上の粗粒子の物質を含む空気A1と所定の粒子径未満
の微粒子の物質を含む空気A2に分離され、それぞれろ
紙13cと23cに捕集される。検出器14及び24が
ろ紙に捕集された物質の放射線を個別に検出し、各放射
線が計数率計19及び29で計測され、その計数率が表
示される。図1では一例として計数率計19に「13.
5cpm」が、また計数率計29に「125cpm」が
表示されている。記録計31は2つの計数率計19及び
29の計測データを連続的に一括して記録する。特定核
種の空気力学的粒子径が既知で、これがラドン娘核種の
空気力学的粒子径と異なっていれば、計数率計29の計
測データを自然放射能のラドン娘核種の計数率、即ちバ
ックグラウンド放射能計数率として扱い、計数率計19
の計測データをバックグラウンド放射能と特定核種の放
射能からなる計数率として扱うことにより、特定核種の
濃度を測定することができる。
The air A to be measured is separated by the classifier 10 into air A 1 containing a substance of coarse particles having a predetermined particle size or more and air A 2 containing a substance of fine particles having a particle size smaller than the predetermined particle size. And 23c. The detectors 14 and 24 individually detect the radiation of the substance collected on the filter paper, each radiation is measured by the counting rate meters 19 and 29, and the counting rate is displayed. In FIG. 1, as an example, the counting rate meter 19 displays “13.
5 cpm "and" 125 cpm "are displayed on the counting rate meter 29. The recorder 31 records the measurement data of the two count rate meters 19 and 29 continuously and collectively. If the aerodynamic particle size of the specific nuclide is known and this is different from the aerodynamic particle size of the radon daughter nuclide, the measurement data of the counting rate meter 29 is used as the counting rate of the natural radioactivity radon daughter nuclide, that is, the background. Treated as radioactivity counting rate, counting rate meter 19
By dealing with the measurement data as a count rate that Do from radioactivity background radioactivity and specific nuclide, it is possible to measure the concentration of a specific nuclide.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】放射線検出器14及び24がそれぞれろ紙
13c及び23cに捕集された放射線を検出し、これら
の検出データは計数率計19及び29に入力される。計
数率計19及び29はその計数率を表示する。これらの
計数率計19及び29の数値は記録計31に入力して図
2(a)に示されるタイムチャートに記録される。図2
(a)において、符号c1は計数率計29で計測され、
時間の経過とともにプロットされた、主として粒子径が
2μm未満の微粒子の物質の計数率を示し、符号d1
計数率計19で計測され、時間の経過とともにプロット
された、主として粒子径が2μm以上の粗粒子の物質の
計数率を示す。ここではオフィスの空気中の粒子状放射
性物質の濃度測定であったため、符号d1の計数率の基
となるろ紙13cに捕集された粒子は、本来ろ紙23c
に捕集されるべき微粒子が上述したような割合で集塵器
13に混じり込んだものがほとんどで、2μm以上の粗
粒子は少なく、自然放射能であるラドン娘核種の粒子の
みが計測された。即ち、計数率に関して、符号c1の数
値:符号d1の数値の比率はほぼ10:1で一定に推移
することが判った。
The radiation detectors 14 and 24 detect the radiation collected on the filter papers 13c and 23c, respectively, and the detection data are input to the counting rate meters 19 and 29. Count rate meters 19 and 29 display the count rate. The numerical values of these counting rate meters 19 and 29 are input to the recorder 31 and recorded in the time chart shown in FIG. Figure 2
In (a), the code c 1 is measured by the counting rate meter 29,
The count rate of fine particle substances having a particle size of less than 2 μm is plotted with the passage of time, and the reference numeral d 1 is measured by a counting rate meter 19 and plotted with the passage of time, mainly the particle size is 2 μm or more. 3 shows the count rate of coarse-grained substances. Here is the particulate radiation in the office air
Because it was the concentration measurement of sexual substances, particles are trapped in the filter paper 13c underlying the counting rate of the code d 1, originally filter paper 23c
Most of the fine particles to be collected in the dust collector 13 were mixed in the dust collector 13 as described above, and the number of coarse particles of 2 μm or more was small, and only the particles of the radon daughter nuclide that is a natural radioactivity were measured. . That is, regarding the counting rate, it was found that the ratio of the numerical value of the code c 1 to the numerical value of the code d 1 remained constant at about 10: 1.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】(b) 次にこの測定装置をウラン燃料加工施
設のうち、ウランを非密封状態で取扱う作業場に設置し
た。上記(a)と同様にして導管12及び22に毎分10
リットルの空気と毎分90リットルの空気がそれぞれ流
込むように維持され、粒子径2μm以上の粗粒子の物質
を含む空気A1は第1集塵器13に入り、ろ紙13cに
捕集される。また粒子径2μm未満の微粒子の物質を含
む空気A2は第2集塵器23に入り、ろ紙23cに捕集
される。上記(a)と同様にろ紙13c及び23cに捕集
された物質から放出された放射線の検出器14及び24
の検出データにより計数率計19及び29はその計数率
を表示するとともに、これらの数値は記録計31に入力
して図2(b)に示されるタイムチャートに記録され
る。図2(b)において、符号c2は計数率計29で計
測された、主として粒子径が2μm未満の微粒子の物質
の計数率を示し、符号d2は計数率計19で計測され
た、主として粒子径が2μm以上の粗粒子の物質の計数
率を示す。ここではウランを非密封状態で取扱う作業場
の空気中の粒子状放射性物質の濃度測定であったため、
自然放射能であるラドン娘核種の粒子を示す符号c2
計数率はサンプリングを開始してから約2時間経過後は
ほぼ一定に推移したが、自然放射能とそれ以外の核種の
放射能からなる符号d2の計数率は時間の経過とともに
変動した。
(B) Next, this measuring device was installed in a uranium fuel processing facility in a work space where uranium was handled in an unsealed state. In the same manner as in (a) above, the conduits 12 and 22 have a flow rate of 10
Air of 1 liter and air of 90 liters per minute are maintained so as to flow respectively, and the air A 1 containing the substance of coarse particles having a particle diameter of 2 μm or more enters the first dust collector 13 and is collected by the filter paper 13c. . Further, the air A 2 containing a substance of fine particles having a particle diameter of less than 2 μm enters the second dust collector 23 and is collected by the filter paper 23c. Detectors 14 and 24 for radiation emitted from the substances collected on the filter papers 13c and 23c as in (a) above.
The count rate meters 19 and 29 display the count rate according to the detection data of 1, and these numerical values are input to the recorder 31 and recorded in the time chart shown in FIG. 2B. In FIG. 2 (b), reference numeral c 2 indicates the counting rate of the substance of fine particles having a particle diameter of less than 2 μm, which is measured by the counting rate meter 29, and reference numeral d 2 is measured by the counting rate meter 19, mainly. The count rate of coarse particles having a particle diameter of 2 μm or more is shown. Here, since at a concentration measurement of the particulate radioactive materials in the air of the workplace handling uranium unsealed state,
The counting rate of code c 2 showing particles of radon daughter nuclide which is natural radioactivity remained almost constant after about 2 hours from the start of sampling, but from natural radioactivity and radioactivity of other nuclides The count rate of the symbol d 2 fluctuated with the passage of time.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】この場合、符号d 2の計数率は符号d2の計
数率からバックグラウンドであるラドン娘核種の計数値
の期待値d3を減算した、符号eで示す斜線領域分だけ
上記(a)の場合より増加した。特に時間1、t2及び
3では符号c 2に比べ符号d 2計数率の増加が見ら
れ、ラドン娘核種以外の核種で空気が汚染されているこ
とが判明した。符号eに相当する計数率の時間的変化率
を演算することにより目的とする核種、即ちウランの濃
度を測定することができる。
[0017] In this case, the counting rate of the code d 2 is obtained by subtracting the expected value d 3 of the count values of radon daughters is the background from the count rate of the code d 2, only the hatched region amount indicated by symbol e in (a ). In particular, in the time zones t 1 , t 2 and t 3 , the count rate of the code d 2 increased compared to the code c 2 and it was found that the air was contaminated with nuclides other than the Radon daughter nuclide. The concentration of the target nuclide, that is, uranium can be measured by calculating the temporal change rate of the count rate corresponding to the code e.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粒子状放射性物質を含む空気(A)を吸引
し、 前記吸引した空気(A)を所定の粒子径以上の粗粒子の物
質を含む第1空気(A1)と前記所定の粒子径未満の微粒子
の物質を含む第2空気(A2)に分離し、 前記第1空気(A1)に含まれる粒子状物質を第1ろ紙(13
c)上に捕集し、 前記第2空気(A2)に含まれる粒子状物質を第2ろ紙(23
c)上に捕集し、 前記第1ろ紙(13c)に捕集した粒子状放射性物質から放
出される放射線を第1放射線検出器(14)により検出し、 前記第2ろ紙(23c)に捕集した粒子状放射性物質から放
出される放射線を第2放射線検出器(24)により検出し、 前記第2放射線検出器(24)の検出データを主として自然
放射能データとし、前記第1放射線検出器(14)の検出デ
ータを自然放射能とそれ以外の放射能からなる放射能デ
ータとして計測する空気中の粒子状放射性物質の濃度測
定方法。
1. An air (A) containing a particulate radioactive substance is sucked, and the sucked air (A) is mixed with a first air (A 1 ) containing a substance of coarse particles having a predetermined particle size or more and the predetermined air. The particulate matter contained in the first air (A 1 ) is separated into the second air (A 2 ) containing fine particles having a particle size smaller than the particle diameter, and the first filter paper (13
c) The particulate matter contained in the second air (A 2 ) collected on the second filter paper (23
c) The radiation emitted from the particulate radioactive material collected on the first filter paper (13c) is detected by the first radiation detector (14) and collected on the second filter paper (23c). Radiation emitted from the collected particulate radioactive material is detected by a second radiation detector (24), and the detection data of the second radiation detector (24) is mainly used as natural radioactivity data, and the first radiation detector is used. A method for measuring the concentration of particulate radioactive substances in the air, wherein the detection data of (14) is measured as radioactivity data consisting of natural radioactivity and other radioactivity.
【請求項2】 第1放射線検出器(14)の検出データで検
出された放射線の単位時間当りの数である第1計数率と
第2放射線検出器(24)の検出データで検出された放射線
の単位時間当りの数である第2計数率とをそれぞれ求
め、 前記第2計数率からバックグラウンド放射能計数率を推
算し、 前記第1計数率から前記推算したバックグラウンド放射
能計数率を減算することにより特定核種の放射能計数率
を算出する請求項1記載の方法。
2. A first count rate, which is the number of radiation detected by the detection data of the first radiation detector (14) per unit time, and radiation detected by the detection data of the second radiation detector (24). And the second count rate, which is the number per unit time, are calculated, the background radioactivity count rate is estimated from the second count rate, and the estimated background radioactivity count rate is subtracted from the first count rate. The method according to claim 1, wherein the radioactivity counting rate of the specific nuclide is calculated by
【請求項3】 分離する粒子状物質の所定の粒子径が
1.0〜2.5μmの範囲にある請求項1記載の方法。
3. The method according to claim 1, wherein the predetermined particle size of the particulate matter to be separated is in the range of 1.0 to 2.5 μm.
【請求項4】 空気取込口(10a)と第1空気排出口(10b)
と第2空気排出口(10c)とを有し、前記取込口(10a)から
取込んだ空気(A)を所定の粒子径以上の粗粒子の物質を
含む第1空気(A1)と前記所定の粒子径未満の微粒子の物
質を含む第2空気(A2)に分離し、前記第1空気(A1)を前
記第1空気排出口(10b)にかつ前記第2空気(A2)を前記
第2空気排出口(10c)にそれぞれ排出可能に構成された
分級器(10)と、 前記第1空気排出口(10b)に接続され、前記第1空気
(A1)に含まれる粒子状物質を第1ろ紙(13c)に捕集する
第1集塵器(13)と、 前記第1集塵器(13)及び第1空気排出口(10b)を介して
前記第1空気(A1)を吸引する第1吸引ポンプ(15)と、 前記第1ろ紙(13c)に捕集した粒子状放射性物質から放
出される放射線を検出する第1放射線検出器(14)と、 前記第1放射線検出器(14)で検出された放射線の単位時
間当りの数を計数する第1計数率計(19)と、 前記第2空気排出口(10c)に接続され、前記第2空気
(A2)に含まれる粒子状物質を第2ろ紙(23c)に捕集する
第2集塵器(23)と、 前記第2集塵器(23)及び第2空気排出口(10c)を介して
前記第2空気(A2)を吸引する第2吸引ポンプ(25)と、 前記第2ろ紙(23c)に捕集した粒子状放射性物質から放
出される放射線を検出する第2放射線検出器(24)と、 前記第2放射線検出器(24)で検出された放射線の単位時
間当りの数を計数する第2計数率計(29)と、 前記第1計数率計(19)の数値と前記第2計数率計(29)の
数値とを連続的に一括して記録する記録計(31)と、 前記第1計数率計(19)及び/又は前記第2計数率計(29)
の指示が所定の基準を越えるとき警報を発する警報器(3
2)とを備えた空気中の粒子状放射性物質の濃度測定装
置。
4. An air intake port (10a) and a first air exhaust port (10b)
And a first air (A 1 ) which has a second air outlet (10c) and which contains the substance of coarse particles having a predetermined particle size or more from the air (A) taken from the inlet (10a) The air is separated into second air (A 2 ) containing fine particles having a particle size smaller than the predetermined particle size, and the first air (A 1 ) is supplied to the first air discharge port (10b) and the second air (A 2). ) Is connected to the first air exhaust port (10b), and the first air exhaust port (10b) is connected to the first air exhaust port (10b).
A first dust collector (13) for collecting the particulate matter contained in (A 1 ) on the first filter paper (13c), and the first dust collector (13) and the first air outlet (10b). A first suction pump (15) for sucking the first air (A 1 ) through the first radiation detector, and a first radiation detector for detecting radiation emitted from the particulate radioactive material collected in the first filter paper (13c). (14), a first counting rate meter (19) for counting the number of radiation detected by the first radiation detector (14) per unit time, and a second air outlet (10c) , The second air
A second dust collector (23) for collecting the particulate matter contained in (A 2 ) on the second filter paper (23c); and the second dust collector (23) and the second air outlet (10c). A second suction pump (25) for sucking the second air (A 2 ) through the second suction detector, and a second radiation detector for detecting the radiation emitted from the particulate radioactive material collected in the second filter paper (23c). (24), a second count rate meter (29) for counting the number of radiation detected by the second radiation detector (24) per unit time, and a numerical value of the first count rate meter (19) A recorder (31) for continuously and collectively recording the numerical value of the second count rate meter (29), and the first count rate meter (19) and / or the second count rate meter (29)
The alarm device (3
2) A device for measuring the concentration of particulate radioactive substances in the air, which comprises and.
【請求項5】 分級器(10)が分離する粒子状物質の所定
の粒子径が1.0〜2.5μmの範囲にある請求項4記
載の装置。
5. The device according to claim 4, wherein the predetermined particle size of the particulate matter separated by the classifier (10) is in the range of 1.0 to 2.5 μm.
JP33673293A 1993-12-28 1993-12-28 Method and apparatus for measuring the concentration of particulate radioactive substances in air Expired - Fee Related JP2810311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33673293A JP2810311B2 (en) 1993-12-28 1993-12-28 Method and apparatus for measuring the concentration of particulate radioactive substances in air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33673293A JP2810311B2 (en) 1993-12-28 1993-12-28 Method and apparatus for measuring the concentration of particulate radioactive substances in air

Publications (2)

Publication Number Publication Date
JPH07198856A true JPH07198856A (en) 1995-08-01
JP2810311B2 JP2810311B2 (en) 1998-10-15

Family

ID=18302210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33673293A Expired - Fee Related JP2810311B2 (en) 1993-12-28 1993-12-28 Method and apparatus for measuring the concentration of particulate radioactive substances in air

Country Status (1)

Country Link
JP (1) JP2810311B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114664A (en) * 2003-10-10 2005-04-28 Rion Co Ltd Device for particle detection
JP2007147287A (en) * 2005-11-24 2007-06-14 Fuji Electric Systems Co Ltd Discharged fluid monitoring apparatus
JP2008183546A (en) * 2007-01-31 2008-08-14 Aisin Aw Co Ltd Device for sensing and collecting foreign material
JP2013061254A (en) * 2011-09-13 2013-04-04 Kimoto Denshi Kogyo Kk Radioactive suspended particulate matter measuring instrument and radioactive suspended particulate matter measuring method
KR101515858B1 (en) * 2015-02-13 2015-05-04 주식회사 동일그린시스 Apparatus and Method for Detecting Ultrafine Suspended Particle Matter
JP2018105820A (en) * 2016-12-28 2018-07-05 独立行政法人労働者健康安全機構 Method and device for measuring floating properties of particulate matter
JP2018146319A (en) * 2017-03-03 2018-09-20 三菱電機株式会社 Radioactive dust monitor
KR20190052399A (en) * 2017-11-08 2019-05-16 주식회사 엠원인터내셔널 Appartus for measuring air pollutant and radiation around of life environmnet
KR20190119272A (en) 2018-04-12 2019-10-22 한국원자력연구원 Radioactivity detector
KR102159254B1 (en) * 2019-06-10 2020-09-23 한국원자력연구원 Apparatus for analysis of fine dust and method for analysis of fine dust
CN113406711A (en) * 2021-06-07 2021-09-17 核工业北京地质研究院 Method for determining uranium mineralization favorable area based on radon-active uranium comprehensive index
CN113406711B (en) * 2021-06-07 2024-04-26 核工业北京地质研究院 Method for circling uranium-bearing ore-forming beneficial zone based on radon-active uranium comprehensive index

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114664A (en) * 2003-10-10 2005-04-28 Rion Co Ltd Device for particle detection
JP2007147287A (en) * 2005-11-24 2007-06-14 Fuji Electric Systems Co Ltd Discharged fluid monitoring apparatus
JP2008183546A (en) * 2007-01-31 2008-08-14 Aisin Aw Co Ltd Device for sensing and collecting foreign material
JP2013061254A (en) * 2011-09-13 2013-04-04 Kimoto Denshi Kogyo Kk Radioactive suspended particulate matter measuring instrument and radioactive suspended particulate matter measuring method
KR101515858B1 (en) * 2015-02-13 2015-05-04 주식회사 동일그린시스 Apparatus and Method for Detecting Ultrafine Suspended Particle Matter
JP2018105820A (en) * 2016-12-28 2018-07-05 独立行政法人労働者健康安全機構 Method and device for measuring floating properties of particulate matter
JP2018146319A (en) * 2017-03-03 2018-09-20 三菱電機株式会社 Radioactive dust monitor
KR20190052399A (en) * 2017-11-08 2019-05-16 주식회사 엠원인터내셔널 Appartus for measuring air pollutant and radiation around of life environmnet
KR20190119272A (en) 2018-04-12 2019-10-22 한국원자력연구원 Radioactivity detector
KR102159254B1 (en) * 2019-06-10 2020-09-23 한국원자력연구원 Apparatus for analysis of fine dust and method for analysis of fine dust
CN113406711A (en) * 2021-06-07 2021-09-17 核工业北京地质研究院 Method for determining uranium mineralization favorable area based on radon-active uranium comprehensive index
CN113406711B (en) * 2021-06-07 2024-04-26 核工业北京地质研究院 Method for circling uranium-bearing ore-forming beneficial zone based on radon-active uranium comprehensive index

Also Published As

Publication number Publication date
JP2810311B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US4808827A (en) Method and apparatus for monitoring the concentration of airborne actinide particles
JP3597973B2 (en) Dust monitor
JPH07198856A (en) Method and apparatus for measuring concentration of particular radioactive substance in the air
JPH06300849A (en) Method for detecting leakage of radioactive gas of nuclear reactor and radioactivity monitor for nuclear reactor
US3339070A (en) Air monitoring system having a scintillating plastic and a phosphorescent film with means to detect light pulses with different decay times
JP3735401B2 (en) Radiation monitor
JP2017102008A (en) Microparticulate substance analysis device
Yule An on-line monitor for alpha-emitting aerosols
US4990786A (en) Method and apparatus for determining the actual artificial aerosol alpha activity concentration in the air
Kojima et al. Comparison of sensitivity between two methods (a decay method and a build-up and decay method) in monitoring of individual radon daughters
JP2563341B2 (en) Contamination type determination device
Alexander Continuous monitor for prompt detection of airborne plutonium
Gonzales et al. Performance of multiple HEPA filters against plutonium aerosols
JPH0666948A (en) Apparatus for inspecting leaking rate of radioactive gas
McDonald et al. Evaluation of plutonium analysis techniques for a continuous alpha monitor
Sayers et al. A workplace air monitor for uranium particulate detection
GB2239943A (en) Environmental radiological monitoring
Holub et al. Dust samplers as means of measuring long-and short-lived radon progeny in mines
JPS626199A (en) Off-gas monitor
Yule On-line monitor for the detection of aerosols containing uranium and the transuranics
McDonald et al. Continuous plutonium monitor for nuclear facility off-gas streams
Hulett Air sampling program at the Portsmouth Gaseous Diffusion Plant
CA1227582A (en) Automated monitoring of fissile/fertile materials in waste containers
JPS62287177A (en) Monitor for iodine 129
JPH07159539A (en) Dust monitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees