JP2018105820A - Method and device for measuring floating properties of particulate matter - Google Patents

Method and device for measuring floating properties of particulate matter Download PDF

Info

Publication number
JP2018105820A
JP2018105820A JP2016255422A JP2016255422A JP2018105820A JP 2018105820 A JP2018105820 A JP 2018105820A JP 2016255422 A JP2016255422 A JP 2016255422A JP 2016255422 A JP2016255422 A JP 2016255422A JP 2018105820 A JP2018105820 A JP 2018105820A
Authority
JP
Japan
Prior art keywords
particulate matter
floating
measuring
concentration
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016255422A
Other languages
Japanese (ja)
Other versions
JP6362669B2 (en
Inventor
誠 大西
Makoto Onishi
誠 大西
辰也 笠井
Tatsuya Kasai
辰也 笠井
鈴木 正明
Masaaki Suzuki
正明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Organization of Occupational Health and Safety JOHAS
Original Assignee
Japan Organization of Occupational Health and Safety JOHAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Organization of Occupational Health and Safety JOHAS filed Critical Japan Organization of Occupational Health and Safety JOHAS
Priority to JP2016255422A priority Critical patent/JP6362669B2/en
Publication of JP2018105820A publication Critical patent/JP2018105820A/en
Application granted granted Critical
Publication of JP6362669B2 publication Critical patent/JP6362669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a floating property measurement method for particulate matter, which allows for measuring a floating property of particulate matter that can be a risk assessment index for the particulate matter, and to provide a floating property measurement device used for such a method.SOLUTION: A floating property measurement device comprises: an accommodating container capable of accommodating particulate matter; swirling flow generation means capable of generating a swirling flow inside the accommodating container; suction means that is provided on an upper portion of the accommodating container and is capable of sucking a gas in a central portion of the swirling flow and the particulate matter in the gas, and capturing means capable of capturing the particulate matter sucked by the suction means.SELECTED DRAWING: Figure 1

Description

本発明は、粒子状物質の浮遊特性を測定するための浮遊特性測定方法及び浮遊特性測定装置に関するものである。   The present invention relates to a floating characteristic measuring method and a floating characteristic measuring apparatus for measuring the floating characteristic of particulate matter.

粒子状物質は、空気中に浮遊する性質を有し、人が吸い込んで気管や肺に沈着するおそれがあることから、呼吸器系を中心とした健康被害の原因となることが懸念されている。特に、粒子径2.5μm以下の微小粒子状物質(PM2.5)は、肺胞に至るおそれがあることから、重大な健康被害を及ぼす可能性がある。   Particulate matter has the property of floating in the air, and since it may be inhaled by humans and deposited in the trachea and lungs, there is a concern that it may cause health damage mainly in the respiratory system . In particular, a fine particulate material (PM2.5) having a particle size of 2.5 μm or less may cause alveoli and may cause serious health damage.

従来、このような粒子状物質に汚染された空気の状態を把握するために、吸引装置により吸引された空気中の粒子状物質をサイクロン式の分粒ユニットにより分粒した上で捕集し、この捕集された粒子状物質の濃度を測定する気中粉塵濃度測定方法が知られている(特許文献1)。特許文献1の気中粉塵濃度測定方法によれば、様々な大きさの種々の粒子状物質を含有する空気における、特定の大きさの粒子状物質の濃度を測定することが可能となるため、測定対象となる大きさの粒子状物質が生体に有害なものであると予め特定できている場合には、大気汚染の有無等を判断するための有効な手段となり得るものである。   Conventionally, in order to grasp the state of air contaminated with such particulate matter, the particulate matter in the air sucked by the suction device is collected after being sized by a cyclone type sizing unit, An air dust concentration measuring method for measuring the concentration of the collected particulate matter is known (Patent Document 1). According to the air dust concentration measuring method of Patent Document 1, it becomes possible to measure the concentration of particulate matter of a specific size in air containing various particulate matter of various sizes. When the particulate matter having a size to be measured can be specified in advance as being harmful to the living body, it can be an effective means for determining the presence or absence of air pollution.

特開2016−121913号公報JP 2006-121913 A

ところで、粒子状物質については、有機化合物についての蒸気圧のような、生体に侵入する影響を示すリスク評価指標が存在しない。このため、従来は、粒子状物質の大きさ(粒子径)に基づいて漠然と有害性の判断をすることしかできず、様々な種類の粒子状物質のそれぞれについて、生体に対する有害性を個別に特定することまではできないという問題がある。   By the way, with respect to particulate matter, there is no risk evaluation index indicating the effect of entering the living body, such as the vapor pressure of organic compounds. For this reason, in the past, it was only possible to make a vague assessment of harmfulness based on the size (particle diameter) of the particulate matter, and for each of the various types of particulate matter, the harmfulness to the living body was individually identified. There is a problem that you can't do it.

この点は、特許文献1の気中粉塵濃度測定方法においても同様である。すなわち、特許文献1の気中粉塵濃度測定方法では、大気中の粉塵を捕集してその濃度を測定し、漠然と大気汚染の有無を判断することしかできず、大気汚染の原因となった粒子状物質の特定及び該粒子状物質の有害性の程度を測定することまではできないという問題がある。   This also applies to the air dust concentration measuring method disclosed in Patent Document 1. That is, in the air dust concentration measuring method of Patent Document 1, dust in the atmosphere is collected and the concentration thereof is measured, and the presence or absence of air pollution can only be vaguely determined. There is a problem that it is impossible to specify the particulate matter and measure the degree of harmfulness of the particulate matter.

そこで、本発明は、粒子状物質のリスク評価指標となり得る浮遊特性を測定することが可能な粒子状物質の浮遊特性測定方法及びこの浮遊特性測定方法に用いられる浮遊特性測定装置を提供することを目的とする。   Therefore, the present invention provides a method for measuring the floating characteristics of particulate matter capable of measuring the floating characteristics that can serve as a risk evaluation index for the particulate matter, and a floating characteristic measuring device used in the method for measuring the floating characteristics. Objective.

上記の目的を達成するため、本発明に係る粒子状物質の浮遊特性測定方法は、測定対象とする粒子状物質が含まれる気体流を発生させる気体流発生工程と、前記気体中から前記粒子状物質を捕集する捕集工程と、前記捕集工程により捕集された前記粒子状物質の濃度を測定する濃度測定工程と、前記濃度測定工程により測定された濃度を、基準となる対照物質の濃度と比較することで、粒子状物質の浮遊係数を測定する浮遊係数測定工程とを備えることを特徴とする。   In order to achieve the above object, a method for measuring the floating characteristics of particulate matter according to the present invention includes a gas flow generation step for generating a gas flow containing particulate matter to be measured, and the particulate matter from the gas. A collecting step for collecting the substance, a concentration measuring step for measuring the concentration of the particulate matter collected by the collecting step, and a concentration measured by the concentration measuring step for the reference substance It is characterized by comprising a buoyancy coefficient measurement step for measuring the buoyancy coefficient of the particulate matter by comparing with the concentration.

本発明に係る粒子状物質の浮遊特性測定方法は、前記捕集工程の前に、前記気体流を旋回流とすることによって極微粒子を分粒する分粒工程を更に備え、前記捕集工程は、前記分粒工程により分粒された極微粒子を前記粒子状物質として捕集する工程であることが好ましい。   The method for measuring the floating characteristics of particulate matter according to the present invention further includes a sizing step of sizing ultrafine particles by turning the gas flow into a swirl flow before the collecting step, It is preferable that the ultrafine particles sized by the sizing step are collected as the particulate matter.

また、本発明に係る浮遊特性測定装置は、上述した浮遊特性測定方法に用いられる浮遊特性測定装置であって、前記粒子状物質を収容可能な収容容器と、前記収容容器内に旋回流を生成可能な旋回流生成手段と、前記収容容器の上部に設けられ、前記旋回流の中心部の気体及び該気体中の前記粒子状物質を吸引可能な吸引手段と、前記吸引手段により吸引された前記粒子状物質を捕集可能な捕集手段とを備えることを特徴とする。   Moreover, the floating characteristic measuring apparatus according to the present invention is a floating characteristic measuring apparatus used in the above-described floating characteristic measuring method, and a container that can store the particulate matter, and a swirl flow is generated in the container. Possible swirl flow generating means, suction means provided at the upper part of the container, capable of sucking the gas in the central part of the swirl flow and the particulate matter in the gas, and the sucked by the suction means It is provided with the collection means which can collect a particulate matter.

本発明に係る浮遊特性測定装置において、前記収容容器は、その内部を外部から視認可能に構成されることが好ましい。   In the floating characteristic measuring apparatus according to the present invention, it is preferable that the storage container is configured so that the inside thereof can be viewed from the outside.

また、本発明に係る浮遊特性測定装置において、前記旋回流生成手段は、前記収容容器の内部に配置されたマグネット式攪拌翼と、前記収容容器の外部に配置され、磁力により前記マグネット式攪拌翼を回転させることが可能なマグネチックスターラとを備えることが好ましい。   Further, in the floating characteristic measuring apparatus according to the present invention, the swirl flow generating means is a magnet type stirring blade disposed inside the storage container and the magnet type stirring blade disposed outside the storage container and magnetically. It is preferable to provide a magnetic stirrer capable of rotating the.

本発明によれば、粒子状物質のリスク評価指標となり得る浮遊特性を測定することが可能な粒子状物質の浮遊特性測定方法及びこの浮遊特性測定方法に用いられる浮遊特性測定装置を提供することができる。   According to the present invention, it is possible to provide a method for measuring a floating property of a particulate material capable of measuring a floating property that can be a risk evaluation index for the particulate material, and a floating property measuring apparatus used in the method for measuring the floating property. it can.

本発明の一実施形態に係る浮遊特性測定装置の概略構成を示す概略構成図である。It is a schematic block diagram which shows schematic structure of the floating characteristic measuring apparatus which concerns on one Embodiment of this invention. 本実施形態に係る浮遊特性測定装置を用いて粒子状物質の旋回流(エアロゾル)を発生させて分粒した状態を示す概念図であり、図2(a)は、収容容器の径方向に沿った断面を示し、図2(b)は、収容容器の軸方向に沿った断面を示している。It is a conceptual diagram which shows the state which generated the swirling flow (aerosol) of the particulate matter using the floating characteristic measuring apparatus which concerns on this embodiment, and was sized, FIG.2 (a) is along the radial direction of a storage container. FIG. 2B shows a cross section along the axial direction of the container. 本実施形態に係る浮遊特性測定方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the floating characteristic measuring method which concerns on this embodiment. 実施例1に係る試料A〜D及び対照物質の測定結果を示す表である。4 is a table showing measurement results of samples A to D and a control substance according to Example 1. 実施例1に係る試料A〜D及び対照物質の浮遊係数を示すグラフである。It is a graph which shows the floating coefficient of sample AD which concerns on Example 1, and a control substance. 実施例1に係る試料E〜H及び対照物質の測定結果を示す表である。It is a table | surface which shows the measurement result of sample EH which concerns on Example 1, and a control substance. 実施例1に係る試料E〜H及び対照物質の浮遊係数を示すグラフである。It is a graph which shows the floating coefficient of sample EH which concerns on Example 1, and a control substance.

以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described with reference to the drawings. The following embodiments do not limit the invention according to each claim, and all combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. .

本実施形態に係る浮遊特性測定装置1は、図1に示すように、測定対象とする粒子状物質が含まれる気体流(エアロゾル)を発生させると共に、該気体流を旋回流とすることによって粒子状物質を分粒させるサイクロン式分粒機構2と、旋回流の中心部の気体及び該気体中の粒子状物質を吸引する吸引手段30と、吸引手段30により吸引された粒子状物質を捕集する捕集手段40と、浮遊特性を特定するための種々の演算処理を実行する演算処理部(図示せず)とを備えている。   As shown in FIG. 1, the floating characteristic measuring apparatus 1 according to the present embodiment generates a gas flow (aerosol) containing particulate matter to be measured and makes the gas flow a swirl flow to generate particles. A cyclone type sizing mechanism 2 for sizing particulate matter, a suction means 30 for sucking the gas at the center of the swirling flow and the particulate matter in the gas, and collecting the particulate matter sucked by the suction means 30 A collecting means 40 for performing the operation, and an arithmetic processing unit (not shown) for executing various arithmetic processes for specifying the floating characteristics.

サイクロン式分粒機構2は、粒子状物質(粉体、粉塵)を収容可能な収容容器10と、収容容器10の内部に旋回流を生成可能な旋回流生成手段20とを備えている。   The cyclone type sizing mechanism 2 includes a storage container 10 that can store particulate matter (powder, dust), and a swirl flow generating means 20 that can generate a swirl flow inside the storage container 10.

収容容器10は、上面が開放された有底円筒状の容器本体12と、容器本体12の上面を閉塞可能な蓋体14とを備えており、容器本体12に蓋体14が取り付けられることにより、内部に密閉空間が形成されるよう構成されている。収容容器10は、例えばガラスやステンレス等の静電気により粒子状物質が付着しにくい材質から形成されるか、又は、その内面に帯電防止加工が施されている。また、収容容器10は、透明な材質から形成されるか、又は、その一部に透明な覗き窓等が形成されることにより、その内部を外部から視認可能に構成されている。   The container 10 includes a bottomed cylindrical container main body 12 having an open upper surface and a lid body 14 that can close the upper surface of the container main body 12, and the lid body 14 is attached to the container main body 12. In addition, a sealed space is formed inside. The container 10 is made of a material that hardly adheres particulate matter due to static electricity, such as glass or stainless steel, or an inner surface thereof is subjected to antistatic processing. Further, the storage container 10 is formed of a transparent material, or a transparent observation window or the like is formed in a part thereof, so that the inside thereof can be viewed from the outside.

蓋体14には、収容容器10の内部に粒子状物質を流入させるための流入部16と、収容容器10の内部の気体流(エアロゾル)及び該気体流中の粒子状物質を収容容器10の外部に流出させるための流出部18とが形成されている。流出部18は、蓋体14の略中心に形成されており、後述する旋回流の略中心部分の気体及び粒子状物質を流出可能に構成されている。また、流出部18には、捕集手段40が設けられており、流出部18から流出される気体中の粒子状物質を捕集手段40によって捕集させることが可能に構成されている。   The lid 14 has an inflow portion 16 for allowing particulate matter to flow into the storage container 10, a gas flow (aerosol) inside the storage container 10, and particulate matter in the gas flow in the storage container 10. An outflow portion 18 is formed for flowing out. The outflow part 18 is formed substantially at the center of the lid body 14 and is configured to allow outflow of gas and particulate matter at a substantially central part of a swirling flow described later. The outflow part 18 is provided with a collecting means 40, and is configured so that the particulate matter in the gas flowing out from the outflow part 18 can be collected by the collecting means 40.

旋回流生成手段20は、収容容器10の内部に配置されたマグネット式攪拌翼22と、収容容器10の外部に配置され、磁力によりマグネット式攪拌翼22を回転させることが可能なマグネチックスターラ24とを備えており、マグネチックスターラ24の磁力によってマグネット式攪拌翼22を回転させることにより、収容容器10の内部に旋回流(サイクロン)を発生させるよう構成されている。   The swirling flow generating means 20 is provided with a magnetic stirring blade 22 disposed inside the storage container 10 and a magnetic stirrer 24 disposed outside the storage container 10 and capable of rotating the magnetic stirring blade 22 by magnetic force. And rotating the magnetic stirring blade 22 by the magnetic force of the magnetic stirrer 24 to generate a swirling flow (cyclone) inside the container 10.

マグネット式攪拌翼22は、マグネチックスターラ24の磁力により回転する略円盤状の回転基部22aと、該回転基部22aに略十字となるよう立設された攪拌羽根部22bとを備えている。本実施形態では、回転基部22aがステンレスから形成され、攪拌羽根部22bがアルマイト加工の施されたアルミ等から形成されているが、これらに限定されず、種々の材料から形成することが可能である。なお、マグネット式攪拌翼22は、種々の公知の羽根型攪拌子を採用することが可能であるため、その詳細な説明を省略する。   The magnetic stirring blade 22 includes a substantially disc-shaped rotating base portion 22a that is rotated by the magnetic force of the magnetic stirrer 24, and a stirring blade portion 22b that is erected on the rotating base portion 22a so as to have a substantially cross shape. In this embodiment, the rotation base 22a is formed from stainless steel, and the stirring blade 22b is formed from anodized aluminum or the like, but is not limited thereto, and can be formed from various materials. is there. In addition, since various well-known blade | wing type stirring elements can be employ | adopted for the magnetic stirring blade 22, the detailed description is abbreviate | omitted.

マグネチックスターラ24は、収容容器10が載置される筐体24aと、筐体24aの内部に配置された回転マグネット部24bと、回転マグネット部24bを回転させるモータ等の駆動源24cと、駆動源24cの動作を制御する回転制御部(図示せず)とを備えている。回転マグネット部24bは、駆動源24cにより回転するよう構成された円盤状の回転盤と、該回転盤上に設けられたマグネットとを備えており、駆動源24cによって回転された際に、マグネットの磁力によってマグネット式攪拌翼22の回転基部22aを回転させるよう構成されている。回転制御部は、回転マグネット部24bの回転数を任意に設定可能に構成されており、該設定された回転数で回転マグネット部24b及びマグネット式攪拌翼22が回転するように、駆動源24cの動作を制御する。回転マグネット部24bの回転数は、粒子状物質の目的とする分粒精度に応じて任意に設定可能である。なお、マグネチックスターラ24は、種々の公知のマグネチックスターラを採用することが可能であるため、その詳細な説明を省略する。   The magnetic stirrer 24 includes a housing 24a on which the container 10 is placed, a rotating magnet unit 24b disposed inside the housing 24a, a drive source 24c such as a motor that rotates the rotating magnet unit 24b, and a drive. A rotation control unit (not shown) for controlling the operation of the source 24c. The rotating magnet unit 24b includes a disk-shaped rotating disk configured to rotate by a driving source 24c and a magnet provided on the rotating disk. When the rotating magnet unit 24b is rotated by the driving source 24c, The rotating base 22a of the magnetic stirring blade 22 is rotated by the magnetic force. The rotation control unit is configured to be able to arbitrarily set the number of rotations of the rotating magnet unit 24b. The rotation source unit 24c is configured so that the rotating magnet unit 24b and the magnetic stirring blade 22 rotate at the set number of rotations. Control the behavior. The number of rotations of the rotating magnet part 24b can be arbitrarily set according to the target sizing accuracy of the particulate matter. Note that various known magnetic stirrers can be adopted as the magnetic stirrer 24, and thus detailed description thereof is omitted.

吸引手段30は、設定された所定の流量で気体を吸引するポンプ等からなり、収容容器10の蓋体14の流出部18に接続されたホース32を介して、収容容器10の内部の気体流(エアロゾル)及び該気体流中の粒子状物質を収容容器10の外部に排出させるよう構成されている。なお、吸引手段30は、種々の公知の吸引手段を採用することが可能であるため、その詳細な説明を省略する。   The suction means 30 is composed of a pump or the like that sucks gas at a set predetermined flow rate, and the gas flow inside the storage container 10 is connected via a hose 32 connected to the outflow portion 18 of the lid 14 of the storage container 10. (Aerosol) and particulate matter in the gas flow are configured to be discharged to the outside of the container 10. Note that various known suction means can be adopted as the suction means 30, and detailed description thereof is omitted.

捕集手段40は、収容容器10の蓋体14の流出部18に取り付け可能に構成されたサンプリングホルダ42と、サンプリングホルダ42に保持されたフィルタ(図示せず)とを備えている。フィルタは、浮遊特性の測定対象となる粒子状物質を略100%捕集可能なフィルタであれば、種々の公知のフィルタを採用することが可能であるため、その詳細な説明を省略する。   The collection means 40 includes a sampling holder 42 that can be attached to the outflow portion 18 of the lid 14 of the storage container 10, and a filter (not shown) held by the sampling holder 42. As long as the filter can collect almost 100% of the particulate matter to be measured for the floating characteristics, various known filters can be adopted, and thus detailed description thereof is omitted.

演算処理部は、例えばパーソナルコンピュータ等の種々の演算処理装置からなり、測定者により入力された粒子状物質の捕集量(後述する秤量値)と、捕集時の流量とに基づいて、粒子状物質の濃度を算出するよう構成されている。また、演算処理部は、算出した粒子状物質の濃度と、後述する基準試料(対照物質)の濃度とに基づいて、粒子状物質の浮遊係数を算出するよう構成されている。   The arithmetic processing unit is composed of various arithmetic processing devices such as a personal computer, for example, and based on the collected amount of particulate matter (weighing value described later) input by the measurer and the flow rate at the time of collection. It is configured to calculate the concentration of the substance. In addition, the arithmetic processing unit is configured to calculate the floating coefficient of the particulate matter based on the calculated concentration of the particulate matter and the concentration of a reference sample (control material) described later.

以上の構成を備える浮遊特性測定装置1は、旋回流生成手段20によって収容容器10の内部に旋回流を生成することにより、収容容器10の内部に粒子状物質が含まれる気体流(エアロゾル)を発生させると共に、該収容容器10の内部において該粒子状物質を分粒するよう構成されている。具体的には、浮遊特性測定装置1は、測定対象とする粒子状物質が含まれる気体流を収容容器10の内部において発生させ、これを旋回流Fとするよう構成されている。また、浮遊特性測定装置1は、旋回流Fの遠心力を利用して、図2(a)及び図2(b)に示すように、質量が大きい粒子4a,4bを収容容器10の径方向外側かつ下方に移動させ、質量が小さい粒子4cを収容容器10の径方向内側かつ上方に移動させることで、大きさが異なる粒子を分粒するよう構成されている。なお、このようなサイクロン式の分粒原理は、公知であるため、その詳細な説明を省略する。また、図2(a)及び図2(b)においては、理解を容易にするために、粒子状物質(粒子4a,4b,4c)の大きさを誇張して表示している。また、図2(a)及び図2(b)においては、説明に不要な構成の図示を省略している。   The floating characteristic measuring apparatus 1 having the above configuration generates a swirl flow inside the storage container 10 by the swirl flow generation means 20, thereby generating a gas flow (aerosol) containing particulate matter inside the storage container 10. While being generated, the particulate matter is classified in the container 10. Specifically, the floating property measuring apparatus 1 is configured to generate a gas flow containing particulate matter to be measured inside the storage container 10 and to make the swirl flow F. In addition, the floating characteristic measuring apparatus 1 uses the centrifugal force of the swirling flow F so that the particles 4a and 4b having a large mass are radiated in the radial direction of the container 10 as shown in FIGS. 2 (a) and 2 (b). The particles 4c having a small mass are moved outward and downward, and the particles 4c having a small mass are moved inward and upward in the radial direction of the container 10 so that particles having different sizes are divided. Such a cyclonic sizing principle is well known, and a detailed description thereof will be omitted. In FIGS. 2A and 2B, the size of the particulate matter (particles 4a, 4b, 4c) is exaggerated for easy understanding. Further, in FIGS. 2A and 2B, illustration of structures unnecessary for description is omitted.

次に、本実施形態に係る浮遊特性測定装置1を用いて、粒子状物質のリスク評価指標となり得る浮遊特性を測定する方法(浮遊特性測定方法)について、説明する。   Next, a method for measuring floating characteristics (floating characteristic measuring method) that can be a risk evaluation index of particulate matter using the floating characteristic measuring apparatus 1 according to the present embodiment will be described.

本実施形態に係る浮遊特性測定方法は、概略的には、図3に示すように、測定対象とする粒子状物質が含まれる気体流を発生させる気体流発生工程(S1)と、測定対象となる粒子状物質をその大きさに基づいて分粒する分粒工程(S2)と、分粒された粒子状物質の中から、質量の小さい粒子状物質のみを捕集する捕集工程(S3)と、捕集された粒子状物質の濃度を測定する濃度測定工程(S4)と、濃度測定工程により測定された濃度を基準となる対照物質の濃度と比較することで、測定対象となる粒子状物質の浮遊係数を測定する浮遊係数測定工程(S5)とを備えている。以下、これらの工程について、詳述する。   As shown in FIG. 3, the method for measuring floating characteristics according to the present embodiment schematically includes a gas flow generation step (S1) for generating a gas flow including particulate matter to be measured, and a measurement target. A sizing step (S2) for sizing the particulate matter based on its size, and a collecting step (S3) for collecting only the particulate matter having a small mass from the sized particulate matter And a concentration measurement step (S4) for measuring the concentration of the collected particulate matter, and comparing the concentration measured in the concentration measurement step with the concentration of the reference reference material, thereby measuring the particulate matter to be measured And a floating coefficient measuring step (S5) for measuring the floating coefficient of the substance. Hereinafter, these steps will be described in detail.

まず、気体流発生工程(S1)では、蓋体14により容器本体12を密閉させた状態で、流入部16を介して収容容器10の内部に測定対象となる粒子状物質を流入させると共に、旋回流生成手段20により収容容器10の内部に旋回流を発生させる。これにより、収容容器10の内部において、測定対象とする粒子状物質が含まれる気体流(エアロゾル)を発生させる。次に、分粒工程(S2)では、旋回流の生成を所定時間継続することにより、該旋回流の遠心力によって、質量が大きい粒子4a,4bを収容容器10の径方向外側かつ下方に移動させ、質量が小さい粒子4cを収容容器10の径方向内側かつ上方に移動させることで、大きさが異なる粒子を分粒する(図2(a)及び図2(b)参照)。   First, in the gas flow generation step (S1), in a state where the container body 12 is sealed by the lid body 14, the particulate matter to be measured is caused to flow into the storage container 10 through the inflow portion 16 and swirl. A swirling flow is generated inside the container 10 by the flow generating means 20. As a result, a gas flow (aerosol) containing the particulate matter to be measured is generated inside the container 10. Next, in the sizing step (S2), the generation of the swirling flow is continued for a predetermined time, whereby the particles 4a and 4b having a large mass are moved radially outward and downward by the centrifugal force of the swirling flow. Then, the particles 4c having a small mass are moved inward and upward in the radial direction of the storage container 10 to thereby classify particles having different sizes (see FIGS. 2A and 2B).

この分粒工程は、生体に害を及ぼす可能性のある大きさの粒子状物質を採取(捕集)するために行われる工程である。すなわち、様々な製品の原材料や実験材料等として一般に市販される粒子状物質(微粉末)は、それに含まれる全てが微粒子であるとは限らず、製造されて出荷される段階では、極微粒子(ナノサイズ)、微粒子(ミクロンサイズ)及び数百ミクロンの粒子が混在している。このような粒子状物質について生体に対する有害性を評価するためには、生体に害を及ぼす可能性が低い大きさの粒子を取り除き、生体に害を及ぼす可能性が高い大きさの粒子(例えば極微粒子)だけを採取する必要があるため、本実施形態に係る浮遊特性測定方法では、分粒工程を実施している。   This sizing step is a step performed to collect (collect) particulate matter having a size that may cause harm to the living body. That is, the particulate substances (fine powder) generally marketed as raw materials and experimental materials for various products are not necessarily all in the form of fine particles. Nano size), fine particles (micron size), and particles of several hundred microns are mixed. In order to evaluate the harmfulness of such particulate matter to the living body, particles having a size that is unlikely to cause harm to the living body are removed, and particles having a size that is likely to cause harm to the living body (for example, extreme poles). Since it is necessary to collect only the fine particles), the sizing process is performed in the floating characteristic measurement method according to the present embodiment.

次に、捕集工程(S3)では、吸引手段30によって収容容器10の径方向中心部かつ上部に形成された流出部18から吸引することで、旋回流の中心部の気体及び該気体中の粒子状物質を収容容器10の外部に流出させ、この流出した粒子状物質を捕集手段40によって捕集する。これにより、生体に害を及ぼす可能性のある大きさの粒子(例えば極微粒子)だけを採取することができる。なお、これら気体流発生工程(S1)、分粒工程(S2)及び捕集工程(S3)は、浮遊特性測定装置1を用いて実行される。   Next, in the collecting step (S3), the suction means 30 sucks from the outflow portion 18 formed in the radial center portion and the upper portion of the storage container 10, thereby allowing the gas in the central portion of the swirl flow and Particulate matter is caused to flow out of the container 10, and the particulate matter that has flowed out is collected by the collecting means 40. Thereby, it is possible to collect only particles (for example, ultrafine particles) having a size that may cause harm to the living body. Note that the gas flow generation step (S1), the sizing step (S2), and the collection step (S3) are executed using the floating characteristic measuring apparatus 1.

次に、濃度測定工程(S4)では、吸引手段30によって吸引した空気量と、捕集前後のフィルタの重量の変化(秤量値)とに基づいて、捕集点(すなわち、旋回流の中心部)における粒子状物質の濃度を算出する。具体的には、吸引した空気量[L]は、捕集時の流量(捕集流量)[L/min]と、捕集時間[min]との積(「捕集流量」×「捕集時間」)により、算出される。また、秤量値[mg]は、捕集前のフィルタ重量と、捕集後のフィルタ重量の差(「捕集後のフィルタ重量」−「捕集前のフィルタ重量」)により、算出される。さらに、捕集点における粒子状物質の濃度[mg/m]は、秤量値[mg]と、吸引した空気量[L]との商(「秤量値」÷(「空気量」÷1000))により、算出される。なお、粒子状物質の濃度の算出は、パーソナルコンピュータ等の演算処理部を用いて実行される。また、演算処理部に対する空気量[L]及び秤量値[mg]の入力は、吸引手段30や秤量測定手段(図示せず)等を介して自動で入力されるとしても良いし、測定者により手動で入力されるとしても良い。 Next, in the concentration measurement step (S4), based on the amount of air sucked by the suction means 30 and the change in the weight of the filter before and after collection (weighing value), the collection point (that is, the central portion of the swirl flow) ) To calculate the concentration of particulate matter. Specifically, the sucked air amount [L] is the product of the flow rate during collection (collection flow rate) [L / min] and the collection time [min] (“collection flow rate” × “collection”). Time)). The weighed value [mg] is calculated from the difference between the filter weight before collection and the filter weight after collection (“filter weight after collection” − “filter weight before collection”). Furthermore, the concentration [mg / m 3 ] of the particulate matter at the collection point is the quotient of the weighed value [mg] and the sucked air amount [L] (“weighed value” ÷ (“air amount” ÷ 1000) ). The calculation of the concentration of the particulate matter is performed using an arithmetic processing unit such as a personal computer. Further, the input of the air amount [L] and the weighing value [mg] to the arithmetic processing unit may be automatically inputted through the suction means 30 or the weighing measuring means (not shown) or the like, or by the measurer. It may be input manually.

浮遊係数測定工程(S5)では、濃度測定工程(S4)によって算出された測定対象となる粒子状物質の濃度と、上述した濃度測定工程(S4)と同様の工程によって算出された対照物質の濃度とに基づいて、測定対象となる粒子状物質の浮遊係数を算出する。具体的には、浮遊係数は、測定対象となる粒子状物質の濃度と、基準となる対照物質の濃度との商(「測定対象となる粒子状物質の濃度」÷「対照物質の濃度」)により、算出される。ここで、基準となる対照物質は、(1)入手が容易であること、(2)その粒径から、吸引すると肺に到達する可能性が高いこと(生体への有害性が高いこと)、(3)概ね標準的な浮遊特性を有すること(浮遊係数を1とすることが適切であること)、等を条件として選定することが好ましい。そして、これらの条件を鑑みると、例えば、入手が容易で生体への有害性が懸念され、かつ、浮遊させた時の経験則より、その浮遊係数が概ね中間値に相当する(標準的な浮遊特性を有する)、カーボンブラックを用いることが好適であるが、これに限定されるものではない。なお、浮遊係数の算出は、パーソナルコンピュータ等の演算処理部を用いて実行される。また、対照物質の濃度は、測定対象となる粒子状物質の測定以前に測定され、演算処理部に記憶させておいた対照物質の濃度を用いるとしても良いし、測定者により手動で入力された設定値であるとしても良い。   In the floating coefficient measurement step (S5), the concentration of the particulate matter to be measured calculated in the concentration measurement step (S4) and the concentration of the reference material calculated in the same step as the concentration measurement step (S4) described above. Based on the above, the floating coefficient of the particulate matter to be measured is calculated. Specifically, the floating coefficient is the quotient of the concentration of the particulate matter to be measured and the concentration of the reference reference material (“particulate matter concentration to be measured” ÷ “concentration of the reference material”) Is calculated by Here, the reference control substance is (1) easy to obtain, (2) from its particle size, it has a high possibility of reaching the lungs when aspirated (highly harmful to the living body), (3) It is preferable to select on the condition that it has substantially standard floating characteristics (it is appropriate that the floating coefficient is 1). In view of these conditions, for example, it is easy to obtain and is harmful to living organisms, and the empirical rule for floating is that the floating coefficient is roughly equivalent to an intermediate value (standard floating) However, the present invention is not limited to this. The calculation of the floating coefficient is performed using an arithmetic processing unit such as a personal computer. The concentration of the control substance is measured before the measurement of the particulate matter to be measured, and the control substance concentration stored in the calculation processing unit may be used, or manually input by the measurer. It may be a set value.

そして、他の粒子状物質についても浮遊係数を算出する場合には、上述した気体流発生工程(S1)、分粒工程(S2)、捕集工程(S3)、濃度測定工程(S4)及び浮遊係数測定工程(S5)と同じ条件下で、これらの工程を実行する。これにより、種々の粒子状物質について、共通した基準(対照物質)に対する浮遊係数を得ることが可能となるため、生体に対する有害性を互いに比較することが可能となる。   And when calculating a floating coefficient also about other particulate matter, the above-mentioned gas flow generation process (S1), sizing process (S2), collection process (S3), concentration measurement process (S4), and floating These steps are executed under the same conditions as in the coefficient measurement step (S5). Thereby, since it becomes possible to obtain the floating coefficient with respect to a common reference | standard (control substance) about various particulate matters, it becomes possible to compare the harmfulness with respect to a biological body mutually.

以上説明したとおり、本実施形態に係る浮遊特性測定方法は、測定対象とする粒子状物質が含まれる気体流を発生させる気体流発生工程(S1)と、気体流中から粒子状物質を捕集する捕集工程(S3)と、捕集工程により捕集された粒子状物質の濃度を測定する濃度測定工程(S4)と、濃度測定工程により測定された濃度を、基準となる対照物質の濃度と比較することで、粒子状物質の浮遊係数を測定する浮遊係数測定工程(S5)とを備えている。   As described above, the floating characteristic measurement method according to the present embodiment includes the gas flow generation step (S1) for generating a gas flow containing the particulate matter to be measured, and the collection of the particulate matter from the gas flow. The collecting step (S3), the concentration measuring step (S4) for measuring the concentration of the particulate matter collected by the collecting step, and the concentration measured by the concentration measuring step as the reference concentration of the reference material And a floating coefficient measuring step (S5) for measuring the floating coefficient of the particulate matter.

このような浮遊特性測定方法によれば、浮遊係数という定量的な値により、測定対象とした粒子状物質の浮遊特性を示すことが可能となる。そして、この浮遊係数は、粒子状物質の浮遊特性を定量的に示すものであることから、生体に対する有害性(浮遊して生体内に侵入するレベル)の判断基準とすること、すなわち、粒子状物質のリスク評価指標として用いることが可能である。これにより、例えば、様々な製品の原材料や実験材料等とするために粒子状物質を購入する購入者や使用者等に対し、浮遊係数という定量的な値により、該粒子状物質が生体に与える影響を認知させることが可能となる。   According to such a floating characteristic measurement method, it is possible to indicate the floating characteristic of the particulate matter to be measured by a quantitative value called a floating coefficient. And since this floating coefficient quantitatively shows the floating characteristics of the particulate matter, it should be used as a judgment standard for harmfulness to the living body (the level of floating and entering the living body). It can be used as a risk assessment index for substances. As a result, for example, to purchasers and users who purchase particulate materials to use as raw materials or experimental materials for various products, the particulate materials are given to the living body by a quantitative value called a floating coefficient. It is possible to recognize the impact.

また、本実施形態に係る浮遊特性測定方法は、上述したとおり、捕集工程(S3)の前に、気体流(エアロゾル)を旋回流とすることによって極微粒子を分粒する分粒工程(S2)を更に備えている。このような浮遊特性測定方法によれば、生体に害を及ぼす可能性が低い大きさの粒子を取り除き、生体に害を及ぼす可能性が高い大きさの粒子だけを採取して浮遊係数を算出することが可能となるため、より信頼度の高いリスク評価指標とすることが可能である。   In addition, as described above, the method for measuring floating characteristics according to the present embodiment is a sizing step (S2) for sizing ultrafine particles by using a gas flow (aerosol) as a swirl flow before the collection step (S3). ). According to such a method for measuring floating characteristics, particles having a size that is unlikely to cause harm to the living body are removed, and only particles having a size that is likely to cause harm to the living body are collected to calculate the floating coefficient. Therefore, it is possible to provide a more reliable risk evaluation index.

さらに、本実施形態に係る浮遊特性測定装置1は、上述したとおり、密閉容器(収容容器10)の内部に配置されたマグネット式攪拌翼22を、該密閉容器(収容容器10)の外部に配置されたマグネチックスターラ24の磁力によって回転させるよう構成されている。このような浮遊特性測定装置1によれば、攪拌翼とモータとを連結するシャフトが不要となり、収容容器に該シャフトを貫通させるための貫通孔を形成する必要がないため、収容容器10からの粒子状物質の漏出を防止することが可能となる。   Furthermore, as described above, the floating characteristic measuring apparatus 1 according to the present embodiment has the magnetic stirring blade 22 disposed inside the sealed container (container 10) disposed outside the sealed container (container 10). The magnetic stirrer 24 is rotated by the magnetic force. According to such a floating characteristic measuring apparatus 1, a shaft for connecting the stirring blade and the motor is not necessary, and it is not necessary to form a through hole for penetrating the shaft in the storage container. It becomes possible to prevent leakage of particulate matter.

以上、本発明の好適な実施形態について説明したが、本発明の技術的範囲は、上述した実施形態に記載の範囲には限定されない。上記各実施形態には、多様な変更又は改良を加えることが可能である。   The preferred embodiment of the present invention has been described above, but the technical scope of the present invention is not limited to the scope described in the above-described embodiment. Various modifications or improvements can be added to the above embodiments.

例えば、上述した実施形態に係る浮遊特性測定方法では、捕集工程(S3)の前に、旋回流によって極微粒子を分粒する分粒工程(S2)を実行するものとして説明したが、これに限定されず、分粒工程を行わずに捕集工程(S3)を実行しても良い。また、分粒工程(S2)は、粒子状物質に遠心力を作用させて分粒させる方式(サイクロン方式)に限定されず、例えば、気流中に配置した障害物に粒子状物質を衝突させることで分粒させる方式や、粒子状物質に静電気力や重力を作用させて分粒させる方式等、種々の分粒方式を採用することが可能である。この場合においては、採用した分粒方式に適合した種々の公知の分粒手段を浮遊特性測定装置1に採用することが可能である。   For example, in the floating characteristic measurement method according to the above-described embodiment, it has been described that the sizing process (S2) for sizing the ultrafine particles by the swirling flow is performed before the collecting process (S3). It is not limited, You may perform a collection process (S3), without performing a sizing process. In addition, the sizing step (S2) is not limited to a method (cyclonic method) in which the particulate material is subjected to centrifugal force to perform the sizing, and for example, the particulate material collides with an obstacle arranged in the airflow. It is possible to adopt various sizing methods such as a sizing method and a sizing method by applying electrostatic force or gravity to the particulate matter. In this case, it is possible to employ various known sizing means suitable for the sizing method employed in the floating characteristic measuring apparatus 1.

また、上述した実施形態に係る浮遊特性測定方法では、吸引手段30によって吸引した空気量と、捕集前後のフィルタの重量の変化(秤量値)とに基づいて、粒子状物質の濃度を算出するものとして説明したが、これに限定されず、例えば粒子状物質により生じた散乱光に基づいて濃度を計測する散乱光式濃度測定方法等の種々の方法を採用することが可能である。この場合においては、採用した濃度測定方法に適合した種々の公知の手段を浮遊特性測定装置1に採用するか、又は、当該手段を浮遊特性測定装置1に併設させることが可能である。   Moreover, in the floating characteristic measuring method according to the above-described embodiment, the concentration of the particulate matter is calculated based on the amount of air sucked by the suction unit 30 and the change (weight value) of the filter weight before and after the collection. Although described as a thing, it is not limited to this, For example, it is possible to employ | adopt various methods, such as a scattered light type | mold density | concentration measuring method which measures a density | concentration based on the scattered light produced by the particulate matter. In this case, it is possible to employ various known means adapted to the employed concentration measuring method in the floating characteristic measuring apparatus 1 or to attach the means to the floating characteristic measuring apparatus 1 together.

さらに、本実施形態に係る浮遊特性測定装置1は、上述した浮遊特性測定方法への使用以外にも、エアロゾルを発生させて粒子状物質を分粒・捕集する種々の装置として好適に用いることが可能である。例えば、本実施形態に係る浮遊特性測定装置1によれば、多種類の多層カーボンナノチューブ(MWCNT)等の微小物質を気中から分離して捕集可能であることから、これら微小物質の作業環境測定及び個人曝露測定等に用いることも可能である。   Further, the floating property measuring apparatus 1 according to the present embodiment is preferably used as various devices that generate aerosol and classify and collect particulate matter in addition to the above-described method for measuring the floating property. Is possible. For example, according to the floating property measuring apparatus 1 according to the present embodiment, since minute substances such as many types of multi-walled carbon nanotubes (MWCNT) can be separated and collected from the air, the working environment of these minute substances It can also be used for measurement and personal exposure measurement.

上記のような変形例が本発明の範囲に含まれることは、特許請求の範囲の記載から明らかである。   It is clear from the description of the scope of claims that the above modifications are included in the scope of the present invention.

以下、実施例により本発明をさらに説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these Examples.

[実施例1]
粉末状の三酸化アンチモン(Sb)原体試料Aと、この原体試料Aに表面処理を施した試料(B〜D)を用意し、各試料について、浮遊特性測定装置1を用いてエアロゾル生成・分粒・捕集し、対照物質(カーボンブラック)と比較して浮遊係数を算出した。また、原体試料Aとは異なる三酸化アンチモン(Sb)原体試料Eと、この原体試料Eに表面処理した試料(F〜H)を用意し、試料A〜Dと同様に、浮遊特性測定装置1を用いてエアゾル生成・分粒・捕集し、対照物質(カーボンブラック)と比較して浮遊係数を算出した。なお、表面処理の度合は、それぞれ試料B<C<D、試料F<G<Hである。測定手順及び条件は、以下のとおりである。なお、容器本体12には、直径25cm、高さ25cm、容積約10Lのステンレス容器を用いた。また、捕集手段40のフィルタには、37mmφのフッ素樹脂処理ガラス繊維フィルタT60A20(東京ダイレック株式会社製)を用いた。
[Example 1]
A powdery antimony trioxide (Sb 2 O 3 ) raw material sample A and samples (BD) obtained by subjecting the raw material sample A to surface treatment are prepared, and the floating characteristic measuring apparatus 1 is used for each sample. The aerosol was generated, sized and collected, and the buoyancy coefficient was calculated by comparison with the control substance (carbon black). In addition, an antimony trioxide (Sb 2 O 3 ) raw material sample E different from the raw material sample A and a sample (F to H) subjected to surface treatment on this raw material sample E are prepared. Then, aerosol generation, sizing, and collection were performed using the floating characteristic measuring apparatus 1, and the floating coefficient was calculated in comparison with the control substance (carbon black). The degree of surface treatment is sample B <C <D and sample F <G <H, respectively. The measurement procedure and conditions are as follows. The container body 12 was a stainless steel container having a diameter of 25 cm, a height of 25 cm, and a volume of about 10 L. Further, a 37 mmφ fluororesin-treated glass fiber filter T60A20 (manufactured by Tokyo Direc Co., Ltd.) was used for the filter of the collecting means 40.

まず、捕集手段40のフィルタの重量を秤量し、サンプリングホルダ42にセットした。次に、マグネチックスターラ24により1400rpmでマグネット式攪拌翼22(φ90mm、35Hmm)を回転させ、その後、収容容器10の内部に試料Aを0.5g投入した。次に、吸引手段30により、2.75mL/minの吸引流量で、30分間吸引した。サンプリングの終了後、サンプリングホルダ42からフィルタを取り出し、その重量をミクロ天秤で秤量した。そして、これら吸引流量、吸引時間(捕集時間)及び捕集前後のフィルタの重量の差(秤量値)に基づいて、「『捕集点の濃度[mg/m]』=『秤量値[mg]』÷(『捕集流量[L/min]』×『捕集時間[min]』÷1000)」の式により、捕集点(旋回流の中心部)における試料Aの濃度を算出した。最後に、算出した試料Aの濃度と、予め同様の手順により測定したカーボンブラック(JIS試験用粉体1の12種、粒子径分布0.03〜0.20μm、一般社団法人日本粉体工業技術協会製)の濃度とに基づいて、「『浮遊係数』=『試料(測定対象となる粒子状物質)の濃度』÷『対照物質の濃度』」の式により、試料Aの浮遊係数を算出した。また、同様の手順により、試料B〜Hについても、それぞれ浮遊係数を算出した。 First, the weight of the filter of the collecting means 40 was weighed and set in the sampling holder 42. Next, the magnetic stirring blade 22 (φ90 mm, 35 Hmm) was rotated at 1400 rpm by the magnetic stirrer 24, and then 0.5 g of the sample A was put into the storage container 10. Next, the suction means 30 sucked at a suction flow rate of 2.75 mL / min for 30 minutes. After completion of sampling, the filter was taken out from the sampling holder 42 and its weight was weighed with a microbalance. Based on the suction flow rate, the suction time (collection time), and the difference in weight of the filter before and after collection (weighing value), ““ collection point concentration [mg / m 3 ] ”=“ weighing value [ mg] ”÷ (“ collection flow rate [L / min] ”ד collection time [min] ”÷ 1000)” was used to calculate the concentration of sample A at the collection point (the center of the swirl flow). . Finally, the calculated concentration of sample A and carbon black (12 types of JIS test powder 1, particle size distribution 0.03 to 0.20 μm, measured by the same procedure in advance, Japan Powder Industry Technology) The float coefficient of sample A was calculated based on the following formula: “Floating coefficient” = “Concentration of sample (particulate matter to be measured)” ÷ “Control substance concentration” . In addition, the floating coefficient was calculated for each of Samples B to H by the same procedure.

以上の手順による試料A〜Dの測定結果をカーボンブラック(対照物質)の測定結果と共に図4及び図5に示し、試料A〜Dの測定結果を同じくカーボンブラック(対照物質)の測定結果と共に図6及び図7に示す。なお、試料の投入量[mg]は小数点以下第1位まで測定し、秤量値[mg]は小数点以下第3位まで測定し、浮遊係数は小数点以下第4位まで計算した。図4〜図7から明らかなとおり、試料の浮遊係数は、それぞれ、原体試料A:0.0779、試料B:0.0058、試料C:0.0007、試料D:0.0080、原体試料E:4.7320、試料F:0.8456、試料G:0.4916、試料H:0.2265であった。この結果から、試料A〜Dの中で、原体試料Aが最も浮遊し易い特性(浮遊特性)を有し、試料B〜Dがいずれも極めて低い浮遊特性を有することが明らかとなった。また、試料E〜Hの中では、原体試料Eが最も浮遊し易い特性(浮遊特性)を有し、続いて、試料F→試料G→試料Hの順で浮遊し易い特性を有することが明らかとなった。試料A〜Dの中で原体試料Aの浮遊係数が最も大きく、また、試料E〜Hの中で原体試料Eの浮遊係数が最も大きい理由としては、原体試料A及びEは表面処理が施されていない原体試料のため浮遊の度合いが大きく、その他B〜D及びF〜Hの試料では、表面処理が施されていることにより浮遊の度合いが抑えられたことが推測される。   The measurement results of the samples A to D according to the above procedure are shown in FIGS. 4 and 5 together with the measurement result of the carbon black (control substance), and the measurement results of the samples A to D are also shown together with the measurement result of the carbon black (control substance). 6 and FIG. The input amount [mg] of the sample was measured to the first decimal place, the weighed value [mg] was measured to the third decimal place, and the floating coefficient was calculated to the fourth decimal place. As apparent from FIGS. 4 to 7, the buoyancy coefficients of the samples are as follows: original sample A: 0.0779, sample B: 0.0058, sample C: 0.0007, sample D: 0.0080, original Sample E: 4.7320, Sample F: 0.8456, Sample G: 0.4916, Sample H: 0.2265. From this result, it became clear that the original sample A has the characteristic that it is most likely to float among the samples A to D (floating characteristics), and all of the samples B to D have extremely low floating characteristics. In addition, among samples E to H, the original sample E has the characteristic that it is most likely to float (floating characteristic), and subsequently has the characteristic that it is likely to float in the order of sample F → sample G → sample H. It became clear. Among the samples A to D, the original sample A has the largest floating coefficient, and the samples E to H have the largest floating coefficient of the original sample E. It is presumed that the degree of floatation is large because of the original sample that has not been subjected to the treatment, and the degree of suspension was suppressed by applying the surface treatment to the other samples B to D and F to H.

[実施例2]
粉末状のナノ酸化チタン(TiO)を7種類(試料A´〜G´)用意し、各試料について、浮遊特性測定装置1を用いてエアロゾル生成・分粒・捕集し、対照物質(カーボンブラック)と比較して浮遊係数を算出した。測定手順及び条件は、容器本体12としてガラス製容器(容積10L)を用いた点及び収容容器10の内部への試料の投入量が0.1gである点を除き、実施例1と同様であるため、その説明を省略する。
[Example 2]
Seven kinds of powdered nano titanium oxide (TiO 2 ) (samples A ′ to G ′) are prepared, and aerosol generation, sizing and collection are performed for each sample using the floating characteristic measuring apparatus 1, and a control substance (carbon The floating coefficient was calculated in comparison with (Black). The measurement procedure and conditions are the same as in Example 1 except that a glass container (volume: 10 L) is used as the container body 12 and that the amount of sample introduced into the storage container 10 is 0.1 g. Therefore, the description is omitted.

測定の結果、試料の浮遊係数は、それぞれ、試料A´:0.04、試料B´:2.01、試料C´:2.68、試料D´:4.26、試料E´:14.08、試料F´:21.94、試料G´:61.61であった。なお、浮遊係数は、小数点以下第2位まで計算した。この結果から、試料G´が最も浮遊し易い特性(浮遊特性)を有し、続いて、試料F´→試料E´→試料D´→試料C´→試料B´→試料A´の順で浮遊し易い特性を有することが明らかとなった。試料G´の浮遊係数が大きい理由としては、SEM観察の結果から、一次粒子間に隙間があるためであると推測される。また、試料A´の浮遊係数が小さい理由としては、SEM観察の結果から、二次粒子が密であるためであると推測される。   As a result of the measurement, the floating coefficients of the samples are as follows: Sample A ′: 0.04, Sample B ′: 2.01, Sample C ′: 2.68, Sample D ′: 4.26, Sample E ′: 14. 08, sample F ′: 21.94, and sample G ′: 61.61. The floating coefficient was calculated to the second decimal place. From this result, the sample G ′ has the characteristic that it is most likely to float (floating property), and then in the order of the sample F ′ → the sample E ′ → the sample D ′ → the sample C ′ → the sample B ′ → the sample A ′. It became clear that it has the characteristic that it is easy to float. The reason why the floating coefficient of the sample G ′ is large is presumed that there is a gap between the primary particles from the result of SEM observation. The reason why the floating coefficient of the sample A ′ is small is presumed that the secondary particles are dense from the result of SEM observation.

1 浮遊特性測定装置、10 収容容器、20 旋回流生成手段、22 マグネット式攪拌翼、24 マグネチックスターラ、30 吸引手段、40 捕集手段   DESCRIPTION OF SYMBOLS 1 Floating characteristic measuring apparatus, 10 container, 20 swirl flow production | generation means, 22 magnet type stirring blade, 24 magnetic stirrer, 30 suction means, 40 collection means

Claims (5)

測定対象とする粒子状物質が含まれる気体流を発生させる気体流発生工程と、
前記気体流中から前記粒子状物質を捕集する捕集工程と、
前記捕集工程により捕集された前記粒子状物質の濃度を測定する濃度測定工程と、
前記濃度測定工程により測定された濃度を、基準となる対照物質の濃度と比較することで、前記粒子状物質の浮遊係数を測定する浮遊係数測定工程と
を備えることを特徴とする粒子状物質の浮遊特性測定方法。
A gas flow generating step for generating a gas flow containing particulate matter to be measured;
A collection step of collecting the particulate matter from the gas stream;
A concentration measuring step for measuring the concentration of the particulate matter collected by the collecting step;
A suspension coefficient measuring step of measuring a suspension coefficient of the particulate matter by comparing the concentration measured by the concentration measurement step with a concentration of a reference control substance serving as a reference. Method for measuring floating characteristics.
前記捕集工程の前に、前記気体流を旋回流とすることによって極微粒子を分粒する分粒工程を更に備え、
前記捕集工程は、前記分粒工程により分粒された極微粒子を前記粒子状物質として捕集する工程である
ことを特徴とする請求項1に記載の粒子状物質の浮遊特性測定方法。
Before the collection step, further comprising a sizing step of sizing ultrafine particles by turning the gas flow into a swirling flow,
The method for measuring the floating characteristics of a particulate matter according to claim 1, wherein the collecting step is a step of collecting the ultrafine particles sized by the sizing step as the particulate matter.
請求項1又は2に記載の粒子状物質の浮遊特性測定方法に用いられる浮遊特性測定装置であって、
前記粒子状物質を収容可能な収容容器と、
前記収容容器内に旋回流を生成可能な旋回流生成手段と、
前記収容容器の上部に設けられ、前記旋回流の中心部の気体及び該気体中の前記粒子状物質を吸引可能な吸引手段と、
前記吸引手段により吸引された前記粒子状物質を捕集可能な捕集手段と
を備えることを特徴とする浮遊特性測定装置。
A floating characteristic measuring apparatus used in the method for measuring the floating characteristic of particulate matter according to claim 1 or 2,
A storage container capable of storing the particulate matter;
A swirl flow generating means capable of generating a swirl flow in the container;
A suction means provided at an upper part of the container, and capable of sucking the gas at the center of the swirl flow and the particulate matter in the gas;
And a collection means capable of collecting the particulate matter sucked by the suction means.
前記収容容器は、その内部を外部から視認可能に構成されている
ことを特徴とする請求項3に記載の浮遊特性測定装置。
The floating characteristics measuring device according to claim 3, wherein the container is configured so that the inside thereof can be visually recognized from the outside.
前記旋回流生成手段は、
前記収容容器の内部に配置されたマグネット式攪拌翼と、
前記収容容器の外部に配置され、磁力により前記マグネット式攪拌翼を回転させることが可能なマグネチックスターラと
を備えることを特徴とする請求項3又は4に記載の浮遊特性測定装置。
The swirl flow generating means includes
A magnetic stirring blade disposed inside the storage container;
5. The floating characteristic measuring device according to claim 3, further comprising: a magnetic stirrer arranged outside the storage container and capable of rotating the magnetic stirring blade by a magnetic force.
JP2016255422A 2016-12-28 2016-12-28 Method and apparatus for measuring suspended characteristics of particulate matter Active JP6362669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016255422A JP6362669B2 (en) 2016-12-28 2016-12-28 Method and apparatus for measuring suspended characteristics of particulate matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016255422A JP6362669B2 (en) 2016-12-28 2016-12-28 Method and apparatus for measuring suspended characteristics of particulate matter

Publications (2)

Publication Number Publication Date
JP2018105820A true JP2018105820A (en) 2018-07-05
JP6362669B2 JP6362669B2 (en) 2018-07-25

Family

ID=62787819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016255422A Active JP6362669B2 (en) 2016-12-28 2016-12-28 Method and apparatus for measuring suspended characteristics of particulate matter

Country Status (1)

Country Link
JP (1) JP6362669B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200019526A (en) * 2018-08-14 2020-02-24 영남대학교 산학협력단 System and method for outputting detecting results of bioaerosol and particulate matter
WO2020054940A1 (en) * 2018-09-12 2020-03-19 주식회사 코젠바이오텍 Apparatus and method for collecting airborne microorganism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198856A (en) * 1993-12-28 1995-08-01 Mitsubishi Nuclear Fuel Co Ltd Method and apparatus for measuring concentration of particular radioactive substance in the air
US5882530A (en) * 1997-04-30 1999-03-16 The University Of Akron Crossflow filter cyclone apparatus
JP2004144664A (en) * 2002-10-25 2004-05-20 Horiba Ltd Suspended particulate matter concentration measuring instrument
JP2009008644A (en) * 2007-05-30 2009-01-15 Jgc Corp Method for evaluating dispersibility of powder, method for evaluating concentration of airborne powder, and method for designing containment facility of powder using the same
US20110139710A1 (en) * 2008-06-19 2011-06-16 Sino-Gas & Oil Technology Co., Ltd Cyclone Separator
JP2014224758A (en) * 2013-05-16 2014-12-04 清水建設株式会社 Method for measuring mass concentration of particulate matter in air

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198856A (en) * 1993-12-28 1995-08-01 Mitsubishi Nuclear Fuel Co Ltd Method and apparatus for measuring concentration of particular radioactive substance in the air
US5882530A (en) * 1997-04-30 1999-03-16 The University Of Akron Crossflow filter cyclone apparatus
JP2004144664A (en) * 2002-10-25 2004-05-20 Horiba Ltd Suspended particulate matter concentration measuring instrument
JP2009008644A (en) * 2007-05-30 2009-01-15 Jgc Corp Method for evaluating dispersibility of powder, method for evaluating concentration of airborne powder, and method for designing containment facility of powder using the same
US20110139710A1 (en) * 2008-06-19 2011-06-16 Sino-Gas & Oil Technology Co., Ltd Cyclone Separator
JP2014224758A (en) * 2013-05-16 2014-12-04 清水建設株式会社 Method for measuring mass concentration of particulate matter in air

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200019526A (en) * 2018-08-14 2020-02-24 영남대학교 산학협력단 System and method for outputting detecting results of bioaerosol and particulate matter
KR102134747B1 (en) * 2018-08-14 2020-07-16 영남대학교 산학협력단 System and method for outputting detecting results of bioaerosol and particulate matter
WO2020054940A1 (en) * 2018-09-12 2020-03-19 주식회사 코젠바이오텍 Apparatus and method for collecting airborne microorganism

Also Published As

Publication number Publication date
JP6362669B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
Babick et al. How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work
Zimmer et al. Investigation of the aerosols produced by a high-speed, hand-held grinder using various substrates
Hackley et al. Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering
Wang Theoretical study of cyclone design
O'Shaughnessy Occupational health risk to nanoparticulate exposure
JP6362669B2 (en) Method and apparatus for measuring suspended characteristics of particulate matter
Brown et al. Toward advancing nano-object count metrology: a best practice framework
Watson et al. Buoyant nanoparticles: implications for nano‐biointeractions in cellular studies
Kasai et al. Development of a new multi-walled carbon nanotube (MWCNT) aerosol generation and exposure system and confirmation of suitability for conducting a single-exposure inhalation study of MWCNT in rats
Setiono et al. In-plane and out-of-plane MEMS piezoresistive cantilever sensors for nanoparticle mass detection
Methner Effectiveness of a custom-fitted flange and local exhaust ventilation (LEV) system in controlling the release of nanoscale metal oxide particulates during reactor cleanout operations
O’Shaughnessy et al. A novel device for measuring respirable dustiness using low-mass powder samples
Jensen et al. Nanoparticle exposure and workplace measurements during processes related to 3D printing of a metal object
Adhikari et al. Field evaluation of N95 filtering facepiece respirators on construction jobsites for protection against airborne ultrafine particles
Duquenne et al. Performances of the BC-112 NIOSH cyclone for the measurement of endotoxins in bioaerosols: A study in laboratory conditions
Furuuchi et al. Development of a personal sampler for evaluating exposure to ultrafine particles
Bertke et al. Size-selective electrostatic sampling and removal of nanoparticles on silicon cantilever sensors for air-quality monitoring
Chakravarty et al. Towards a theoretical understanding of dustiness
L’Orange et al. A simple and disposable sampler for inhalable aerosol
Dolez et al. Overview of workplace exposure to nanomaterials
Okuda et al. Preliminary study on the measurement of the electrostatic charging state of PM2. 5 collected on filter media
Mark Occupational exposure to nanoparticles and nanotubes
Jakubiak et al. Determination of the concentration of ultrafine aerosol using an ionization sensor
Witschger Monitoring nanoaerosols and occupational exposure
Hildebrandt et al. Implementing Silica Nanoparticles in the Study of the Airborne Transmission of SARS-CoV-2

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180626

R150 Certificate of patent or registration of utility model

Ref document number: 6362669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250