JPH07198766A - Calibrating method for circuit constant measuring instrument - Google Patents

Calibrating method for circuit constant measuring instrument

Info

Publication number
JPH07198766A
JPH07198766A JP35221593A JP35221593A JPH07198766A JP H07198766 A JPH07198766 A JP H07198766A JP 35221593 A JP35221593 A JP 35221593A JP 35221593 A JP35221593 A JP 35221593A JP H07198766 A JPH07198766 A JP H07198766A
Authority
JP
Japan
Prior art keywords
impedance
standard
phase angle
phase
load1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35221593A
Other languages
Japanese (ja)
Other versions
JP3350586B2 (en
Inventor
Takanori Yonekura
隆典 米倉
Hideki Wakamatsu
秀樹 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Japan Inc
Original Assignee
Yokogawa Hewlett Packard Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hewlett Packard Ltd filed Critical Yokogawa Hewlett Packard Ltd
Priority to JP35221593A priority Critical patent/JP3350586B2/en
Publication of JPH07198766A publication Critical patent/JPH07198766A/en
Application granted granted Critical
Publication of JP3350586B2 publication Critical patent/JP3350586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To improve the measurement accuracy of phase angles without deteriorating the measurement accuracy of absolute values of impedances by using an air capacitor as a phase standard and making up the uncertainty in phase angle of a limited-impedance standard with the phase standard. CONSTITUTION:A limited-impedance standard and phase angle standard are respectively represented as LOAD1 and LOAD2. The absolute value ZIs1 of the impedance of the LOAD1 is evaluated, but the phase angle thetaIS of the LOAD1 is unknown. In addition, the absolute value ZIs2 of the impedance of the LOAD2 is unknown, but the phase angle of the thetaIs2 is evaluated. Correction factors A and B must become the same even when either one of the LOAD1 and LOAD2 is used. From such a condition, the unknown phase angle thetaIs1 or absolute value ¦ZIs2¦ is found based on a prescribed formula. Then the correction factors A and B are obtained by substituting a complex impedance found from the absolute value of the impedance of the LOAD1 or the phase angle of the LOAD2 for the ZIs of the formula.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は一般に回路素子および回路
網を測定する装置に関し、特に高いQの回路素子あるい
は回路網の特性を測定する測定装置に関する。
FIELD OF THE INVENTION The present invention relates generally to apparatus for measuring circuit elements and networks, and more particularly to a measuring apparatus for measuring characteristics of high Q circuit elements or networks.

【0002】[0002]

【従来技術と問題点】回路素子および回路網測定装置の
誤差補正には、完全な補正が可能である3点校正方法が
用いられている。これは、補正式に含まれる3つの補正
係数の値を、3つの異なるインピーダンスの標準を用い
た校正により求める方法である。従来技術の問題点の指
摘の前に、補正式の説明をする。図3は回路素子および
回路網測定装置を一般化したモデル図である。図におい
て、信号源31、被測定素子32、測定器33と34は
仲介回路網35に接続されている。インピーダンスは仲
介回路網内点の2測定値(電圧でも電流でも良い、ただ
し位相をもった複素数)の比のみの関数(双一次変換)
によって与えられる。即ち、被測定素子32のインピー
ダンスの真値をZx、測定器33と34の指示値の比即
ちなまの測定値をZmとすれば、ZxとZmの関係は次の
ような双一次変換式になる。
2. Description of the Related Art A three-point calibration method, which allows complete correction, is used for error correction of circuit elements and network measuring devices. This is a method of obtaining the values of the three correction coefficients included in the correction equation by calibration using three different impedance standards. Before pointing out the problems of the prior art, the correction formula will be described. FIG. 3 is a generalized model diagram of a circuit element and a circuit network measuring device. In the figure, the signal source 31, the device under test 32, and the measuring devices 33 and 34 are connected to an intermediary network 35. Impedance is a function of only the ratio of two measurement values (voltage or current, but a complex number with a phase) at the points inside the intermediary network (bilinear transformation)
Given by. That is, if the true value of the impedance of the device under test 32 is Zx and the ratio of the indicated values of the measuring devices 33 and 34, that is, the measured value is Zm, the relationship between Zx and Zm is expressed by the following bilinear transformation equation. become.

【0003】[0003]

【数1】 [Equation 1]

【0004】A、B、Cは仲介回路網によって定まる固
有の係数で回路網が線形であれば変化しない。(1)式
はなまの測定値から真値をもとめる補正式であり、係数
A、B、Cはその補正係数である。補正係数は3つの複
素数であるから、3つの異なるインピーダンスを標準に
して校正し、A、B、Cを求めることが出来る。即ちイ
ンピーダンスの3つの標準の真の値をそれぞれ(1)式
のZxに、そのなまの測定値をZmに代入して連立方程式
を作り、A、B、Cを未知数として解けばよい。この様
に3つのインピーダンスの標準の値から補正係数を得る
ので、3つのインピーダンスの標準は互いに大きく異な
っていることが望ましい。従って通常、インピーダンス
の極限値である短絡と、アドミッタンスの極限値である
開放と、インピーダンスの有限値の標準を用いている。
インピーダンスの有限値の標準を以後有限インピーダン
ス標準器と云うことにする。これは高周波においては通
常50Ωの抵抗器が用いられる。ここで、3つのインピ
ーダンスの標準器の開放をOPEN、短絡をSHOR
T、有限インピーダンス標準器をLOADと記すること
にする。前述のように、3つの標準の真の値となまの測
定値を(1)式に代入して作った連立方程式を解いて、
3点校正方法の補正係数A、B、Cを求めると次のよう
になる。
A, B, and C are unique coefficients determined by the intermediary network and do not change if the network is linear. The equation (1) is a correction equation for obtaining the true value from the raw measurement value, and the coefficients A, B and C are the correction coefficients. Since the correction coefficient is three complex numbers, A, B, and C can be obtained by calibrating with three different impedances as standards. That is, the three standard true values of impedance are respectively substituted into Zx of the equation (1) and the measured value thereof is substituted into Zm to make simultaneous equations, and A, B and C can be solved as unknowns. Since the correction coefficient is obtained from the standard values of the three impedances as described above, it is desirable that the three standard impedances be significantly different from each other. Therefore, normally, a short circuit, which is the limit value of impedance, an open circuit, which is the limit value of admittance, and a finite value standard of impedance are used.
The standard of finite impedance is hereinafter referred to as a finite impedance standard. At high frequencies, a resistor of 50Ω is usually used. Here, the open of the standard device of three impedance is OPEN, the short circuit is SHOR
T, a finite impedance standard is referred to as LOAD. As mentioned above, solve the simultaneous equations created by substituting the three standard true values and raw measured values into the equation (1),
The correction coefficients A, B, and C of the three-point calibration method are calculated as follows.

【0005】[0005]

【数2】 [Equation 2]

【0006】この様にして得た補正係数を(1)式に代
入して補正式が完成する。これらの短絡、開放、有限イ
ンピーダンスの標準のそれぞれについて寄生成分を含め
た複素値Yos、Zss、Zlsの確度が、回路素子および回
路網測定装置の測定確度から要求される値より良けれ
ば、(1)(2)式により要求確度を満たす補正が可能
である。3つの標準器の残留および寄生成分が無視でき
る低周波においては、短絡のインピーダンスを0、開放
のアドミッタンスを0、有限インピーダンス標準器を純
抵抗値とみなしても実用上問題はなく、3点校正方法は
有効に活用されている。
The correction coefficient thus obtained is substituted into the equation (1) to complete the correction equation. If the accuracy of the complex values Yos, Zss, and Zls including the parasitic components for each of these short-circuit, open-circuit, and finite impedance standards is better than the value required from the measurement accuracy of the circuit element and the network measurement device, (1 ) It is possible to make a correction that satisfies the required accuracy by the equation (2). At low frequencies where residual and parasitic components of the three standards can be ignored, there is no practical problem even if the short-circuit impedance is 0, the open admittance is 0, and the finite impedance standard is a pure resistance value. The method is being used effectively.

【0007】従来技術の問題点は高周波あるいは高精度
の測定、特に高周波帯の低損失部品のインピーダンス測
定の分野において、高確度測定を実現するに十分な精度
の標準器の値付けが出来ないことである。被測定素子は
有限のインピーダンスであるから測定値の位相の正確さ
は校正に用いる有限インピーダンス標準器の位相の正確
さに依存する。上述のように、測定周波数の全範囲にわ
たって有限インピーダンス標準器の位相を0即ち純抵抗
として校正した場合、標準器の位相の真の周波数特性と
全周波数にわたって位相を0と見なすことの差が校正後
の位相誤差として残つてしまう。例えば校正後の位相誤
差が1000μradであるとすると、Q≒100の被測
定素子のQ測定誤差は10%となる。
The problem with the prior art is that, in the field of high frequency or high precision measurement, particularly in the field of impedance measurement of low loss components in the high frequency band, it is not possible to set the price of a standard device with sufficient precision to realize high accuracy measurement. Is. Since the element to be measured has a finite impedance, the accuracy of the phase of the measured value depends on the accuracy of the phase of the finite impedance standard used for calibration. As described above, when the phase of the finite impedance standard is calibrated as 0, that is, pure resistance over the entire range of the measurement frequency, the difference between the true frequency characteristic of the phase of the standard and the assumption that the phase is 0 over all frequencies is calibrated. It remains as a later phase error. For example, if the phase error after calibration is 1000 μrad, the Q measurement error of the device under test with Q≈100 is 10%.

【0008】ここで、高周波域でよく用いられている同
軸50Ω型の有限インピーダンス標準器の構成を図2に
示す。平板状の50Ωの抵抗素子22が外部導体23内
に納められ、抵抗素子の外側端子は外部導体の内壁に接
続されている。これがコネクタ部21からなる同軸50
Ω線路に終端するように接続されている。スリーブ24
は外部導体23を覆う保護カバーである。インピーダン
スの位相特性に影響する要因は抵抗素子22自体の残留
リアクタンス成分の他に、コネクタ部21の同軸線路部
分の寸法の誤差と表皮効果による特性インピーダンスの
変動、抵抗素子22とコネクタ部21の同軸線路との接
続部分の不連続性などがある。単純に、表皮効果がコネ
クタ部の同軸のインダクタンスに周波数特性をもたらす
場合のみを見ても、約1GHzの周波数域において10
00μrad程度の位相の変動が推定できる。さらに上記
の他の要因を考慮すると位相角の周波数特性は非常に複
雑で、見積そのものが困難である。また量産した場合、
位相のばらつきが大きく、ばらつきを管理することも困
難である。このように、位相特性の複雑な有限インピー
ダンス標準器の位相角を0とみなして校正する場合に
は、誤差要因が表皮効果のみとしても、1GHzでQ≒
100の被測定素子のQ測定をすると、その誤差は10
%にもなってしまう。それ故、他の方法として有限イン
ピーダンス標準器の位相の周波数特性を正しく値付けし
て校正に用いることも考えられる。しかし前述したよう
に複雑な周波数特性を示す有限インピーダンス標準器の
位相角を測定周波数の全範囲にわたって正しく値付けす
る方法の開発は容易ではない。もしそのような方法が開
発されたとしても時間や環境の変化に対する安定性を保
証することも容易ではない。従って、1GHzといった
高周波でQ≒100を10%以下の精度でQ測定するこ
とは実用上不可能である。
FIG. 2 shows the configuration of a coaxial 50Ω type finite impedance standard device which is often used in a high frequency range. A plate-shaped 50Ω resistance element 22 is housed in the outer conductor 23, and the outer terminal of the resistance element is connected to the inner wall of the outer conductor. This is the coaxial 50 consisting of the connector section 21.
It is connected so as to terminate at the Ω line. Sleeve 24
Is a protective cover for covering the outer conductor 23. Factors that affect the phase characteristics of the impedance include the residual reactance component of the resistance element 22 itself, the dimensional error of the coaxial line portion of the connector section 21 and the variation of the characteristic impedance due to the skin effect, and the coaxial relationship between the resistance element 22 and the connector section 21. There are discontinuities in the connection with the track. Simply looking at the case where the skin effect brings the frequency characteristic to the coaxial inductance of the connector part, in the frequency range of about 1 GHz, 10
A phase variation of about 00 μrad can be estimated. Furthermore, considering the other factors mentioned above, the frequency characteristic of the phase angle is very complicated and the estimation itself is difficult. When mass-produced,
The phase variation is large and it is difficult to manage the variation. In this way, when calibrating by considering the phase angle of a finite impedance standard device having a complicated phase characteristic as 0, Q ≈ 1 GHz even if the error factor is only the skin effect.
When the Q measurement of 100 DUTs is made, the error is 10
It also becomes%. Therefore, as another method, it is considered that the frequency characteristic of the phase of the finite impedance standard device is correctly valued and used for calibration. However, as described above, it is not easy to develop a method for correctly setting the phase angle of a finite impedance standard device having a complicated frequency characteristic over the entire measurement frequency range. Even if such a method is developed, it is not easy to guarantee stability against changes in time and environment. Therefore, it is practically impossible to Q-measure Q≈100 at a high frequency of 1 GHz with an accuracy of 10% or less.

【0009】[0009]

【発明の目的】本発明の目的は、主として高周波帯で高
いQの部品のインピーダンス測定の分野において、従来
の3点校正法に比べ、インピーダンスの絶対値の測定確
度を損なうことなく位相角の測定確度を向上させる簡便
な校正方法と新たに加える標準器を提示することであ
る。
The object of the present invention is to measure the phase angle without impairing the accuracy of measuring the absolute value of the impedance, as compared with the conventional three-point calibration method, mainly in the field of impedance measurement of high Q components in the high frequency band. The purpose is to present a simple calibration method that improves accuracy and a newly added standard.

【0010】[0010]

【発明の概要】本発明の一実施例は、従来の3点校正標
準器に加えて、損失の非常に小さい、即ちインピーダン
スの位相角が−π/2に非常に近い標準として空気キャ
パシタを位相標準器とし、有限インピーダンス標準器の
位相角の不確かさを、位相標準器で補い、校正する方法
である。この方法では、被測定素子のインピーダンスの
絶対値の測定誤差は、従来の3点校正と同じく有限イン
ピーダンス標準器の絶対値の不確かさでほぼ決まるが、
位相誤差は新たに追加した位相標準器の位相角の不確か
さで決まり、かつ位相標準器の位相角の不確かさは、有
限インピーダンス標準器の位相角の不確かさよりも小さ
いので、結果として従来の3点校正よりも位相測定の誤
差が低減する。
SUMMARY OF THE INVENTION In addition to the conventional three-point calibration standard, one embodiment of the present invention uses an air capacitor as a standard with very low loss, ie, a phase angle of impedance very close to -π / 2. This is a method in which a standard device is used and the uncertainty of the phase angle of the finite impedance standard device is compensated by the phase standard device. In this method, the measurement error of the absolute value of the impedance of the device under test is almost determined by the uncertainty of the absolute value of the finite impedance standard, as in the conventional three-point calibration.
The phase error is determined by the uncertainty of the phase angle of the newly added phase standard, and the uncertainty of the phase angle of the phase standard is smaller than the uncertainty of the phase angle of the finite impedance standard. Errors in phase measurement are reduced compared to point calibration.

【0011】[0011]

【発明の実施例】本発明は、そのインピーダンスの絶対
値は未知であるが位相角が要求される不確かさ以下で値
付けされている位相角標準器を用意し、有限インピーダ
ンス標準器の位相角の不確かさを補い、回路素子および
回路網測定装置等を校正する。ここで有限インピーダン
ス標準器をLOAD1、位相角標準器をLOAD2と表
す。LOAD1のインピーダンスの絶対値|Zls1|は
値付けされているが位相角θls1は未知である。またL
OAD2のインピーダンスの絶対値|Zls2|は未知で
あるが、位相角θls2は値付けされている。LOAD1
とLOAD2の2つのLOADのどちらを用いても補正
係数A、B、Cは同一にならなければならない。この条
件から(2)式のいずれか1つを使って未知数θls1ま
たは|Zls2|を求める。そして(2)式のZlsに、L
OAD1またはLOAD2のインピーダンスの絶対値と
位相角から求められる複素インピーダンスを代入して、
最終的に補正係数が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a phase angle standard whose absolute value of impedance is unknown but whose phase angle is less than or equal to the required uncertainty. Compensate for the uncertainty of the above and calibrate the circuit element and the network measuring device. Here, the finite impedance standard is represented as LOAD1 and the phase angle standard is represented as LOAD2. The absolute value of impedance LOAD1 | Zls1 | is given, but the phase angle θls1 is unknown. Also L
The absolute value | Zls2 | of the impedance of OAD2 is unknown, but the phase angle θls2 is valued. LOAD1
The correction factors A, B, and C must be the same regardless of which of the two LOADs, LOAD and LOAD2, is used. From this condition, the unknown number θls1 or | Zls2 | is obtained using any one of the expressions (2). Then, in Zls of equation (2), L
Substituting the absolute value of the impedance of OAD1 or LOAD2 and the complex impedance obtained from the phase angle,
Finally, the correction coefficient is obtained.

【0012】この方法は厳密に回路網の補正係数を算出
する厳密解であるが、繰り返し法による近似解で置き換
えることも可能である。次に繰り返し法の手順を示す。
LOAD1の未知の位相角θls1を、例えばθls1=0と
おき、仮のZls1の値を(2)式に代入して、仮の補正
係数を求める。次にこの補正係数を用いて(2)式に従
いLOAD2の補正値Zls2’を求める。次にZls2’の
位相角θls2’とLOAD2の値付けされている位相角
θls2との差
Although this method is an exact solution for calculating the correction coefficient of the circuit network exactly, it can be replaced with an approximate solution by the iterative method. Next, the procedure of the iterative method is shown.
The unknown phase angle θls1 of LOAD1 is set to, for example, θls1 = 0, and the temporary value of Zls1 is substituted into the equation (2) to obtain the temporary correction coefficient. Next, using this correction coefficient, the correction value Zls2 'of LOAD2 is obtained according to the equation (2). Next, the difference between the phase angle θls2 'of Zls2' and the valued phase angle θls2 of LOAD2

【0013】[0013]

【数3】 [Equation 3]

【0014】だけLOAD1の位相角を補正する。即ち
LOAD1の位相角を新たに
Only the phase angle of LOAD1 is corrected. That is, the phase angle of LOAD1 is newly added.

【0015】[0015]

【数4】 [Equation 4]

【0016】と修正する。次にこの新しい位相角を用い
てLOAD1の値を
It is modified as follows. Next, using this new phase angle, change the value of LOAD1

【0017】[0017]

【数5】 [Equation 5]

【0018】とし、この値を再び(2)式に代入して、
補正係数を求める。この手順を繰り返すことにより補正
係数は厳密解に収束する。この繰り返し法は、実用上1
回で十分である。
Substituting this value into equation (2) again,
Calculate the correction coefficient. The correction coefficient converges to an exact solution by repeating this procedure. This iterative method is practically 1
One time is enough.

【0019】(2)式はOPENとSHORTの残留お
よび寄生成分を無視していない式であるが、理想的なO
PENとSHORTの場合は
Equation (2) is an equation in which residual and parasitic components of OPEN and SHORT are not ignored, but ideal O
In case of PEN and SHORT

【0020】[0020]

【数6】 [Equation 6]

【0021】である。従って(2)式は次のように簡単
になる。
[0021] Therefore, the equation (2) is simplified as follows.

【0022】[0022]

【数7】 [Equation 7]

【0023】OPENとSHORTが理想的な場合は
(7)式に示すようにLOADの値に依存するのは係数
Aのみであるので、厳密解を適用してもθls1およびZl
s2は簡単に求められる。即ち
When OPEN and SHORT are ideal, only the coefficient A depends on the value of LOAD as shown in the equation (7). Therefore, even if the exact solution is applied, θls1 and Zl
s2 is easily found. I.e.

【0024】[0024]

【数8】 [Equation 8]

【0025】このθls1と既知の|Zls1|から、または
|Zls2|と既知のθls2からZlsを求め、(7)式のZ
lsに代入して、補正係数が得られる。
From this θls1 and the known | Zls1 |, or from | Zls2 | and the known θls2, Zls is obtained, and Z in the equation (7) is obtained.
Substituting for ls, the correction coefficient is obtained.

【0026】次に、位相標準器の実施例を述べる。校正
において位相標準器に要求されることは、位相即ち損失
係数Dの不確さが小さいことであって、静電容量の確度
や安定性は必要ない。Dの不確かさを小さく保つには、
D自体を小さくすればよい。Dを小さくするには、キャ
パシタの形状を小さくすることである。例えば同軸構造
のキャパシタとして、全長を10mm弱にすることによ
り、1GHzでDを500E−6以下にすることが出来
る。これを実現する同軸構造のキャパシタの一実施例を
図1に示す。図は同軸の中心軸を通る縦割の断面図で、
本発明に関係しない細部は省略してある。図の11は同
軸の内部導体、12が外部導体で、これらはスリーブ1
3内に納められている。図で、内部導体11の左側の細
い部分は特性インピーダンス50Ωを形成する同軸線路
部で、測定器側の50Ωコネクタに接続される。11が
太くなっている部分と12とが同心円筒の空気キャパシ
タを構成している。この内部導体11に絶縁体15が圧
入されており、この絶縁体15が内部導体11を保持し
ている。絶縁体自身は押しネジ18で外部導体12に固
定されている。外部導体12が静電容量を形成している
部分の右側の凹み14は内部導体11の右端面に電界が
集中しないように設けられている。16は、本標準器を
測定器に着脱のためスリーブ13を回転させる時に、外
部導体12を保持固定するためのつまみである。つまみ
16は押しネジ17で外部導体12に固定されている。
Next, an embodiment of the phase standard will be described. What is required of the phase standard in calibration is that the uncertainty of the phase, that is, the loss coefficient D is small, and the accuracy and stability of the capacitance are not required. To keep the uncertainty of D small,
It is sufficient to reduce D itself. To reduce D, it is necessary to reduce the shape of the capacitor. For example, as a capacitor having a coaxial structure, by making the total length a little less than 10 mm, D can be set to 500E-6 or less at 1 GHz. FIG. 1 shows an embodiment of a capacitor having a coaxial structure that realizes this. The figure is a vertical sectional view passing through the coaxial center axis.
Details not relevant to the present invention have been omitted. In the figure, 11 is a coaxial inner conductor, 12 is an outer conductor, and these are sleeve 1
It is stored within 3. In the figure, a thin portion on the left side of the inner conductor 11 is a coaxial line portion that forms a characteristic impedance of 50Ω and is connected to a 50Ω connector on the measuring instrument side. The thickened portion 11 and 12 constitute a concentric cylinder air capacitor. The insulator 15 is press-fitted into the inner conductor 11, and the insulator 15 holds the inner conductor 11. The insulator itself is fixed to the outer conductor 12 with a push screw 18. The recess 14 on the right side of the portion where the outer conductor 12 forms the electrostatic capacitance is provided so that the electric field is not concentrated on the right end surface of the inner conductor 11. Reference numeral 16 is a knob for holding and fixing the outer conductor 12 when the sleeve 13 is rotated to attach / detach the standard device to / from the measuring device. The knob 16 is fixed to the outer conductor 12 with a push screw 17.

【0027】標準器の損失係数Dを小さくするために、
内部導体を保持する絶縁体15の形状を小さく、且つ損
失の小さい材質を用いることは当然のことである。静電
容量は内部導体外径と外部導体の内径の比と内部導体の
長さで決まるが、本標準器では容量値の精度は不問であ
る。この構造で前述の様に、1GHzにおいて、D<5
00E−6が実現できる。これを用いて本発明の校正法
を適用すれば、1GHzにてQ≒100の被測定素子の
Qを5%以下の不確かさで測定出来る。前述したように
50Ωの位相特性を見積るにはいくつもの困難が伴うの
に比べて、空気キャパシタのDを見積るのは容易であ
る。そこでLOAD2のDを入念に値付けすれば、さら
にQ測定確度が向上することは云うまでもない。
In order to reduce the loss coefficient D of the standard device,
It is natural to use a material having a small shape and a small loss for the insulator 15 that holds the internal conductor. The capacitance is determined by the ratio of the outer diameter of the inner conductor to the inner diameter of the outer conductor and the length of the inner conductor, but the accuracy of the capacitance value does not matter with this standard. With this structure, as described above, at 1 GHz, D <5
00E-6 can be realized. By applying the calibration method of the present invention using this, the Q of the device under test with Q≈100 can be measured at 1 GHz with an uncertainty of 5% or less. As described above, it is easy to estimate D of the air capacitor, as compared with the difficulty of estimating the phase characteristic of 50Ω. Therefore, it goes without saying that if the value of LOAD2 is carefully set, the Q measurement accuracy will be further improved.

【0028】[0028]

【発明の効果】抵抗標準器の位相特性を見積るには多く
の困難が伴うのに比べ、静電容量の損失係数Dを見積る
のは容易である。これを用いて本発明の校正法を適用す
れば、1GHzにてQ≒100の被測定素子を5%以下
の不確かさで測定できる。 高周波において、特に高い
Qの種々の部品や回路網のインピーダンス特性をよりよ
い精度で測定出来るようになり、実用に共し有益であ
る。なお、例示の校正方法と標準は、その形式やその他
に限定するものでなく、さらに広範囲の値をとることが
出来るし、必要に応じて本発明の要旨を失うことなく構
造、構成要素の変形も許容される。
As described above, it is easy to estimate the loss coefficient D of the capacitance, while it is difficult to estimate the phase characteristics of the resistance standard device. By applying the calibration method of the present invention using this, it is possible to measure a device under test with Q≈100 at 1 GHz with an uncertainty of 5% or less. This makes it possible to measure the impedance characteristics of various parts and networks with particularly high Q at higher frequencies with better accuracy, which is useful for practical use. It should be noted that the exemplified calibration method and standard are not limited to the format and others, and can take a wider range of values, and can be modified in structure and components as necessary without losing the gist of the present invention. Is also acceptable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の位相標準器の一実施例を示す図であ
る。
FIG. 1 is a diagram showing an embodiment of a phase standard device of the present invention.

【図2】同軸型有限インピーダンス標準器の例を示す図
である。
FIG. 2 is a diagram showing an example of a coaxial finite impedance standard device.

【図3】回路素子および回路網測定装置のモデル図であ
る。
FIG. 3 is a model diagram of a circuit element and a circuit network measuring device.

【符号の説明】[Explanation of symbols]

11:内部導体 12:外部導体 13:スリーブ 14:外部導体の凹み 15:絶縁体 16:つまみ 17:押しネジ 18:押しネジ 21:コネクタ部 22:抵抗素子 23:外部導体 24:スリーブ 31:信号源 32:被測定素子 33:測定器 34:測定器 35:仲介回路網 11: inner conductor 12: outer conductor 13: sleeve 14: recess of outer conductor 15: insulator 16: knob 17: push screw 18: push screw 21: connector portion 22: resistance element 23: outer conductor 24: sleeve 31: signal Source 32: Device under test 33: Measuring instrument 34: Measuring instrument 35: Mediation network

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】測定系の誤差を開放、短絡、有限インピー
ダンスの標準を用いて校正し、測定値を補正する方法に
おいて、有限インピーダンス標準器をインピーダンスの
絶対値は値付けされているが位相角が不確かな標準器と
インピーダンスの絶対値は不確かであるが位相角が値付
けされている標準器に分けることによって高い精度の補
正を行うことを特徴とする回路定数測定装置の校正方
法。
1. A method of calibrating an error of a measurement system using a standard of open, short, and finite impedance, and correcting a measured value, wherein a finite impedance standard device has an absolute value of impedance but a phase angle. A method for calibrating a circuit constant measuring device characterized by performing high-precision correction by dividing into a standard device with uncertain values and a standard device with uncertain absolute values for the phase angle.
【請求項2】位相角が値付けされている前記標準器とし
て、同軸構造の低損失キャパシタを用いることを特徴と
する請求項1記載の校正方法。
2. The calibration method according to claim 1, wherein a low-loss capacitor having a coaxial structure is used as the standard device whose phase angle is valued.
JP35221593A 1993-12-28 1993-12-28 Calibration method of circuit constant measuring device Expired - Fee Related JP3350586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35221593A JP3350586B2 (en) 1993-12-28 1993-12-28 Calibration method of circuit constant measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35221593A JP3350586B2 (en) 1993-12-28 1993-12-28 Calibration method of circuit constant measuring device

Publications (2)

Publication Number Publication Date
JPH07198766A true JPH07198766A (en) 1995-08-01
JP3350586B2 JP3350586B2 (en) 2002-11-25

Family

ID=18422550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35221593A Expired - Fee Related JP3350586B2 (en) 1993-12-28 1993-12-28 Calibration method of circuit constant measuring device

Country Status (1)

Country Link
JP (1) JP3350586B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184620A (en) * 1994-12-29 1996-07-16 Hewlett Packard Japan Ltd Correcting method for electromagnetic induction type probe
JP2011196932A (en) * 2010-03-23 2011-10-06 Daihen Corp High-frequency measurement device and method of calibrating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184620A (en) * 1994-12-29 1996-07-16 Hewlett Packard Japan Ltd Correcting method for electromagnetic induction type probe
JP2011196932A (en) * 2010-03-23 2011-10-06 Daihen Corp High-frequency measurement device and method of calibrating the same

Also Published As

Publication number Publication date
JP3350586B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
US7130756B2 (en) Calibration method for carrying out multiport measurements on semiconductor wafers
US4858160A (en) System for setting reference reactance for vector corrected measurements
Davidson et al. LRM and LRRM calibrations with automatic determination of load inductance
JP3110827B2 (en) Impedance meter
CN107076789B (en) System and method for measuring and determining noise parameters
US5734268A (en) Calibration and measurment technique and apparatus for same
US6321171B1 (en) Electronic measurement instrument probe accessory offset, gain, and linearity correction method
US7768271B2 (en) Method for calibration of a vectorial network analyzer having more than two ports
JP3329555B2 (en) Impedance meter
Ziadé et al. Primary standard for S-parameter measurements at intermediate frequencies (IFs)
JP3350586B2 (en) Calibration method of circuit constant measuring device
KR100211026B1 (en) Method for correcting high freouency detection error
JP2698615B2 (en) Circuit element measuring device
JP3558080B2 (en) Method of correcting measurement error, method of determining quality of electronic component, and electronic component characteristic measuring device
JP2001201524A (en) Ratio measuring device of electric signal, electric element measuring device, calibration method of electric element measuring device and ratio measuring method of electric signal
Romano et al. The HΓ-VNA, an interferometric approach for the accurate measurement of extreme impedances
Yamada et al. Design method for a wideband resistive voltage divider based on average impedance matching with optimal solution methods
Kibble Proposals for extending traceable impedance measurements to higher frequencies
Giblin et al. Automation of a coaxial bridge for calibration of ac resistors
Yonekura et al. High-Frequency Impedance Analyzer
Yu et al. Development of Wye–Delta-Type High-Resistance Standards in the Range of 1 MΩ to 1 GΩ
e Vasconcellos et al. Comparison among three impedance bridges for capacitance measurements at the nF range
JPH02309264A (en) Circuit element measuring apparatus
JP4525391B2 (en) Method and apparatus for measuring impedance of π-type impedance network
KR100461597B1 (en) Method for correcting measurement error of high frequency

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080913

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090913

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100913

LAPS Cancellation because of no payment of annual fees