JP2698615B2 - Circuit element measuring device - Google Patents

Circuit element measuring device

Info

Publication number
JP2698615B2
JP2698615B2 JP16706188A JP16706188A JP2698615B2 JP 2698615 B2 JP2698615 B2 JP 2698615B2 JP 16706188 A JP16706188 A JP 16706188A JP 16706188 A JP16706188 A JP 16706188A JP 2698615 B2 JP2698615 B2 JP 2698615B2
Authority
JP
Japan
Prior art keywords
terminal
line
voltage
circuit
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16706188A
Other languages
Japanese (ja)
Other versions
JPH0217459A (en
Inventor
秀樹 若松
Original Assignee
日本ヒューレット・パッカード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ヒューレット・パッカード株式会社 filed Critical 日本ヒューレット・パッカード株式会社
Priority to JP16706188A priority Critical patent/JP2698615B2/en
Publication of JPH0217459A publication Critical patent/JPH0217459A/en
Application granted granted Critical
Publication of JP2698615B2 publication Critical patent/JP2698615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は四端子対測定を行う回路素子測定装置の改良
に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a circuit element measuring device for performing four-terminal pair measurement.

(従来技術とその問題点) 回路素子の高精度測定を行う要求は近年増々高まって
いる。このような測定のために四端子対測定を採用して
いる測定装置がある。
(Prior Art and its Problems) In recent years, demands for high-precision measurement of circuit elements have been increasing. Some measuring devices employ four-terminal pair measurement for such measurement.

第4図は、従来技術の四端子対測定を行う回路素子測
定装置の概略回路図である。
FIG. 4 is a schematic circuit diagram of a conventional circuit element measuring device for performing four-terminal pair measurement.

四端子対を構成する4本の線路、CL1、CL2、CL3、CL4
により被測定回路素子ZXを測定器を構成する信号源SS、
電圧計VM、電流計AM、零検出増幅器Aに接続する。
Four lines that make up a four-terminal pair, CL 1 , CL 2 , CL 3 , CL 4
The circuit element under test ZX is converted into a signal source SS constituting a measuring instrument by
Connect to voltmeter VM, ammeter AM and zero detection amplifier A.

被測定回路素子ZXを以下において素子ZXと呼称し、そ
のインピーダンス値をもZXで表わす。
The measured circuit element Z X and referred to as element Z X below, also represented by Z X the impedance value.

線路CL1、CL2、CL3、CL4はそれに限定するものではな
いが同軸ケーブルとするのが一般的であり、それらの外
被の素子ZX側端末g11、g21、g31、g41は互いに接続され
基準電位にある。線路CL1、CL2の中心導体の素子ZX側端
末l11、l21は素子ZXの一方の端子に接続される。線路CL
3、CL4の中心導体の素子ZX側端末l31、l41は素子ZXの他
方の端子に接続される。
The lines CL 1 , CL 2 , CL 3 , CL 4 are generally, but not limited to, coaxial cables, and their jacket elements Z X side terminals g 11 , g 21 , g 31 , g 41 are connected together and at reference potential. Line CL 1, elements of the central conductor of CL 2 Z X terminal l 11, l 21 is connected to one terminal of the element Z X. Track CL
3, elements of the central conductor of CL 4 Z X terminal l 31, l 41 is connected to the other terminal of the element Z X.

線路CL1、CL2、CL3、CL4の中心導体と外被の素子ZX
反対側(測定器側)端末は、それぞれ端末l12、g12、l
22、g22、l32、g32、l42、g42である。
Terminals opposite to the center conductor of the lines CL 1 , CL 2 , CL 3 , and CL 4 and the element Z X of the jacket (the measuring device side) are terminals l 12 , g 12 , and l, respectively.
22, g 22, l 32, g 32, l 42, a g 42.

端末l12、g12間には信号源SSと信号源抵抗Rsの直接回
路が接続される。
Between the terminal l 12, g 12 direct circuit of the signal source SS and the signal source resistance R s is connected.

端末l22、g22間には電圧計VMが接続される。A voltmeter VM is connected between the terminals l 22 and g 22 .

端末l32、g32はそれぞれ零検出増幅器Aの反転入力端
子と非反転入力端子に接続される。零検出増幅器Aの反
転入力端子と出力端子間には帰還抵抗Rfが接続される。
その出力は狭帯域増幅/位相補償増幅器NBA(以下NBAと
のみ呼称する)に導入され、最終的に電圧制御電流源VC
Cを出力電流(複素電流)を制御する。
The terminals l 32 and g 32 are connected to the inverting input terminal and the non-inverting input terminal of the zero detection amplifier A, respectively. A feedback resistor Rf is connected between the inverting input terminal and the output terminal of the zero detection amplifier A.
The output is introduced to a narrow band amplification / phase compensation amplifier NBA (hereinafter referred to simply as NBA), and finally a voltage-controlled current source VC
C controls the output current (complex current).

NBAは入力信号を複素検波し、検波出力を出力する
が、前掲4274A、4275Aに用いるものと同様である。端末
l42、g42間には抵抗Rcと電流計及び電圧制御電流計VCC
の直列回路が並列接続される。なお電圧制御電流源VC
C、抵抗Rc、電流計AMをテブナン等価な電圧制御電圧
源、抵抗、電圧計で置き換えてもよい。
The NBA performs complex detection on the input signal and outputs a detection output, which is the same as that used for 4274A and 4275A described above. Terminal
l 42, Between g 42 resistor R c and a current meter and a voltage controlled current meter VCC
Are connected in parallel. Note that the voltage control current source VC
C, the resistor R c , and the ammeter AM may be replaced with a Thevenin-equivalent voltage-controlled voltage source, a resistor, and a voltmeter.

第4図の回路では、端末l32、g32間電圧が実質的に
零、即ちl32を流れる電流が実質的に零となるように、
自動制御される。その結果、素子ZXに印加される電圧VX
が電圧計VMの指示として得られる。さらに素子ZXを流れ
る電流IXは電流計AMの指示として得られる。電圧計VM、
流計AMは信号SSの検出力を基準として複素電圧又は複素
電流を測定するから、ZXは複素値で下式に従って求めら
れる。
In the circuit of FIG. 4, the voltage between terminals l 32 and g 32 is substantially zero, that is, the current flowing through l 32 is substantially zero.
Automatically controlled. As a result, the voltage V X, which is applied to the element Z X
There is obtained as an indication of the voltmeter V M. Further current I X flowing in the element Z X is obtained as an indication of the ammeter AM. Voltmeter VM,
Nagarekei AM is because measuring the complex voltage or heterocyclic current detection power of the signal SS as a reference, Z X is determined according to the following formula in the complex value.

Zx=Vx/IX 複素電圧、電流の測定法については周知であり、測定
器全体の動作とともに、例えば前掲4274A、4275Aに開示
されている。校正は、被測定素子を短絡、開放(さらに
既知の第3インピーダンスを用いることもある)で置換
えて周知の方法で行われる。
Z x = V x / I X complex voltage, are known for measurement of the current, along with meter overall operation, e.g. supra 4274A, are disclosed in 4275A. The calibration is performed by a known method by replacing the device under test with a short circuit and an open circuit (furthermore, a known third impedance may be used).

以上詳述した回路素子測定装置は、低周波においては
非常に良好に動作するが、信号周波数が高くなるに従
い、以下に述べる問題点が明らかになってくる。まず前
提を述べ、問題点を次に述べる。
Although the circuit element measuring device described in detail above operates very well at low frequencies, the following problems become apparent as the signal frequency increases. The premise is described first, and the problems are described next.

まず、第2図を参照して、線路CL(特性インピーダン
スZo、線路長l、伝搬定数γ)の伝達特性は下式で与え
られる。
First, referring to FIG. 2, the transfer characteristic of the line CL (characteristic impedance Z o , line length l, propagation constant γ) is given by the following equation.

端末l1、g1間の電圧をV1、端子l2、g2間の電圧をV2
し、受信端の終端インピーダンスをZ2とすると、 又端末l1、g1から線路CL側をみたインピーダンスはそ
れをZiとすると、 第4図の線路のCL2において、電圧計VMの指示電圧V12
は、上記V2の式からZ2=∞とおき、端子l11、g11間電圧
V11から、 V12=V11/coshγ1l1 となる。但しl1、γは線路CL1の線路長と伝搬定数で
ある。
Assuming that the voltage between the terminals l 1 and g 1 is V 1 , the voltage between the terminals l 2 and g 2 is V 2, and the terminating impedance of the receiving end is Z 2 , Also, if the impedance seen from the terminals l 1 and g 1 on the line CL side is Z i , In the line CL 2 of FIG. 4, the indicated voltage V 12 of the voltmeter VM
Is the voltage between terminals l 11 and g 11 by setting Z 2 = ∞ from the above equation of V 2
From V 11, the V 12 = V 11 / coshγ 1 l 1. Here, l 1 and γ 1 are the line length and the propagation constant of the line CL 1 .

又、上記Z1に相当するインピーダンスZi1はCL1におい
て、 Zi1=Zocoshγ1l1/sinhγ1l1 となる。
Further, the impedance Z i1 corresponding to the above Z 1 in CL 1 is Z i1 = Z o cosh γ 1 l 1 / sinh γ 1 l 1 .

線路が無損失であればγは純虚数となり、又無損失
に近ければ、l1が管内波長の1/4のとき(線路は共振
し)V2は非常に大きくなり、又Zi1は0に近くなる。従
って、第4図の回路は不安定不精確になる。時にはZi1
が非常に小さくなり、素子Zxに電圧が印加されなくな
る。同様の考察により、線路CL3において線路長が、CL3
の管内波長の1/4になると、線路CL3に流れ込む電流は非
常に小さくなり、NBAを含む帰還回路のループゲインは
極端に小さくなる。従って第4図の回路の動作は不安定
となり、正確な測定が困難になる。
If the line is lossless, γ 1 is a pure imaginary number, and if it is close to lossless, when l 1 is 1/4 of the guide wavelength (the line resonates), V 2 becomes very large, and Z i1 becomes It approaches 0. Therefore, the circuit of FIG. 4 becomes unstable and inaccurate. Sometimes Z i1
Becomes very small, the voltage is not applied to the element Z x. According to the same consideration, the line length of the line CL 3 is CL 3
When will the tube quarter of the wavelength, the current flowing into the line CL 3 becomes very small, the loop gain of the feedback circuit including the NBA is extremely small. Therefore, the operation of the circuit shown in FIG. 4 becomes unstable, and accurate measurement becomes difficult.

(発明の目的) 本発明の目的は、四端子対測定を行う際に被測定素子
を接続するのに用いるそれぞれの線路をそれぞれの特性
インピーダンス等で終端することにより、広域帯に渉り
安定で精確な測定が可能な回路素子測定装置を提供する
ことである。
(Object of the Invention) An object of the present invention is to terminate each line used to connect a device under test at the time of performing a four-terminal pair measurement with a characteristic impedance or the like, thereby providing stable and stable operation over a wide band. An object of the present invention is to provide a circuit element measuring device capable of performing accurate measurement.

(発明の概要) 本発明の一実施例では、被測定素子を接続するための
線路をそれぞれの特性インピーダンスで終端するように
し、線路の共振による影響を排除あるいは軽減して、広
域帯かつ高精度四端子対測定を可能にしている。また、
低周波における精度を高く保つため、高周波においての
み漸近的に上記終端がなされるようにもできる。
(Summary of the Invention) In one embodiment of the present invention, a line for connecting a device to be measured is terminated at each characteristic impedance to eliminate or reduce the influence of line resonance, thereby achieving a wide band and high accuracy. Enables four-terminal pair measurement. Also,
To keep the accuracy at low frequencies high, the termination can be asymptotically done only at high frequencies.

(発明の実施) 第1図は本発明の実施例の回路素子測定装置である。
本装置の目的は第4図の装置と同じであり、第4図にお
けると同様の機能及び性能を有する部分には同一の参照
番号を付してある。
FIG. 1 shows a circuit element measuring apparatus according to an embodiment of the present invention.
The purpose of this apparatus is the same as that of the apparatus shown in FIG. 4, and parts having the same functions and performances as those in FIG. 4 are given the same reference numerals.

第1図において、抵抗R1、R2、R3、R4をそれぞれ線路
CL1、CL2、CL3、CL4の特性インピーダンスに等しく選
ぶ。
In FIG. 1, resistors R 1 , R 2 , R 3 , and R 4 are respectively connected to lines.
CL 1, CL 2, CL 3 , chosen equal to the characteristic impedance of the CL 4.

このようにすれば、各線路の伝達関数(出力/入力)
と、入力インピーダンスは、(式1)、(式2)に対応
して次式のようになる。簡単のため(式1)、(式2)
によって説明する。
In this way, the transfer function of each line (output / input)
And the input impedance is as follows, corresponding to (Equation 1) and (Equation 2). (Equation 1), (Equation 2) for simplicity
It will be explained by.

第2図において、 (式4)……Z1=Zo 従って、線路CLの損失が小さければ、V2はV1を位相シ
フトしたものとなり、振幅は同一に保たれる。
In FIG. (Equation 4)... Z 1 = Z o Therefore, if the loss of the line CL is small, V 2 is a phase-shifted version of V 1 and the amplitude is kept the same.

従って回路は位相シフトのみが周波数により変化する
ので、NBAの位相補償を周知技術により行えば、NBAを含
む負帰還ループの安定性が保たれる。従って広域帯に渉
って精確な測定を行うことができる。
Therefore, since only the phase shift of the circuit changes depending on the frequency, the stability of the negative feedback loop including the NBA can be maintained if the phase compensation of the NBA is performed by a known technique. Therefore, accurate measurement can be performed over a wide band.

素子Zxの変化による位相シフトは±18.4゜の範囲であ
り、周波数による位相シフトの補償のみ考慮すればよ
い。
The phase shift due to the change of the element Z x 18.4 DEG ±, it is sufficient to consider only the compensation of the phase shift due to frequency.

次に第1図の回路を改良した実施例を第3図に示す。
まず第1図の回路を点検する。従来(第4図に示すよう
に)線路CL2の中心導体には電流が流れず、該中心導体
と素子Zxの接触抵抗による誤差は生じなかった。しか
し、第1図の回路では電流が流れ、素子Zxに印加される
電圧が低周波でもわずかの誤差をもって測定されるよう
になる。同様に、線路CL4の中心導体の端末l41と素子Zx
との接触抵抗も素子Zxを流れる電流を測定する電流計A
の指示に影響する。従って、第1図の回路は安定性が増
し、高周波における精度は向上したが、低周波における
精度に改善すべき点を有している。
Next, FIG. 3 shows an embodiment in which the circuit of FIG. 1 is improved.
First, check the circuit of FIG. Conventional (as shown in FIG. 4) no current flows through the center conductor of the line CL 2, error due to the contact resistance of said central conductor and the element Z x did not occur. However, current flows in the circuit of FIG. 1, so that the voltage applied to the element Z x is measured also have a slight error in the low frequency. Similarly, the terminal l 41 of the center conductor of the line CL 4 and the element Z x
Ammeter A that measures the current flowing through element Z x
Affect the instructions. Thus, the circuit of FIG. 1 has increased stability and improved accuracy at high frequencies, but has the point of improving accuracy at low frequencies.

第3図において、端末l12、g12間には抵抗R10とイン
ダクタL10の直列回路を、端末l22、g22間には抵抗R2
コンデンサC20の直列回路を、端末l42、g42間には抵抗R
4とコンデンサC40の直列回路を挿入する。また端末l32
と零検出増幅器の反転端子間には抵抗R30とインダクタL
30の直列回路を抵抗R3と並列に挿入する。各素子の参照
記号でそれらの値も表わし、以下のようにその値を定め
る。ここにR10=R2、L10/C20=R2 2とし、1/(2πC
20R2)の値は高周波の安定性を欠かない程度に大きく選
ぶ。その値は典型的な50Ω同軸線路において、線路長が
2mのときでも3MHz位である。このようにすれば、素子Zx
に印加される電圧は信号周波数によらず略一定に保たれ
る。その理由はR10とL10の直列回路とR2とC20の直列回
路の並列接続が定抵抗回路となるからである。線路CL1
とCL2を同一仕様のものに選べばさらに良い結果が得ら
れる。その場合はR10=R2=R1となる。
In FIG. 3, a series circuit of terminals l 12, g resistor R 10 is between 12 and inductor L 10, a series circuit of a resistor R 2 and capacitor C 20 is between terminals l 22, g 22, the terminal l 42 , G 42 has a resistance R
Inserting a serial circuit of 4 and the capacitor C 40. Also terminal 32
If the between the inverting terminal of the zero detection amplifier resistor R 30 and the inductor L
A series circuit of 30 to insert the resistor R 3 in parallel. These values are also represented by reference symbols of each element, and the values are determined as follows. Here and R 10 = R 2, L 10 / C 20 = R 2 2, 1 / (2πC
The value of 20 R 2 ) is selected to be large enough not to lack high frequency stability. The value is a typical 50Ω coaxial line, the line length is
It is about 3MHz even at 2m. In this way, the element Z x
Is maintained substantially constant regardless of the signal frequency. The reason is because the parallel connection of the series circuit of the series circuit R 2 and C 20 in R 10 and L 10 is constant resistance circuit. Track CL 1
Better results if you choose to those same specification CL 2 and is obtained. In that case, R 10 = R 2 = R 1 .

また、R30=R4、L30/C40=R4 2とし2πC40R4の大きさ
は、2πC20R2と同様に選択される。R30とL30の直列回
路を図示と異なり、端末l32、g32間に挿入するようにす
るようにしてもよい。図示の方法は高インピーダンスの
素子Zxを測定する場合、信号対雑音比の劣化が少く有利
な面がある。
The size of the R 30 = R 4, L 30 / C 40 = R 4 2 and then 2πC 40 R 4 is selected in the same manner as 2πC 20 R 2. Unlike shown a series circuit of R 30 and L 30, it may be to insert between the terminal l 32, g 32. If the illustrated method of measuring the element Z x high impedance, degradation of the signal-to-noise ratio is less advantageous aspect.

上記の選定により、NBAを含む制御ループの安定性を
損なうことなく低周波の精度が向上する。その理由くR
30とL30の直列回路とR4とC40の直列回路の並列接続が常
に定抵抗となるからである。線路CL3とCL4を同一仕様の
ものとすることはさらに良い結果を与える。また全ての
線路を同一仕様とすれば至便であることは言うまでもな
い。従って第3図の回路は、低周波における動作でも精
度劣化が少く、かつ高周波においても安定性が損われな
い回路素子測定装置が得られる。
By the above selection, the accuracy of the low frequency is improved without impairing the stability of the control loop including the NBA. The reason is R
Parallel connection of the series circuit 30 and the series circuit R 4 and C 40 of the L 30 is always a constant resistance. Having the lines CL 3 and CL 4 of the same specification gives better results. Needless to say, it is convenient if all the tracks have the same specifications. Therefore, the circuit shown in FIG. 3 can provide a circuit element measuring device which has a small deterioration in accuracy even at the operation at a low frequency and does not lose the stability at the high frequency.

第5図の(a)、(b)は、第1図あるいは第3図の
対応部分を置き換えるための概略回路である。
(A) and (b) of FIG. 5 are schematic circuits for replacing the corresponding parts of FIG. 1 or FIG.

第5図においてA51は高入力インピーダンス反転増幅
器で、NBAを含み、端末l32、g32間の電圧を実質的に零
にできる増幅度を有する。
In FIG. 5, reference numeral A51 denotes a high input impedance inverting amplifier including an NBA and having an amplification degree capable of making the voltage between the terminals l 32 and g 32 substantially zero.

(発明の効果) 上述のように、本発明の実施により、低周波における
精度劣化を最小にしつつ、高周波における安定性と精度
を向上ることができる。従って、測定器と被測定素子間
の距離が大きくとも広帯域にわたる測定が可能である。
(Effects of the Invention) As described above, by implementing the present invention, it is possible to improve stability and accuracy at high frequencies while minimizing deterioration in accuracy at low frequencies. Therefore, measurement over a wide band is possible even if the distance between the measuring instrument and the device under test is large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の回路素子測定装置の概略回
路図、第2図は線路の伝達特性を説明するための回路
図、第3図は第1図の回路素子測定装置を改良した装置
を概略回路図、第4図は従来技術の回路素子測定装置の
概略回路図、第5図は第1図及び第3図の装置の一部を
置換して本発明のさらに他の実施例の回路素子測定装置
を得るための回路の概略回路図である。 Zx:被測回路素子 CL1、CL2、CL3、CL4:線路 SS:(測定用)信号源 VM:(複素)電圧計 NBA:狭帯域増幅/位相補償増幅器 VCC:電圧制御電流源 AM:(複素)電流計 A:零検出増幅器 A51:高入力インピーダンス反転増幅器
FIG. 1 is a schematic circuit diagram of a circuit element measuring device according to one embodiment of the present invention, FIG. 2 is a circuit diagram for explaining a transfer characteristic of a line, and FIG. 3 is an improvement of the circuit element measuring device of FIG. FIG. 4 is a schematic circuit diagram of a prior art circuit element measuring device, and FIG. 5 is a further alternative embodiment of the present invention in which a part of the device of FIGS. 1 and 3 is replaced. It is a schematic circuit diagram of a circuit for obtaining the example circuit element measuring device. Z x : Circuit element under test CL 1 , CL 2 , CL 3 , CL 4 : Line SS: (Measurement) signal source VM: (Complex) voltmeter NBA: Narrow band amplification / phase compensation amplifier VCC: Voltage control current source AM: (complex) ammeter A: Zero detection amplifier A 51 : High input impedance inverting amplifier

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定素子の一方の端子に印加電圧を与え
るために該一方の端子と信号源を結ぶ第1の線路と、前
記印加電圧を測定するため前記一方の端子と電圧計を接
続するための第2の線路と、前記被測定素子の他方の端
子の電圧を検出するために該他方の端子と零検出増幅器
を結ぶ第3の線路と、前記零検出増幅器の出力に応じて
前記被測定素子を流れる電流を吸引して前記他方の端子
の電圧を零にするための電圧制御電流源を前記他方の端
子に接続するための第4の線路とを有し、前記第1、第
2、第3、第4の線路のそれぞれが、それぞれの測定器
側端でそれぞれの特性インピーダンスに等しい終端素子
を有し、四端子対測定をおこなうための回路素子測定装
置。
1. A first line connecting one terminal to a signal source for applying an applied voltage to one terminal of a device under test, and the one terminal connected to a voltmeter for measuring the applied voltage. A second line for detecting the voltage of the other terminal of the device under test, a third line connecting the other terminal to the zero detection amplifier, and a second line for detecting the voltage of the zero detection amplifier. A fourth line for connecting to the other terminal a voltage-controlled current source for attracting a current flowing through the device to be measured to reduce the voltage of the other terminal to zero, and A circuit element measuring device for performing a four-terminal pair measurement, wherein each of the second, third, and fourth lines has a terminating element equal to the characteristic impedance at the end of each measuring instrument.
【請求項2】前記第2の線路の終端素子を、第2の抵抗
とコンデンサの直列接続とし、前記第1の線路の終端素
子を第1の抵抗とインダクタの直列接続とし、前記第
1、第2の抵抗の抵抗値が等しく、かつ該抵抗値の二乗
が前記インダクタの値の前記コンデンサの値に対する比
に等しいことを特徴とする請求項1に記載の回路素子測
定装置。
2. The terminal element of the second line is connected in series with a second resistor and a capacitor, and the terminal element of the first line is connected in series with a first resistor and an inductor. 2. The circuit element measuring device according to claim 1, wherein the resistance values of the second resistors are equal, and the square of the resistance value is equal to a ratio of the value of the inductor to the value of the capacitor.
JP16706188A 1988-07-05 1988-07-05 Circuit element measuring device Expired - Fee Related JP2698615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16706188A JP2698615B2 (en) 1988-07-05 1988-07-05 Circuit element measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16706188A JP2698615B2 (en) 1988-07-05 1988-07-05 Circuit element measuring device

Publications (2)

Publication Number Publication Date
JPH0217459A JPH0217459A (en) 1990-01-22
JP2698615B2 true JP2698615B2 (en) 1998-01-19

Family

ID=15842675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16706188A Expired - Fee Related JP2698615B2 (en) 1988-07-05 1988-07-05 Circuit element measuring device

Country Status (1)

Country Link
JP (1) JP2698615B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216373A (en) * 1990-02-21 1993-06-01 Hewlett-Packard Company Circuit element measuring apparatus and method for measuring a parameter of a DUT including a compensation network having an admittance characteristic
JP2975389B2 (en) * 1990-02-21 1999-11-10 日本ヒューレット・パッカード株式会社 Circuit element measuring device
JP2960095B2 (en) * 1990-02-27 1999-10-06 日本ヒューレット・パッカード株式会社 Circuit element measuring device
JP4399084B2 (en) * 2000-03-31 2010-01-13 日置電機株式会社 Impedance measurement method by the four probe method
JP5430500B2 (en) * 2010-06-11 2014-02-26 日置電機株式会社 Circuit board inspection equipment
JP5723707B2 (en) * 2011-07-11 2015-05-27 日置電機株式会社 Circuit board inspection equipment
JP6421012B2 (en) * 2014-10-24 2018-11-07 日置電機株式会社 Method for determining wiring cable length in circuit element measuring apparatus
JP7146558B2 (en) * 2018-10-16 2022-10-04 日置電機株式会社 Impedance measuring device and adjustment method of negative feedback circuit in impedance measuring device

Also Published As

Publication number Publication date
JPH0217459A (en) 1990-01-22

Similar Documents

Publication Publication Date Title
US5345182A (en) Impedance meter capable of performing measurements at high precision over wide impedance and frequency ranges
US6856126B2 (en) Differential voltage probe
JP2698615B2 (en) Circuit element measuring device
JP3329555B2 (en) Impedance meter
US6483284B1 (en) Wide-bandwidth probe using pole-zero cancellation
US6414476B2 (en) Current detecting device, impedance measuring instrument and power measuring instrument
JPH09318671A (en) Impedance measuring device
JPH04212067A (en) Dual-path wide-band high-precision data collecting system
US4885528A (en) Apparatus which uses a simulated inductor in the measurement of an electrical parameter of a device under test
US3732490A (en) Impedance probe for swept network analyzer system
US3283242A (en) Impedance meter having signal leveling apparatus
EP0349168A2 (en) Circuit element measuring apparatus
US5216373A (en) Circuit element measuring apparatus and method for measuring a parameter of a DUT including a compensation network having an admittance characteristic
JP2957596B2 (en) Circuit element measuring device
US2782377A (en) Micropotentiometers
US4733173A (en) Electronic component measurement apparatus
Kusters et al. A direct current comparator bridge for high resistance measurements
JP3862783B2 (en) Impedance measuring device
JP2960095B2 (en) Circuit element measuring device
US2532736A (en) Arrangement for comparing electrical characteristics
Bachman A waveguide impedance meter for the automatic display of complex reflection coefficient
US4847551A (en) Apparatus for measuring capacitance of a low value three-terminal capacitor with a resonance technique
JP2975389B2 (en) Circuit element measuring device
SU1626157A1 (en) Device for calibrating field-intensity meter
JPH068826B2 (en) Probe circuit

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees