JPH07198655A - Flow potential measuring device - Google Patents

Flow potential measuring device

Info

Publication number
JPH07198655A
JPH07198655A JP5334568A JP33456893A JPH07198655A JP H07198655 A JPH07198655 A JP H07198655A JP 5334568 A JP5334568 A JP 5334568A JP 33456893 A JP33456893 A JP 33456893A JP H07198655 A JPH07198655 A JP H07198655A
Authority
JP
Japan
Prior art keywords
pressure
liquid
space
gas
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5334568A
Other languages
Japanese (ja)
Other versions
JP3211530B2 (en
Inventor
Toshibumi Fukui
俊文 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP33456893A priority Critical patent/JP3211530B2/en
Publication of JPH07198655A publication Critical patent/JPH07198655A/en
Application granted granted Critical
Publication of JP3211530B2 publication Critical patent/JP3211530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate difference in measurement among measuring persons by storing fluidized liquid in a pressure proof type gas-tight structure container with a space being left therein, by introducing high pressure gas into the space through manipulation of a shut-off valve so as to hold a pressure in the container, and by allowing the liquid to be fluidized by a pressure differential while by discharging the liquid so as to lower the fluid pressure. CONSTITUTION:A predetermined volume of fluidized liquid 8 is stored in a pressure- proof type gas-tight structure container 9 with a space 9a being left therein, and a shut-off valve 18 in a gas passage 13 is opened to feed N2 gas having a pressure higher than the atmospheric pressure from a pressure source into the space 9. Accordingly, the pressure in the space 9a and the passage 13 rises up to a predetermined pressure, and the pressurized condition is held by closing the valve 18. When a cock 10 in a liquid supply passage 7 is opened, brake liquid 8 flows through a passage 7 and a charge layer 62 in an E measuring cell 6 so as to generate a flow potential between electrodes 63. This flow potential is delivered to a Y-axis coordinate side of a recorder 5 through an impedance converter 41, and simultaneously, a pressure in the space is measured by a pressure detector 16, and is delivered to the X-axial coordinate side of the recorder 5 through an amplifier 42, and a graph therebetween is recorded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固−液界面の荷電状態
を示すゼータ電位を求める方法の一つである流動電位法
で用いられる流動電位測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a streaming potential measuring device used in the streaming potential method, which is one of the methods for determining the zeta potential indicating the charge state of a solid-liquid interface.

【0002】[0002]

【従来の技術】流動電位法は、一対の流動電位測定電極
間に固体試料を充填し、その充填層に流動液を透過させ
たときに電極間に発生する電位差すなわち流動電位を測
定することによりゼータ電位を求める方法であるが、こ
れは、次のような原理に基づくものである。
2. Description of the Related Art The streaming potential method is a method in which a solid sample is packed between a pair of streaming potential measuring electrodes and the potential difference, that is, the streaming potential, generated between the electrodes when a flowing liquid is passed through the packed bed is measured. This is a method for obtaining the zeta potential, which is based on the following principle.

【0003】いま、1本の毛細管の管内に液を押し流す
場合を考える。このときの毛細管の半径をr、長さをl
とする。また、管壁に電気二重層があり、これを分子量
と考え、かつ、その厚さをδ、電位差をζとすれば、単
位面積あたりの電荷qは次の(1)式で与えられる。
Now, consider the case where the liquid is pushed into the inside of one capillary tube. At this time, the radius of the capillary tube is r and the length is l
And Further, if there is an electric double layer on the tube wall, and this is considered to be the molecular weight, and its thickness is δ and the potential difference is ζ, the electric charge q per unit area is given by the following equation (1).

【0004】 q=εζ/4πδ ・・・(1) ただし、ε:液体の誘電率管の両端に圧力差Pを加え、
その場合の液体の移動速度をuとする(管壁においては
移動速度は0、δの距離においてはu)。このとき、単
位軸長あたりの内面の摩擦力Fは(2)式で与えられ
る。
Q = εζ / 4πδ (1) where ε: a pressure difference P is applied to both ends of the liquid permittivity tube,
In this case, the moving speed of the liquid is u (the moving speed is 0 on the tube wall and u at the distance δ). At this time, the frictional force F on the inner surface per unit axial length is given by the equation (2).

【0005】 F=2πrηu/δ ・・・(2) ただし、η:液体の粘性係数 定常状態において、Fは加える圧力とつり合っているか
ら、 2πrηu/δ = Pπr2 /l ・・・(3) (1)式および(3)式からδを消去して変形すると、 2πruq=Pεr2 ζ/4ηl ・・・(4) (4)式の左辺は液の移動に伴う電流になる。そこで、
その誘起電圧をEとすれば、毛細管における電流iは
(5)式で与えられる。
F = 2πrηu / δ (2) However, η: Viscosity coefficient of liquid In a steady state, F balances with the applied pressure, so 2πrηu / δ = Pπr 2 / l (3 ) When δ is deleted from the equations (1) and (3) and transformed, 2πruq = Pεr 2 ζ / 4ηl (4) The left side of the equation (4) becomes a current accompanying the movement of the liquid. Therefore,
If the induced voltage is E, the current i in the capillary tube is given by equation (5).

【0006】 i=(πr2 λ/l)E ・・・(5) ただし、λ:液の比誘電率 したがって、(4)および(5)式から、 ζ=4πηλE/εP ・・・(6) (6)式は、Helmholz−Smoluchowskiの式と呼ばれ、流
動電位からゼータ電位を計算する場合に使用される。
I = (πr 2 λ / l) E (5) where λ: relative permittivity of liquid Therefore, from equations (4) and (5), ζ = 4πηλE / εP (6) ) Equation (6) is called Helmholz-Smoluchowski's equation, and is used when calculating the zeta potential from the streaming potential.

【0007】(6)式において、4πηλ/εは測定試
料に対して一定であるから、ゼータ電位(ζ)は流動電
位(E)と圧力(P)の比に関係し、EとPは直線関係
となることがわかる。
In equation (6), since 4πηλ / ε is constant with respect to the measurement sample, the zeta potential (ζ) is related to the ratio of streaming potential (E) and pressure (P), and E and P are linear. It turns out to be a relationship.

【0008】以上の原理に基づいてゼータ電位を求める
ために流動電位の測定を行うものとして流動電位測定装
置がある。これは、固体試料の充填層を一対の電極で挟
んでなる流動電位測定セルと、その充填層に供給すべき
流動液を収容する流動液容器と、圧力源から供給される
液流動用の気体を流動液容器内に導入するための気体通
路とを有し、充填層内に所定方向(電極を横切る方向)
に流動液を流したときに電極間に発生する流動電位を測
定しうるようにしたものである。
There is a streaming potential measuring device for measuring the streaming potential in order to obtain the zeta potential based on the above principle. This is a streaming potential measurement cell in which a packed bed of a solid sample is sandwiched by a pair of electrodes, a fluid liquid container containing a fluid to be supplied to the packed bed, and a gas for liquid flow supplied from a pressure source. Has a gas passage for introducing into the fluid container and has a predetermined direction in the packed bed (direction crossing the electrodes).
The flow potential generated between the electrodes when a flowing liquid is flown into the electrode can be measured.

【0009】ところで、ゼータ電位は、上述のように理
論的には流動電位Eに比例し且つ液流動圧力Pに反比例
するから、流動電位よりゼータ電位を求めるためには、
流動液の圧力を一方向に強制的に変化させながら、この
ときの流動電位を測定してE/Pを求めることが必要と
なる。
By the way, since the zeta potential is theoretically proportional to the streaming potential E and inversely proportional to the liquid flowing pressure P as described above, in order to obtain the zeta potential from the streaming potential,
It is necessary to obtain the E / P by measuring the streaming potential at this time while forcibly changing the pressure of the flowing liquid in one direction.

【0010】そこで、従来の装置においては、流動液の
圧力を圧力源側から強制的に変化させることが行われて
いた。具体的には、例えば、流動液容器と圧力源との間
の通路上に開閉バルブと圧力調整バルブとを備え、まず
開閉バルブを開いて流動液容器内に圧力源から所定圧の
気体を導入することにより流動液に一定圧を加えて流動
させ、その後開閉バルブを開いた状態で圧力調整バルブ
を少しずつ開いて流動液に対する付加圧力を強制的に落
としていくというものであった。
Therefore, in the conventional apparatus, the pressure of the flowing liquid is forcibly changed from the pressure source side. Specifically, for example, an opening / closing valve and a pressure adjusting valve are provided on a passage between the fluid container and the pressure source, and the opening / closing valve is first opened to introduce a gas of a predetermined pressure from the pressure source into the fluid container. By doing so, a constant pressure is applied to the flowing liquid to make it flow, and then the pressure adjusting valve is gradually opened with the opening / closing valve opened to forcibly reduce the added pressure to the flowing liquid.

【0011】[0011]

【発明が解決しようとする課題】ところが、上述のよう
に理論的にはE/Pが一定、つまりE−P関係が直線関
係となるにもかかわらず、従来の流動電位測定装置を用
いて実際に測定してみると、試料によっては、あるいは
同じ試料でも充填状態によっては、曲線関係が得られる
ことがあり問題となっていた。このため、測定者は、E
−Pについて直線関係が得られるように、測定中にモニ
ターを行いながら圧力調整バルブ等の操作を行うという
苦労をし、測定に熟練やノウハウを要するのみならず、
測定者によって測定結果にバラツキが生じるという問題
があった。
However, although the E / P is theoretically constant as described above, that is, the E-P relationship is linear, as described above, the conventional streaming potential measuring device is used. However, depending on the sample, or even the same sample, depending on the filling state, a curve relationship could be obtained, which was a problem. Therefore, the measurer
In order to obtain a linear relationship with respect to -P, it is difficult to operate the pressure adjusting valve and the like while monitoring during measurement, and not only skill and know-how are required for measurement,
There is a problem in that the measurement results vary depending on the measurer.

【0012】本発明は、このような問題に対処するもの
で、測定中に煩わしい操作を要しないとともに、測定者
間のバラツキを無くすことができ、しかも流動電位およ
び液流動圧力について直線的な関係を得ることができる
流動電位測定装置を提供することを目的とする。
The present invention addresses such a problem, does not require a troublesome operation during measurement, can eliminate variations among measuring persons, and has a linear relationship between streaming potential and liquid flowing pressure. An object of the present invention is to provide a streaming potential measuring device capable of obtaining the following.

【0013】[0013]

【課題を解決するための手段】流動液に対する付加圧力
を強制的に変化させた場合、その流路の途中に充填層と
いう抵抗があるために生じる圧力損失によって付加圧力
と流動状態ひいては流動電位との間にズレを生じ、その
結果、E−P関係が曲線関係としてあらわれると考えら
れる。換言すると、モニターで監視している付加圧力と
実際の液流動圧力との間には、圧力損失分だけのズレが
生じると考えられる。したがって、圧力を変化させる方
法は、従来のように強制的ではなく、流動時の圧力損失
に合わせた形で行うのが好ましい。
[Means for Solving the Problems] When the applied pressure to a flowing liquid is forcibly changed, the additional pressure and the flowing state and thus the streaming potential are affected by the pressure loss caused by the resistance of the packed bed in the middle of the flow path. It is considered that there is a gap between the two, and as a result, the E-P relationship appears as a curved relationship. In other words, it is considered that a gap corresponding to the pressure loss occurs between the additional pressure monitored by the monitor and the actual liquid flow pressure. Therefore, it is preferable that the method of changing the pressure is not compulsory as in the conventional method, but is performed in a form adapted to the pressure loss during flow.

【0014】本発明は、このような観点から、上記目的
を達成すべく、固体試料の充填層を一対の電極で挟んで
なる流動電位測定セルと、その充填層に供給すべき流動
液を収容する流動液容器と、圧力源から供給される液流
動用の気体を流動液容器内に導入するための気体通路と
を有し、上記充填層内に所定方向に流動液を流したとき
に上記一対の電極間に発生する流動電位を測定する流動
電位測定装置において、次のように構成したことを特徴
とする。
From this point of view, in order to achieve the above object, the present invention contains a streaming potential measuring cell in which a packed bed of a solid sample is sandwiched between a pair of electrodes and a flowing liquid to be supplied to the packed bed. And a gas passage for introducing a gas for liquid flow supplied from a pressure source into the fluid container, and when the fluid is flowed in a predetermined direction in the packed bed, A streaming potential measuring device for measuring a streaming potential generated between a pair of electrodes is characterized by being configured as follows.

【0015】すなわち、上記流動液容器を耐圧気密構造
の容器で構成する一方、上記通路には同通路を開閉する
開閉バルブを設け、その耐圧気密構造の流動容器内に空
間を残して所定量の流動液を収容した状態で、上記圧力
源から同空間内に外気圧より高い圧力を持った気体を導
入した後に開閉バルブを閉じて加圧状態を保持すること
により、同空間内の圧力と外気圧との圧力差により液を
流動させるとともに、その液流動圧を流動液容器内の流
動液の流出に伴って受動的に低下させる構成とする。
That is, while the fluid container is constructed of a pressure-tight airtight structure, an opening / closing valve for opening and closing the passage is provided in the passage, and a predetermined amount of space is left in the pressure-tight airtight structure of the fluid container. In the state of containing the flowing liquid, by introducing a gas having a pressure higher than the atmospheric pressure into the space from the pressure source and then closing the open / close valve to maintain the pressurized state, the pressure in the space and the outside The liquid is caused to flow by the pressure difference from the atmospheric pressure, and the liquid flow pressure is passively reduced as the flowing liquid flows out from the liquid container.

【0016】[0016]

【作用】上記の構成によれば、耐圧気密構造の流動液容
器内に空間を残して所定量の流動液を収容し、その空間
内の気体に外気圧より高い圧力を加え、その加圧状態を
保持して同空間内の圧力と外気圧との圧力差により液を
流動させたときに、流動推進力と圧力損失による流動抵
抗との差に見合った分の液が流動するとともに、その流
動に伴って生じる流動液容器内の流動液ないし空間の体
積変化分に応じて圧力が低下するので、液圧力は、圧力
損失に応じて受動的に変化することになる。したがっ
て、液の流動圧力Pと流動状態ひいては流動電位Eとの
間にズレが生じないから、圧力損失が少ない場合はもち
ろんのこと、高い圧力損失を生じさせる試料の状態であ
っても、測定結果として直線的なE−P関係が得られる
ことになる。これにより、測定者が測定中に煩わしいバ
ルブ操作等をしなくても良くなり、ひいては測定者間の
バラツキも生じなくなる。
According to the above construction, a predetermined amount of fluid is stored in the fluid container having a pressure-tight airtight structure, leaving a space, and a pressure higher than the atmospheric pressure is applied to the gas in the space to apply the pressurized state. When the liquid is made to flow by the pressure difference between the pressure in the same space and the outside air pressure, the liquid corresponding to the difference between the flow propulsion force and the flow resistance due to the pressure loss flows and the flow Since the pressure decreases in accordance with the change in volume of the flowing liquid or the space in the flowing liquid container caused by the above, the liquid pressure passively changes according to the pressure loss. Therefore, since there is no deviation between the flow pressure P of the liquid and the flow state and thus the flow potential E, not only when the pressure loss is small, but also in the sample state which causes a high pressure loss, the measurement result As a result, a linear E-P relationship can be obtained. As a result, the measurer does not have to perform a troublesome valve operation or the like during the measurement, and eventually, there is no variation among the measurers.

【0017】[0017]

【実施例】以下、本発明の実施例について説明する。図
1に本実施例に係る流動電位測定装置の全体構成を示
す。
EXAMPLES Examples of the present invention will be described below. FIG. 1 shows the overall configuration of the streaming potential measuring apparatus according to this embodiment.

【0018】同図に示すように、この流動電位測定装置
1は、基本的には、減圧器2を介して図示しないN2
ス圧力源(以下、圧力源という)が接続される本体(測
定部)3と、アンプユニット4と、記録計(図例ではX
−Yレコーダ)5の3つのユニットによって構成されて
いる。
As shown in FIG. 1, the streaming potential measuring device 1 basically has a main body (measurement) to which an unillustrated N 2 gas pressure source (hereinafter referred to as a pressure source) is connected via a pressure reducer 2. Part) 3, amplifier unit 4, recorder (X in the example in the figure)
-Y recorder) 5.

【0019】本体3には、流動電位測定セル(以下、E
測定セルという)6と、このE測定セル6に液供給通路
7を介して供給すべき流動液8を収容する流動液容器9
と、液供給通路7を開閉するコック10と、流動電位測
定後にE測定セル6から排出される液を排液通路11を
介して回収する排液用容器12と、圧力源から供給され
る液流動用のN2 ガスを流動液容器9内に導入するため
の気体通路13と、この気体通路13にゲージバルブ1
4付きの分岐通路15を介して接続された圧力検出器1
6と、流動電位測定後に気体通路13内の圧力を抜くた
めのパージバルブ17とが備えられている。
The main body 3 has a streaming potential measuring cell (hereinafter referred to as E
(Referred to as a measurement cell) 6 and a fluid container 9 for containing a fluid 8 to be supplied to the E measurement cell 6 through a liquid supply passage 7.
A cock 10 that opens and closes the liquid supply passage 7, a drainage container 12 that collects the liquid discharged from the E measurement cell 6 after the measurement of the streaming potential via a drainage passage 11, and a liquid supplied from a pressure source. A gas passage 13 for introducing N 2 gas for flowing into the fluid container 9, and a gauge valve 1 in the gas passage 13.
Pressure detector 1 connected via branch passage 15 with 4
6 and a purge valve 17 for releasing the pressure in the gas passage 13 after measuring the streaming potential.

【0020】このうち、E測定セル6は、セルケース6
1内に固体試料を充填してなる充填層62を設け、この
充填層62を一対の電極(白金電極)63、63で挟ん
だ構成である。この場合、一対の電極63、63は、流
動液8が充填層62を通過する方向において互いに対向
するように配置されているとともに、各電極63と充填
層62との間には固体試料流出防止用のガラスろ紙64
が設けられている。そして、圧力源から気体通路13を
介して流動液容器9内に供給されるN2 ガスの圧力によ
って同容器9内の流動液8をE測定セル6に流したとき
に、電極63、63間に発生する流動電位を検出するよ
うになっている。
Of these, the E measuring cell 6 is the cell case 6
1 is provided with a filling layer 62 filled with a solid sample, and the filling layer 62 is sandwiched between a pair of electrodes (platinum electrodes) 63, 63. In this case, the pair of electrodes 63, 63 are arranged so as to face each other in the direction in which the fluid 8 passes through the packed bed 62, and prevent solid sample outflow between each electrode 63 and the packed bed 62. Glass filter paper 64
Is provided. Then, when the flowing liquid 8 in the container 9 is caused to flow into the E measuring cell 6 by the pressure of the N 2 gas supplied from the pressure source into the flowing liquid container 9 via the gas passage 13, the electrodes 63, 63 are separated from each other. It is designed to detect the streaming potential generated in the.

【0021】また、上記圧力検出器16は、ストレイン
ゲージを貼り付けてなるダイヤフラム(図示せず)が内
部に設けられており、そのダイヤフラムが気体通路13
内の圧力により歪んだときに、これに伴うストレインゲ
ージの抵抗変化を測定することにより、気体通路13内
の圧力、つまり流動液容器9内に供給されたN2 ガスの
圧力を検出しうるようになっている。
Further, the pressure detector 16 has a diaphragm (not shown) having a strain gauge attached thereto, and the diaphragm is provided in the gas passage 13.
When the strain is distorted by the internal pressure, the resistance change of the strain gauge accompanying it is measured so that the pressure in the gas passage 13, that is, the pressure of the N 2 gas supplied into the fluid container 9 can be detected. It has become.

【0022】一方、アンプユニット4には、E測定セル
6の各電極63に電線63aを介して接続され且つ同セ
ルで検出された電位を記録およびメータ表示するための
インピーダンス変換器41と、圧力検出器16で検出さ
れた圧力を記録表示するための圧力用増幅器42と、流
動電位(E)および圧力(P)からゼータ電位を計算す
る際に必要となる導電率の測定器43とが内蔵されてい
る。ここで、流動電位および圧力は当該装置のパネル面
に設けられたメータ(図示せず)で表示され、図示のよ
うに記録計5を接続することにより、E−Pのグラフと
して記録されるようになっている。また、導電率測定器
43は流動液の電気抵抗を測定するもので、測定は導電
率測定セル(λ測定セル)44を図示しないアンプ前面
のコネクタに接続し、流動液内に同セルの先端側を浸し
て行うようになっている。
On the other hand, the amplifier unit 4 is connected to each electrode 63 of the E measuring cell 6 through an electric wire 63a and has an impedance converter 41 for recording and displaying the potential detected by the cell, and a pressure. A pressure amplifier 42 for recording and displaying the pressure detected by the detector 16 and a conductivity measuring device 43 necessary for calculating the zeta potential from the streaming potential (E) and the pressure (P) are incorporated. Has been done. Here, the streaming potential and the pressure are displayed by a meter (not shown) provided on the panel surface of the device, and are recorded as a graph of E-P by connecting the recorder 5 as shown. It has become. Further, the conductivity measuring device 43 measures the electric resistance of the flowing liquid. For the measurement, the conductivity measuring cell (λ measuring cell) 44 is connected to a connector on the front face of the amplifier (not shown), and the tip of the cell is placed in the flowing liquid. It is designed to be dipped on the side.

【0023】以上の構成に加え、この流動電位測定装置
1においては、本発明の特徴部分として、上述の流動液
容器9が耐圧気密構造の容器で構成されているととも
に、これに接続された気体通路13上に同通路を開閉す
る開閉バルブ18が設けられている。そして、図示のよ
うに耐圧気密構造の流動液容器9内に空間9aを残して
所定量の流動液8を収容した状態で、気体通路13上の
開閉バルブ18を開いて圧力源から同空間9a内に外気
圧より高い圧力を持ったN2 ガスを導入し、これによっ
て流動液容器9内の流動液8に一定圧を加えてから開閉
バルブ18を閉じ、その状態で空間9a内の圧力と外気
圧との圧力差により容器9内の流動液8をE測定セル6
の充填層62側へと流動させるとともに、その容器9内
からの液流出に伴って受動的に流動液8の圧力を低下さ
せるように構成されている。
In addition to the above-mentioned configuration, in this streaming potential measuring device 1, as a characteristic part of the present invention, the above-mentioned flowing liquid container 9 is composed of a container having a pressure-proof airtight structure, and a gas connected thereto. An opening / closing valve 18 that opens and closes the passage 13 is provided on the passage 13. Then, as shown in the figure, the open / close valve 18 on the gas passage 13 is opened to leave the space 9a in the fluid container 9 having a pressure-tight airtight structure and leave the space 9a in the space 9a from the pressure source. N 2 gas having a pressure higher than the external pressure is introduced into the inside, and thereby a constant pressure is applied to the flowing liquid 8 in the flowing liquid container 9, and then the opening / closing valve 18 is closed. Due to the pressure difference from the external pressure, the fluid 8 in the container 9 is moved to the E measuring cell 6
It is configured such that the pressure of the flowing liquid 8 is passively lowered as the liquid flows out of the container 9 while flowing into the filling layer 62 side.

【0024】次に、この実施例の作用を説明する。ま
ず、耐圧気密構造の流動液容器9内に空間9aを残して
所定量の流動液8を収容した状態で、気体通路13上の
開閉バルブ18を開き、圧力源から気体通路13を介し
て流動液容器9の空間9a内に外気圧よりも高い圧力を
持ったN2 ガスを導入すると、これによって空間9a内
および気体通路13内の圧力が外気圧よりも所定圧だけ
高くなる。
Next, the operation of this embodiment will be described. First, in a state in which a predetermined amount of the fluid 8 is stored in the fluid container 9 having a pressure-tight airtight structure, leaving a space 9a, the opening / closing valve 18 on the gas passage 13 is opened to flow from the pressure source through the gas passage 13. When N 2 gas having a pressure higher than the atmospheric pressure is introduced into the space 9a of the liquid container 9, the pressure in the space 9a and the gas passage 13 becomes higher than the atmospheric pressure by a predetermined pressure.

【0025】そこで、こうして流動液容器9内の流動液
8に外気圧よりも高い一定圧を加えてから開閉バルブ1
8を閉じ加圧状態を保持したうえで、液供給通路7上の
コック10を開くと、上記空間9a内の圧力と外気圧と
の圧力差により流動液容器9内の流動液8が液供給通路
7を通ってE測定セル6における充填層62内を流れ、
その結果、同セルの電極63、63間に流動電位が生じ
る。この流動電位は、インピーダンス変換器41を介し
て記録計5にY座標の位置データとして入力される。ま
た、このとき同時に流動液容器9の空間9a内の圧力す
なわち流動液8の圧力も圧力検出器16によって検出さ
れ、それが圧力用増幅器42を介して記録計5にX座標
の位置データとして入力される。その結果、流動電位お
よび圧力の測定値は、記録計5によって、Y軸が流動電
位(E)でX軸が圧力(P)を示すE−Pのグラフとし
て記録される。
Therefore, after the constant pressure higher than the external pressure is applied to the fluid 8 in the fluid container 9 in this way, the opening / closing valve 1
When the cock 10 on the liquid supply passage 7 is opened after closing 8 and maintaining the pressurized state, the liquid liquid 8 in the liquid liquid container 9 is supplied by the pressure difference between the pressure in the space 9a and the external pressure. Flowing in the packed bed 62 in the E measuring cell 6 through the passage 7,
As a result, a streaming potential is generated between the electrodes 63 of the cell. This streaming potential is input to the recorder 5 as position data of the Y coordinate via the impedance converter 41. At the same time, the pressure in the space 9a of the fluid container 9, that is, the pressure of the fluid 8 is also detected by the pressure detector 16, which is input to the recorder 5 as position data of the X coordinate via the pressure amplifier 42. To be done. As a result, the measured values of the streaming potential and the pressure are recorded by the recorder 5 as an E-P graph showing the streaming potential (E) on the Y axis and the pressure (P) on the X axis.

【0026】ところで、このようなE−Pの測定結果を
得る場合に、従来においては、気体通路13上に別途圧
力調整バルブを設け、これを開いていくことによって流
動液8に対する付加圧力を強制的に低下させていたた
め、圧力検出器16によって測定された付加圧力と、充
填層62内を流れる際にその抵抗分だけ圧力損失を生じ
ている実際の液圧力との間ひいては流動電位との間にズ
レが生じ、その結果、測定された流動電位Eと圧力Pと
の関係が曲線関係になることがあった。
By the way, in the case of obtaining such an E-P measurement result, conventionally, a pressure regulating valve is separately provided on the gas passage 13 and opened to force an additional pressure on the fluid 8. Between the added pressure measured by the pressure detector 16 and the actual liquid pressure that causes a pressure loss corresponding to the resistance when flowing in the packed bed 62, and thus between the streaming potential. There was a case where the measured streaming potential E and the pressure P had a curved relationship.

【0027】しかし、本実施例装置においては、上述の
ように流動液容器9の空間9a内に外気圧よりも高い一
定圧を加えた後に気体通路13上の開閉バルブ18が閉
じられ、その状態で同空間9a内の圧力と外気圧との圧
力差により流動液8を流動させるようになっているの
で、流動推進力と圧力損失による流動抵抗につりあった
分の流動液8が流れ、これに伴う流動液容器9内の体積
変化分に応じて圧力が低下することになる。したがっ
て、流動液8の圧力は、圧力損失に応じて受動的に変化
することとなり、液圧力Pと流動状態ひいては流動電位
Eとの間にズレが生じなくなる。これにより、E−Pの
測定結果として直線的な関係が得られることになる。
However, in the apparatus of this embodiment, as described above, the open / close valve 18 on the gas passage 13 is closed after a constant pressure higher than the atmospheric pressure is applied to the space 9a of the fluid container 9, and the state is maintained. Since the fluid 8 is made to flow by the pressure difference between the pressure in the space 9a and the outside air pressure, the fluid 8 corresponding to the flow propulsion force and the flow resistance due to the pressure loss flows. The pressure is reduced in accordance with the change in volume in the fluid container 9 that accompanies it. Therefore, the pressure of the flowing liquid 8 passively changes in accordance with the pressure loss, and a deviation does not occur between the liquid pressure P and the flowing state and thus the flowing potential E. As a result, a linear relationship is obtained as the E-P measurement result.

【0028】図2に、こうして測定された流動電位Eと
圧力Pとの測定結果の一例を従来装置による測定結果と
比較して示す。同図の(A)が従来装置によるもの、
(B)が本実施例によるものである。従来装置による
(A)の場合はE−Pが曲線関係となっているのに対
し、本実施例による(B)の場合は直線関係となってい
ることがわかる。
FIG. 2 shows an example of the measurement results of the streaming potential E and the pressure P thus measured, in comparison with the measurement results by the conventional device. (A) of the figure is based on the conventional device,
(B) is according to this embodiment. It can be seen that in the case of the conventional device (A), E-P has a curved relationship, whereas in the case of (B) according to the present embodiment, it has a linear relationship.

【0029】なお、同グラフに示した測定例は、流動液
容器の空間内の圧力、つまり流動液(この例では0.0
01M/lのKCl水溶液)に対する付加圧力が0.5
kg/cm2 以下となる範囲で測定を行ったものであ
る。したがって、圧力損失が大きな試料状態の場合、液
の流動が起こらなかったり測定に長時間を要したりする
といった問題を生じるおそれがあるので、試料の圧力損
失を比較的小さなものとするために試料としてゼオライ
ト系吸着剤を使用し、これを2mmのE測定セルに粗充
填したもので測定を行った。高い圧力損失をもつ状態の
試料の測定や測定時間を短くするためには、圧力損失に
対して十分大きな付加圧力と、それに耐える構造をもっ
た流動液容器を用いることが必要である。
The measurement example shown in the graph is the pressure in the space of the fluid container, that is, the fluid (0.0 in this example).
The applied pressure to the 01M / l KCl aqueous solution) is 0.5
The measurement was performed in the range of not more than kg / cm 2 . Therefore, in the case of a sample state with a large pressure loss, there is a possibility that liquid flow will not occur or measurement will take a long time, so in order to make the sample pressure loss relatively small A zeolite-based adsorbent was used as the material, and the adsorbent was roughly filled in a 2 mm E measurement cell, and the measurement was performed. In order to measure a sample with a high pressure loss and to shorten the measurement time, it is necessary to use a fluid pressure vessel having a structure that can withstand a pressure applied to the pressure drop and a pressure that is sufficiently large.

【0030】[0030]

【発明の効果】以上のように、本発明によれば、流動液
容器を耐圧気密構造とするとともに、その容器内に空間
を残して流動液を収容した状態で同空間に一定圧を加
え、その状態を保持することにより、液の流動圧を受動
的に変化させるようにしたから、流動液の圧力と流動状
態ひいては流動電位との間にズレを生じさせずに測定が
行える。したがって、本発明の場合、圧力損失は従来に
比べて問題とはならず、たとえ高い圧力損失を生じさせ
る試料の状態であっても、E−P関係として直線関係が
得られるので、測定者は測定中に手を放すことができる
とともに、測定者間のバラツキも生じなくなる。
As described above, according to the present invention, the fluid container has a pressure-tight airtight structure, and a constant pressure is applied to the fluid container in a state where the fluid is stored in the container while leaving a space. By maintaining the state, the fluid pressure of the liquid is passively changed, so that the measurement can be performed without causing a deviation between the pressure of the liquid fluid and the flow state, that is, the flow potential. Therefore, in the case of the present invention, the pressure loss is not a problem as compared with the prior art, and even if the sample state causes a high pressure loss, a linear relationship can be obtained as the E-P relationship. The hands can be released during the measurement, and there is no variation among the persons making the measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る流動電位測定装置の全体
構成を示す構成図である。
FIG. 1 is a configuration diagram showing an overall configuration of a streaming potential measuring device according to an embodiment of the present invention.

【図2】流動電位(E)および圧力(P)の測定結果の
一例を示すグラフで、(A)は従来装置によるもの、
(B)は上記実施例によるものである。
FIG. 2 is a graph showing an example of measurement results of streaming potential (E) and pressure (P), where (A) is obtained by a conventional device,
(B) is based on the above embodiment.

【符号の説明】[Explanation of symbols]

1・・・流動電位測定装置 6・・・流動電位測定セル(E測定セル) 8・・・流動液 9・・・流動液容器 9a・・・空間 13・・・気体通路 18・・・開閉バルブ 62・・・充填層 63・・・電極 1 ... Streaming potential measuring device 6 ... Streaming potential measuring cell (E measuring cell) 8 ... Streaming liquid 9 ... Streaming liquid container 9a ... Space 13 ... Gas passage 18 ... Opening / closing Valve 62 ... Filled layer 63 ... Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体試料の充填層を一対の電極で挟んで
なる流動電位測定セルと、その充填層に供給すべき流動
液を収容する流動液容器と、圧力源から供給される液流
動用の気体を流動液容器内に導入するための気体通路と
を有し、上記充填層内に所定方向に流動液を流したとき
に上記一対の電極間に発生する流動電位を測定する流動
電位測定装置であって、上記流動液容器が耐圧気密構造
の容器で構成されているとともに、上記気体通路には同
通路を開閉する開閉バルブが設けられており、上記耐圧
気密構造の流動容器内に空間を残して所定量の流動液を
収容した状態で、上記圧力源から同空間内に外気圧より
高い圧力を持った気体を導入した後に上記開閉バルブが
閉じられて加圧状態が保持されることにより、同空間内
の圧力と外気圧との圧力差により充填層内に流動液が流
れるとともに、その流動液容器内の流動液の流出に伴っ
て液流動圧が受動的に低下するよう構成されていること
を特徴とする流動電位測定装置。
1. A streaming potential measuring cell in which a packed bed of a solid sample is sandwiched between a pair of electrodes, a flowing liquid container for containing a flowing liquid to be supplied to the packed bed, and a liquid flow supplied from a pressure source. And a gas passage for introducing the gas into the fluid container, and a streaming potential measurement for measuring a streaming potential generated between the pair of electrodes when the fluid is flowed in a predetermined direction in the packed bed. In the device, the fluid container is formed of a pressure-tight airtight structure, and an opening / closing valve for opening and closing the gas passage is provided in the gas passage, and a space is provided in the pressure-tight airtight structure. In the state where a predetermined amount of flowing liquid is stored while leaving the above, the opening / closing valve is closed and a pressurized state is maintained after introducing a gas having a pressure higher than the atmospheric pressure into the space from the pressure source. The pressure in the same space and the external pressure A streaming potential measuring device, characterized in that the flowing liquid flows into the packed bed due to the pressure difference, and the flowing pressure of the flowing liquid in the flowing liquid container is passively lowered with the outflow of the flowing liquid.
JP33456893A 1993-12-28 1993-12-28 Streaming potential measurement device Expired - Lifetime JP3211530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33456893A JP3211530B2 (en) 1993-12-28 1993-12-28 Streaming potential measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33456893A JP3211530B2 (en) 1993-12-28 1993-12-28 Streaming potential measurement device

Publications (2)

Publication Number Publication Date
JPH07198655A true JPH07198655A (en) 1995-08-01
JP3211530B2 JP3211530B2 (en) 2001-09-25

Family

ID=18278863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33456893A Expired - Lifetime JP3211530B2 (en) 1993-12-28 1993-12-28 Streaming potential measurement device

Country Status (1)

Country Link
JP (1) JP3211530B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005011A1 (en) * 2001-07-06 2003-01-16 Metso Field Systems Oy Method for measuring of flow potential of a water solution and an apparatus for applying of method
WO2022196533A1 (en) * 2021-03-13 2022-09-22 国立大学法人神戸大学 Zeta potential measurement method and measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005011A1 (en) * 2001-07-06 2003-01-16 Metso Field Systems Oy Method for measuring of flow potential of a water solution and an apparatus for applying of method
WO2022196533A1 (en) * 2021-03-13 2022-09-22 国立大学法人神戸大学 Zeta potential measurement method and measurement device

Also Published As

Publication number Publication date
JP3211530B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
US4627270A (en) System for measuring the pore volume and permeability of very tight core plugs and method therefor
JP2005531753A (en) Equipment for determining the fineness of mineral fibers
US3349625A (en) Adsorption measuring apparatus and method
US4858463A (en) Process and apparatus for detecting leaks in sealed packages
JPH07198655A (en) Flow potential measuring device
US2970041A (en) Volume-variation measuring and recording apparatus
JP3166471B2 (en) Conductivity measurement method
CN203025067U (en) Low-osmosis rock sample permeability tester
JP2000039347A (en) Flowrate inspection device
JP3374522B2 (en) Streaming potential measurement device
US7082826B2 (en) Gas flow meter and method for measuring gas flow rate
JP3533815B2 (en) Method and apparatus for measuring zeta potential
JP3376721B2 (en) Streaming potential measurement method
JP3367234B2 (en) Streaming potential measurement method
JP2000019144A (en) Zeta potential measuring method and measuring device
JPH0230658B2 (en) FUNTAIHI HYOMENSEKIKEISOKUTEISOCHI
JPH1038835A (en) Method and device for zeta potential measurement
JPH0968514A (en) Measuring device for streaming potential
US1911853A (en) Apparatus for measuring gases
JPH1038836A (en) Flow potential measuring device
JPH0868773A (en) Flow potential measuring device
US5065634A (en) Method and apparatus for the automatic determination of surface area
Kamack Simple Air-Permeability Method for Measuring Surface Areas of Fine Powders
JPH09126855A (en) Method for measuring storage volume by gas
JPH0288963A (en) Device with gas flow controller, manufacture of said gas flow controller and method of measuring adsorption or desorption

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9