JPH07198250A - Oxygen and nitrogen gas manufacturing device - Google Patents

Oxygen and nitrogen gas manufacturing device

Info

Publication number
JPH07198250A
JPH07198250A JP5353135A JP35313593A JPH07198250A JP H07198250 A JPH07198250 A JP H07198250A JP 5353135 A JP5353135 A JP 5353135A JP 35313593 A JP35313593 A JP 35313593A JP H07198250 A JPH07198250 A JP H07198250A
Authority
JP
Japan
Prior art keywords
oxygen
liquid
nitrogen
heat
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5353135A
Other languages
Japanese (ja)
Other versions
JP3355009B2 (en
Inventor
Akira Yoshino
明 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Original Assignee
Daido Hoxan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc filed Critical Daido Hoxan Inc
Priority to JP35313593A priority Critical patent/JP3355009B2/en
Publication of JPH07198250A publication Critical patent/JPH07198250A/en
Application granted granted Critical
Publication of JP3355009B2 publication Critical patent/JP3355009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To provide a superior oxygen gas and nitrogen gas manufacturing device in which oxygen gas and nitrogen gas being pressurized can be manufactured at low cost and efficiently and a sufficient accommodation for unexpected increasing in demand can be obtained. CONSTITUTION:Liquid oxygen 71 accumulated at an upper tower 59 of a refining tower 58 is taken out, the oxygen is pressurized under its liquid state, thereafter the oxygen is inputted into a heat exchanger 57, then fed into the first expansion turbine 75 to perform a thermal insulating expansion operation and cold heat is generated by it. In addition, a part of liquid nitrogen is taken out of a second return flow pipe 64, the liquid nitrogen is pressurized under its liquid state, thereafter the liquid nitrogen is inputted into the heat exchanger 57, then fed into the second expansion turbine 93 to perform a thermal insulating expansion and cold heat is generated. Both generated cold heats are transmitted to the heat exchangers 56, 57 to cause these heat exchangers to act as a cold heat source for the device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸素ガスおよび窒素
ガスを加圧状態で得ることができる酸素・窒素ガス製造
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen / nitrogen gas production apparatus capable of obtaining oxygen gas and nitrogen gas under pressure.

【0002】[0002]

【従来の技術】従来から、酸素ガスおよび窒素ガスは、
空気分離装置を用い、窒素と酸素の沸点の差を利用し両
者を分離することにより製造されている。この種の典型
的な空気分離装置は、図3に示すように、原料空気吸入
管1から原料空気を吸入し、これを空気圧縮器2で圧縮
し、パイプ3を経て第1および第2の熱交換器4,5を
経由して冷却し、さらに、パイプ7を経由し、精留塔8
の下部塔8′内に、液化点近くまで冷却した状態で導入
するようになっている。この下部塔8′内においては、
空気の精留が行われ、酸素に富んだ液体空気が下部塔
8′の底部に溜まり、窒素は気体の状態で上方に移行
し、下部塔8′の塔頂からパイプ10によって導出され
る。導出された窒素ガスは、第2および第1の熱交換器
5,4で熱交換し、常温近傍の製品窒素ガスとなり、パ
イプ33から導出される。下部塔8′の塔頂から導出さ
れる窒素ガスの一部は、パイプ17を経て上部塔8″の
凝縮器16内に導入され、ここで液化され液体窒素とな
ってパイプ18から、下部塔8′内に流下しその還流液
となる。上部塔8″には、下部塔8′の底部から酸素に
富んだ液体空気が、膨脹弁12′付きのパイプ12によ
って導入される。上部塔8″では液体空気の精留が行わ
れ、液体酸素9が底部に溜まり、窒素に富んだ排ガスが
塔頂からパイプ21で導出される。この導出された排ガ
スは、第2の熱交換器5を経由し、パイプ24ならびに
弁25を経て膨脹タービン26に入り、ここで断熱膨脹
して装置に必要な寒冷を発生し、ついでパイプ29を経
て第2および第1の熱交換器5,4に導入され、ここで
寒冷を原料空気に付与し、それ自身はパイプ31から大
気中に放出される。パイプ29に設けられた弁32は、
上部塔8″内の液面により、膨脹タービン26の系路2
1に対する排ガスの供給量を制御する。液体酸素は、上
部塔8″の底部から、パイプ10′で導出され、第2お
よび第1の熱交換器5,4を経て気化し、酸素ガスとな
り、ついで加圧ポンプPで加圧され、加圧状態の製品酸
素ガスとなり、需要に供される。
2. Description of the Related Art Conventionally, oxygen gas and nitrogen gas are
It is manufactured by using an air separation device and separating them using the difference in boiling points of nitrogen and oxygen. As shown in FIG. 3, a typical air separation device of this type sucks raw material air from a raw material air suction pipe 1, compresses the raw material air with an air compressor 2, and passes the first air through a pipe 3 into a first and a second air. It is cooled via the heat exchangers 4 and 5, and further via the pipe 7 to the rectification tower 8
It is adapted to be introduced into the lower tower 8'of the above in a state of being cooled to near the liquefaction point. In this lower tower 8 ',
Fractionation of air takes place, liquid air enriched with oxygen collects at the bottom of the lower column 8 ', nitrogen moves upwards in the gaseous state and is discharged by pipe 10 from the top of the lower column 8'. The derived nitrogen gas is heat-exchanged in the second and first heat exchangers 5 and 4 to become product nitrogen gas near room temperature, and is discharged from the pipe 33. A part of the nitrogen gas discharged from the top of the lower tower 8 ′ is introduced into the condenser 16 of the upper tower 8 ″ through the pipe 17, and is liquefied here to become liquid nitrogen, and then from the pipe 18 to the lower tower. It flows down into 8'and becomes the reflux liquid. Oxygen-rich liquid air is introduced into the upper tower 8 "from the bottom of the lower tower 8'through a pipe 12 equipped with an expansion valve 12 '. In the upper tower 8 ″, rectification of liquid air is performed, liquid oxygen 9 is accumulated in the bottom, and nitrogen-rich exhaust gas is discharged from the top of the tower by a pipe 21. This discharged exhaust gas is used for the second heat exchange. Via the pipe 5, via the pipe 24 and the valve 25, into the expansion turbine 26, where it undergoes adiabatic expansion to generate the refrigeration necessary for the device, and then via pipe 29 the second and first heat exchangers 5, 5. 4, where cold is added to the feed air, which itself is released into the atmosphere through pipe 31. Valve 32 provided in pipe 29
Due to the liquid level in the upper tower 8 ″, the passage 2 of the expansion turbine 26
The amount of exhaust gas supplied to 1 is controlled. Liquid oxygen is led out from the bottom of the upper tower 8 ″ by a pipe 10 ′, vaporized through the second and first heat exchangers 5 and 4 to become oxygen gas, and then pressurized by the pressure pump P, It becomes the product oxygen gas under pressure and is used for demand.

【0003】[0003]

【発明が解決しようとする課題】この種の空気分離装置
において、製品ガスを加圧状態で得る必要がある場合、
製品として取り出されたガスを気体の状態で加圧ポンプ
により加圧しなければならない。しかしながら、上記ガ
スを気体の状態で加圧するためには、かなりのエネルギ
ーを必要とし、コスト高になるという難点がある。ま
た、上記装置では、通常、運転中の寒冷バランスが適正
に保たれるようコントロールされているため、予定外の
需要増大に応えるために単位時間当たりの原料空気供給
量を増大させても、膨脹タービンの発生寒冷量増大には
時間遅れを生じるため、製品酸素ガスの純度低下を招く
という問題もある。
In the air separation apparatus of this type, when it is necessary to obtain the product gas under pressure,
The gas taken out as a product must be pressurized in a gaseous state by a pressure pump. However, in order to pressurize the above-mentioned gas in a gas state, considerable energy is required and there is a drawback that the cost becomes high. In addition, in the above device, the cold balance during operation is usually controlled to be appropriately maintained, and therefore, even if the raw material air supply amount per unit time is increased in order to meet an unscheduled increase in demand, expansion is performed. Since there is a time delay in increasing the amount of cold generated by the turbine, there is also a problem that the purity of the product oxygen gas decreases.

【0004】この発明はこのような事情に鑑みなされた
もので、加圧状態の酸素ガスおよび窒素ガスを低コスト
で効率よく製造することができ、しかも予定外の需要増
大に対しても充分に応えることのできる、優れた酸素・
窒素ガス製造装置の提供をその目的とする。
The present invention has been made in view of the above circumstances, and it is possible to efficiently produce pressurized oxygen gas and nitrogen gas at low cost, and also to sufficiently meet an unplanned increase in demand. Excellent oxygen that can respond
The purpose is to provide a nitrogen gas production apparatus.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の酸素・窒素ガス製造装置は、原料空気を
圧縮する空気圧縮手段と、上記圧縮空気を超低温に冷却
する熱交換手段と、上記超低温に冷却された圧縮空気を
導入し液化分離により酸素を液化し窒素を気体の状態で
保持する下部精留塔と、上記下部精留塔の底部から取り
出された液体空気を塔内に導入し液化分離により酸素を
液化し底部に貯留する上部精留塔と、上記上部精留塔の
底部側から液体酸素を取り出す液体酸素取出路と、上記
液体酸素取出路の先端から延び熱交換手段を経由して上
記液体酸素を気化させ製品として取り出す製品酸素ガス
取出路と、上記上部精留塔内に設けられ上記下部精留塔
内の気体窒素の一部を導入し凝縮して液化する凝縮手段
と、この凝縮手段から取り出された液体窒素を上記下部
精留塔に還流させる液体窒素還流路と、上記液体窒素還
流路を経由した液体窒素の一部を取り出す液体窒素取出
路と、上記液体窒素取出路の先端から延び上記熱交換手
段を経由して上記液体窒素を気化させて製品窒素ガスと
して取り出す窒素ガス取出路とを備え、上記液体酸素取
出路に液体酸素加圧用の第1の加圧手段が設けられてい
るとともに、その加圧手段より下流側の流路が上記熱交
換手段を経由したのち第1の冷熱発生用膨脹器を経由し
再度上記熱交換手段を経由して寒冷を付与する構造に形
成されており、上記液体窒素取出路に液体窒素加圧用の
第2の加圧手段が設けられているとともに、その加圧手
段よりも下流側の流路が上記熱交換器を経由したのち第
2の冷熱発生用膨脹器を経由して再度上記熱交換手段を
経由して寒冷を付与する構造に形成されているという構
成をとる。
In order to achieve the above object, an oxygen / nitrogen gas production apparatus of the present invention comprises an air compression means for compressing raw material air, and a heat exchange means for cooling the compressed air to an ultralow temperature. , A lower rectification column for introducing compressed air cooled to the ultra-low temperature and liquefying oxygen by liquefaction separation to hold nitrogen in a gaseous state, and liquid air taken out from the bottom of the lower rectification column in the column An upper rectification column that introduces and liquefies oxygen by liquefaction separation and stores it in the bottom, a liquid oxygen take-out path that takes out liquid oxygen from the bottom side of the upper rectification tower, and a heat exchange means that extends from the tip of the liquid oxygen take-out path A product oxygen gas take-out path that vaporizes the liquid oxygen via the gas and takes it out as a product, and a part of the gaseous nitrogen in the lower rectification column provided in the upper rectification column is introduced and condensed to liquefy Means and this condensation means From the tip of the liquid nitrogen take-out path, the liquid nitrogen reflux path for returning the liquid nitrogen taken out from the liquid to the lower rectification column, the liquid nitrogen take-out path for taking out a part of the liquid nitrogen via the liquid nitrogen return path, And a nitrogen gas take-out passage for taking out the liquid nitrogen as product nitrogen gas by vaporizing the liquid nitrogen via the heat exchange means, and the liquid oxygen take-out passage is provided with a first pressurizing means for pressurizing liquid oxygen. In addition, the flow path on the downstream side of the pressurizing means is formed to have a structure in which cold is applied through the heat exchanging means and then through the first expander for generating cold heat and again through the heat exchanging means. In addition, a second pressurizing means for pressurizing liquid nitrogen is provided in the liquid nitrogen take-out path, and a flow path downstream of the pressurizing means passes through the heat exchanger and then the second pressurizing means. Re-expansion via the expander for cold heat generation A configuration that is formed in the structure to impart cold through the heat exchange means.

【0006】[0006]

【作用】すなわち、この発明の装置は、精留塔を上下2
塔に分け、上部精留塔(以下「上部塔」と略す)で生成
される液体酸素を取り出し、これを液体の状態で加圧
し、ついで熱交換器に送り、さらに冷熱発生用膨脹器に
導入し断熱膨脹させて寒冷を発生させ、その発生寒冷を
熱交換器に送り、装置の寒冷源としたものである。この
ように、酸素を液体の状態で加圧すると、気体の状態で
加圧する場合に比べて加圧コストを大幅に低減すること
ができる(例えば、酸素は1モルが、気体であれば2
2.4リットルであるに対し、液体では、酸素は16グ
ラムにすぎない)。しかも、この発明では、上記のよう
に酸素を液体の状態で加圧したのち熱交換器で気化さ
せ、この圧力を利用し膨脹タービン等の冷熱発生用膨脹
器の駆動させ寒冷を得ることから、上記酸素加圧のため
に用いるエネルギーを寒冷発生に援用することができ、
その結果、製品コストの引き下げを実現できるようにな
る。これが、この発明の最大の特徴である。そのうえ、
この発明では、下部精留塔(以下「下部塔」と略す)に
導入される還流液体窒素の一部を、製品窒素ガスを得る
ために取り出し、これについても液体の状態で加圧し、
ついで熱交換器で気化させ、これを冷熱発生用膨脹器に
導入し断熱膨脹させて寒冷を発生させ、その発生寒冷を
再度上記熱交換器に送り、装置の寒冷源に用いる。した
がって、製品窒素ガスについても、その加圧エネルギー
を、冷熱発生用膨脹器の駆動エネルギーに援用できるこ
とから、製品窒素ガスのコストも大幅に引き下げること
ができるようになる。
In other words, the apparatus of the present invention has a rectification tower which is placed at the upper and lower sides.
Divided into columns, liquid oxygen produced in the upper rectification column (hereinafter referred to as "upper column") is taken out, pressurized in a liquid state, then sent to a heat exchanger, and then introduced into an expander for cold heat generation. Adiabatic expansion is performed to generate cold, and the cold generated is sent to a heat exchanger to serve as a cold source for the device. Thus, pressurizing oxygen in a liquid state can significantly reduce the pressurization cost as compared with the case of pressurizing in a gas state (for example, 1 mol of oxygen is 2 mol if it is gas).
Liquid is only 16 grams of oxygen, compared to 2.4 liters). Moreover, in the present invention, as described above, oxygen is pressurized in a liquid state and then vaporized by a heat exchanger, and this pressure is used to drive an expander for cold heat generation such as an expansion turbine to obtain cold, The energy used for pressurizing oxygen can be used for cold generation,
As a result, the product cost can be reduced. This is the greatest feature of this invention. Besides,
In the present invention, a part of the reflux liquid nitrogen introduced into the lower rectification column (hereinafter abbreviated as "lower column") is taken out in order to obtain product nitrogen gas, which is also pressurized in a liquid state,
Then, it is vaporized by a heat exchanger, introduced into an expander for generating cold heat and adiabatically expanded to generate cold, and the cold generated is sent to the heat exchanger again and used as a cold source of the apparatus. Therefore, since the pressurizing energy of the product nitrogen gas can be applied to the driving energy of the expander for generating cold heat, the cost of the product nitrogen gas can be significantly reduced.

【0007】つぎに、この発明を実施例にもとづいて詳
しく説明する。
Next, the present invention will be described in detail based on embodiments.

【0008】図1はこの発明の一実施例を示している。
図において、51は原料空気を圧縮する空気圧縮器、5
2はドレーン分離器、53はフロン冷却器、54は2個
一組の吸着塔である。吸着塔54は、内部にモレキュラ
ーシーブが充填されていて、空気圧縮機51により圧縮
された空気中のH2 O,CO2 ,CO等の不純分を吸着
除去する。55は、不純分が吸着除去された圧縮空気を
送る圧縮空気供給パイプである。56は、第1の熱交換
器であり、吸着塔54により不純分が吸着除去された圧
縮空気が送りこまれる。57は、第2の熱交換器であ
り、第1の熱交換器56を経た圧縮空気が送り込まれ
る。58は、上部塔59と下部塔60を備えた精留塔で
ある。
FIG. 1 shows an embodiment of the present invention.
In the figure, 51 is an air compressor for compressing raw material air, 5
2 is a drain separator, 53 is a Freon cooler, and 54 is a set of two adsorption towers. The adsorption tower 54 is filled with a molecular sieve, and adsorbs and removes impurities such as H 2 O, CO 2 and CO in the air compressed by the air compressor 51. Reference numeral 55 is a compressed air supply pipe that sends compressed air from which impurities have been adsorbed and removed. Reference numeral 56 is a first heat exchanger to which compressed air from which impurities have been adsorbed and removed by the adsorption tower 54 is sent. 57 is a 2nd heat exchanger, and the compressed air which passed the 1st heat exchanger 56 is sent in. Reference numeral 58 is a rectification column including an upper column 59 and a lower column 60.

【0009】上記下部塔60は、第1および第2の熱交
換器56,57により超低温に冷却され、パイプ55を
経て送り込まれる圧縮空気をさらに冷却し、その一部を
液化し、液体空気61として底部に溜め、窒素を気体状
態で上部に溜めるようになっている。上部塔59の底部
側には、凝縮器62が内蔵されており、下部塔60の上
部に溜まる窒素ガスの一部が第1の還流用パイプ63を
介して送入される。この上部塔59内は、下部塔60内
よりも減圧状態になっており、下部塔の底部の貯留液体
空気(N2 50〜70%,O2 30〜50%)61が膨
脹弁65付きパイプ66で送り込まれ、気化して、上部
塔59の内部温度を液体窒素の沸点以下の温度に冷却す
るようになっている。この冷却により、凝縮器62内に
送り込まれた窒素ガスが液化する。この液体窒素は、第
2の還流用パイプ64を通って下部塔60の上部に還流
液として導入され、これが液体窒素溜め67を経て下部
塔60内を下方に流下し、下部塔60の底部から上昇す
る圧縮空気と向流的に接触し、冷却してその一部を液化
するようになっている。この過程で、圧縮空気中の高沸
点成分の酸素ガスは液化されて下部塔60の底部に溜ま
り、低沸点成分の窒素ガスが下部塔60の上部に溜ま
る。64aは気液分離器である。また、90は上記第2
の還流用パイプ64から分岐する液体窒素取出パイプ
で、上記還流する液体窒素の一部が取り出されるように
なっている。
The lower tower 60 is cooled to an ultra-low temperature by the first and second heat exchangers 56 and 57, further cools the compressed air sent through the pipe 55, liquefies a part of the compressed air, and the liquid air 61. As a result, nitrogen is stored in the bottom part, and nitrogen is stored in the upper part in a gas state. A condenser 62 is built in at the bottom side of the upper tower 59, and a part of the nitrogen gas accumulated in the upper part of the lower tower 60 is fed in through the first reflux pipe 63. The pressure inside the upper tower 59 is lower than that in the lower tower 60, and the stored liquid air (N 2 50 to 70%, O 2 30 to 50%) 61 at the bottom of the lower tower 61 has a pipe with the expansion valve 65. It is sent in at 66 and vaporized to cool the internal temperature of the upper tower 59 to a temperature below the boiling point of liquid nitrogen. By this cooling, the nitrogen gas sent into the condenser 62 is liquefied. This liquid nitrogen is introduced as a reflux liquid into the upper part of the lower tower 60 through the second reflux pipe 64, and this flows down through the liquid nitrogen reservoir 67 in the lower tower 60, and from the bottom of the lower tower 60. It is designed to come into contact with rising compressed air in a countercurrent manner and to cool and partly liquefy it. In this process, the high boiling point oxygen gas in the compressed air is liquefied and stored in the bottom portion of the lower tower 60, and the low boiling point nitrogen gas is stored in the upper portion of the lower tower 60. 64a is a gas-liquid separator. 90 is the second
A part of the liquid nitrogen that is refluxed is taken out by the liquid nitrogen extraction pipe that branches from the reflux pipe 64.

【0010】一方、上記下部塔60の底部に溜まる液体
空気は、パイプ66を経由して上部塔59の上部に送り
込まれるようになっており、この上部塔59内において
精留作用を受け、それによって液体空気中の高沸点成分
の酸素が液化して上部塔59の底部に液体酸素71とし
て溜まるようになっている。80は、この酸素ガス製造
装置の起動時、ならびに上部塔59内に液体酸素が少な
くなったときに、上部塔59内に液体酸素を供給するパ
イプである。このパイプ80は、図示していない液体酸
素貯蔵タンクから延びている。このタンクには、当該装
置でつくられた液体酸素または他の装置でつくられタン
クローリ等で輸送されてきた液体酸素が貯蔵されてい
る。81は、液体酸素供給コントロールバルブで、液面
計82の液面により、運転中の寒冷バランスが不足傾向
になったときに開弁して寒冷液体酸素を供給し、常時液
体酸素の液面を一定に制御し、精留のバランスをとるよ
うになっている。なお、窒素ガスを含む低沸点成分のガ
スは、上部塔59の塔頂からパイプ70によって排ガス
として導出され、第2および第1の熱交換器57,56
を経由し、大気中に放出されるようになっている。ま
た、上部塔59の底部に溜まった液体酸素71は、液体
酸素導出パイプ72により導出され、第1の加圧ポンプ
73によって加圧され、加圧された状態で第2の熱交換
器57内に導入されて気化し、製品酸素ガスとなって製
品酸素ガス取出パイプ74から取り出されるようになっ
ている。
On the other hand, the liquid air accumulated at the bottom of the lower tower 60 is sent to the upper part of the upper tower 59 through the pipe 66, and undergoes a rectification action in the upper tower 59, Oxygen of the high boiling point component in the liquid air is liquefied by this and is accumulated as liquid oxygen 71 at the bottom of the upper tower 59. Reference numeral 80 is a pipe for supplying liquid oxygen into the upper tower 59 when the oxygen gas production apparatus is started up and when the liquid oxygen in the upper tower 59 is low. The pipe 80 extends from a liquid oxygen storage tank (not shown). This tank stores liquid oxygen produced by the device or liquid oxygen produced by another device and transported by a tank truck or the like. Reference numeral 81 denotes a liquid oxygen supply control valve which is opened to supply cold liquid oxygen when the cold balance during operation tends to be insufficient due to the liquid level of the liquid level gauge 82 to constantly maintain the liquid level of liquid oxygen. It is controlled to be constant and balances rectification. The low boiling point component gas including nitrogen gas is discharged as exhaust gas from the top of the upper tower 59 by a pipe 70, and the second and first heat exchangers 57 and 56 are discharged.
It is designed to be released into the atmosphere via. Further, the liquid oxygen 71 accumulated at the bottom of the upper tower 59 is led out by the liquid oxygen lead-out pipe 72, pressurized by the first pressurizing pump 73, and in the second heat exchanger 57 in a pressurized state. And is vaporized into product oxygen gas, which is taken out from the product oxygen gas extraction pipe 74.

【0011】注目すべきは、この酸素ガス取出パイプ7
4には、第1の膨脹タービン75が設けられており、製
品酸素ガスの加圧圧力を駆動源として寒冷を発生するよ
うになっていることである。すなわち、製品酸素ガス
は、上記第1の膨脹タービンに入るまでが35kg/c
2 程度の圧力であったものが、内部で10kg/cm
2 まで膨脹し、熱力学的外部仕事を行うことにより著し
く低温になって寒冷を発生し、その状態で再び第2の熱
交換器57に入り、さらに第1の熱交換器56に入って
原料空気と熱交換して発生寒冷を原料空気に付与し、そ
れ自身は常温となり、製品酸素ガス取出パイプ74の先
端から製品として取り出されるようになっている。な
お、上記第1の膨脹タービン75は、加圧された製品酸
素ガスを駆動源とすることから、酸素と反応しにくい材
料、例えば(銅合金、例えば真ちゅう、ニッケル合金
(Ni−Cr−Fe)、ステンレス(SUS316
L)、アルミ合金(Al−Zn))で構成され、爆発等
の災害の発生が未然に防止される。
It should be noted that this oxygen gas extraction pipe 7
No. 4 is provided with a first expansion turbine 75, which produces cold by using the pressurizing pressure of the product oxygen gas as a driving source. That is, the product oxygen gas is 35 kg / c until it enters the first expansion turbine.
The pressure of about m 2 was changed to 10 kg / cm inside.
By expanding to 2 and performing a thermodynamic external work, the temperature becomes extremely low and cold is generated, and in that state, it enters the second heat exchanger 57 again and further enters the first heat exchanger 56 and enters the raw material. The generated cold is applied to the raw material air by exchanging heat with the air, and the raw material air itself becomes normal temperature and is taken out as a product from the tip of the product oxygen gas extraction pipe 74. Since the first expansion turbine 75 uses the pressurized product oxygen gas as a driving source, it is difficult to react with oxygen, for example, a material such as (copper alloy, for example brass, nickel alloy (Ni-Cr-Fe)). , Stainless steel (SUS316
L) and an aluminum alloy (Al-Zn)), the occurrence of a disaster such as an explosion is prevented.

【0012】一方、前記液体窒素取出パイプ90から取
り出された還流液体窒素の一部は、第2の加圧ポンプ9
1によって加圧され、加圧された状態で第2の熱交換器
57内に導入されて気化し、窒素ガスとなって製品窒素
ガス取出パイプ92に導入されるようになっている。こ
の製品窒素ガス取出パイプ92には、第2の膨脹タービ
ン93が設けられており、窒素ガスの加圧圧力を駆動源
とし、上記膨脹タービン75と同様、寒冷を発生するよ
うになっている。そして、上記窒素ガスは、再び第2の
熱交換器57に入り、さらに第1の熱交換器56に入っ
て原料空気と熱交換して発生寒冷を原料空気に付与し、
それ自身は常温となり、製品窒素ガス取出パイプ92の
先端から取り出されるようになっている。
On the other hand, a part of the refluxed liquid nitrogen taken out from the liquid nitrogen take-out pipe 90 is part of the second pressurizing pump 9.
It is pressurized by 1 and is introduced into the second heat exchanger 57 in a pressurized state to be vaporized into nitrogen gas, which is then introduced into the product nitrogen gas extraction pipe 92. The product nitrogen gas extraction pipe 92 is provided with a second expansion turbine 93, which uses the pressurization pressure of nitrogen gas as a drive source and produces cold as in the expansion turbine 75. Then, the nitrogen gas again enters the second heat exchanger 57, and further enters the first heat exchanger 56 to exchange heat with the raw material air to impart the generated cold to the raw material air,
The temperature of itself becomes room temperature, and the product nitrogen gas extraction pipe 92 is adapted to be taken out from the tip thereof.

【0013】なお、上記製品酸素ガス取出パイプ74の
先端側および上記製品窒素ガス取出パイプ92の先端側
には、それぞれフィン式熱交換器100が設けられてい
る。これは、万一熱交換機56,57における寒冷バラ
ンスが崩れた場合に、超低温の液体酸素あるいは液体窒
素がそのまま取り出されることを防止するためのもので
ある。
A fin type heat exchanger 100 is provided at the tip end side of the product oxygen gas take-out pipe 74 and the tip end side of the product nitrogen gas take-out pipe 92, respectively. This is to prevent the liquid oxygen or liquid nitrogen at ultra-low temperature from being taken out as it is if the cold balance in the heat exchangers 56 and 57 is lost.

【0014】この装置を用い、例えばつぎのようにして
製品酸素ガスおよび製品酸素ガスを製造することができ
る。すなわち、まず空気圧縮器51により原料空気を圧
縮し、その原料空気を、ドレーン分離器52,フロン冷
却器53,不純分除去用の吸着塔54,第1および第2
の熱交換器56,57を経由させ、超低温の状態に冷却
して精留塔58の下部塔60内に送入する。
Using this apparatus, product oxygen gas and product oxygen gas can be produced, for example, as follows. That is, first, the raw material air is compressed by the air compressor 51, and the raw material air is drained by the drain separator 52, the Freon cooler 53, the adsorption tower 54 for removing impurities, and the first and second portions.
Via the heat exchangers 56 and 57 of (1) and cooled to an ultra-low temperature state and fed into the lower column 60 of the rectification column 58.

【0015】上記下部塔60内では、この送入圧縮空気
を、液体窒素溜め67から溢流する液体窒素と向流的に
接触させて冷却し、一部を液化して下部塔の底部に液体
空気61として溜める。この過程において窒素と酸素の
沸点の差(酸素の沸点−183℃,窒素の沸点−196
℃)により圧縮空気中の高沸点成分である酸素が液化
し、窒素が気体のまま残る。そして、下部塔60の天井
部に溜まった窒素ガスの一部は、第1の還流用パイプ6
3を経由して上部塔59に設けられた凝縮器62内に導
入され、ここで上部塔59の底部に溜まった液体酸素に
より冷却されて液化され、第2の還流用パイプ64を経
由し、下部塔60の還流液溜め67に導出される。
In the lower tower 60, the compressed air introduced is brought into contact with the liquid nitrogen overflowing from the liquid nitrogen reservoir 67 countercurrently to cool it, and a part of it is liquefied to form a liquid at the bottom of the lower tower. Store as air 61. In this process, the difference between the boiling points of nitrogen and oxygen (boiling point of oxygen -183 ° C, boiling point of nitrogen -196)
(° C), oxygen, which is a high boiling point component in the compressed air, is liquefied and nitrogen remains as a gas. Then, a part of the nitrogen gas accumulated in the ceiling portion of the lower tower 60 is part of the first reflux pipe 6
3 is introduced into the condenser 62 provided in the upper tower 59, is cooled and liquefied by the liquid oxygen accumulated in the bottom of the upper tower 59, and is passed through the second reflux pipe 64. It is led out to the reflux liquid reservoir 67 of the lower tower 60.

【0016】上記上部塔59には、下部塔60の底部の
貯留液体空気が、パイプ66,膨脹弁65を経由し、断
熱膨脹状態で送入され、精留作用を受ける。そして、高
沸点成分である酸素が液化して底部に溜まり、窒素ガス
を含む低沸点成分ガスが排ガスとして上部塔59の塔頂
からパイプ70を経由して送出される。この送出された
排ガスは、第2および第1の熱交換器57,56を経由
し、常温近くに昇温され大気中に放出される。上部塔5
9の底部に溜まった液体酸素71は、パイプ72を経由
し、液体の状態で第1の加圧ポンプ73で加圧されたの
ち第2の熱交換器57に導入され、ここで熱交換してガ
ス化し、製品酸素ガス取出パイプ74に導入される。そ
して、導入された酸素ガスは、この製品酸素ガス取出パ
イプ74に設けられた第1の膨脹タービン75により断
熱膨脹して装置全体に必要な寒冷量を発生し、再び第2
の熱交換器57に入り、さらに第1の熱交換器56に入
って、両熱交換器57,56において原料空気と熱交換
し、それ自身は常温の酸素ガスとなり、製品酸素ガス取
出パイプ74の先端から取り出される。また、液体窒素
取出パイプ90によって取り出された還流する液体窒素
の一部は、液体の状態で第2の加圧ポンプ91で加圧さ
れたのち第2の熱交換器57に導入され、ここで熱交換
してガス化し、製品窒素ガス取出パイプ92に導入され
る。そして、導入された窒素ガスは、この製品窒素ガス
取出パイプ92に設けられた第2の膨脹タービン93に
より断熱膨脹して寒冷を発生し、再び第2の熱交換器5
7に入り、さらに第1の熱交換器56に入って、両熱交
換器57,56において原料空気と熱交換し、それ自身
は常温の窒素ガスとなり、製品窒素ガス取出パイプ74
の先端から取り出される。
The liquid air stored at the bottom of the lower tower 60 is fed into the upper tower 59 in adiabatic expansion state via a pipe 66 and an expansion valve 65, and is subjected to a rectification action. Then, oxygen, which is a high-boiling point component, is liquefied and accumulated at the bottom, and low-boiling point component gas containing nitrogen gas is sent out as exhaust gas from the top of the upper column 59 via the pipe 70. The discharged exhaust gas passes through the second and first heat exchangers 57 and 56, is heated to near room temperature, and is discharged into the atmosphere. Upper tower 5
The liquid oxygen 71 collected at the bottom of 9 is passed through the pipe 72, pressurized in the liquid state by the first pressurizing pump 73, and then introduced into the second heat exchanger 57, where heat is exchanged. It is gasified and introduced into the product oxygen gas extraction pipe 74. Then, the introduced oxygen gas is adiabatically expanded by the first expansion turbine 75 provided in the product oxygen gas extraction pipe 74 to generate the amount of cold required for the entire device, and again to the second expansion turbine 75.
Into the first heat exchanger 56 and exchanges heat with the raw material air in both the heat exchangers 57, 56, and becomes itself oxygen gas at room temperature, and the product oxygen gas extraction pipe 74 Taken out from the tip of. A part of the refluxed liquid nitrogen extracted by the liquid nitrogen extraction pipe 90 is pressurized in the liquid state by the second pressure pump 91 and then introduced into the second heat exchanger 57, where It is gasified by heat exchange and introduced into the product nitrogen gas extraction pipe 92. Then, the introduced nitrogen gas is adiabatically expanded by the second expansion turbine 93 provided in the product nitrogen gas extraction pipe 92 to generate cold, and again the second heat exchanger 5
7 and further into the first heat exchanger 56, where heat is exchanged with the raw material air in both heat exchangers 57 and 56, and the nitrogen gas itself becomes room temperature, and the product nitrogen gas extraction pipe 74
Taken out from the tip of.

【0017】したがって、この装置によれば、液体酸素
を、液体のまま加圧しているため、低コストで加圧製品
酸素ガスを得ることができる。しかも、上記加圧液体酸
素を気化させたのち第1の膨脹タービン75に導入する
ため、膨脹タービン75に入る前のガス圧が高くなり、
それによって断熱膨脹の効率を大幅に向上させることが
できる。この場合、製品酸素ガスを加圧するための加圧
ポンプ73の加圧圧力を援用できることから、エネルギ
ーの有効活用を実現でき、製品加圧ガスのコストをかな
り引き下げることができるようになる。一方、製品窒素
ガスの取り出しラインについても、上記と同様の構成が
取られていることから、製品窒素ガスのコストもかなり
引き下げることが可能となる。
Therefore, according to this apparatus, since the liquid oxygen is pressurized as it is, the pressurized product oxygen gas can be obtained at low cost. Moreover, since the pressurized liquid oxygen is vaporized and then introduced into the first expansion turbine 75, the gas pressure before entering the expansion turbine 75 becomes high,
As a result, the efficiency of adiabatic expansion can be greatly improved. In this case, since the pressurizing pressure of the pressurizing pump 73 for pressurizing the product oxygen gas can be utilized, effective use of energy can be realized and the cost of the product pressurizing gas can be considerably reduced. On the other hand, since the product nitrogen gas take-out line has the same configuration as described above, it is possible to considerably reduce the cost of the product nitrogen gas.

【0018】なお、上記実施例の装置では、液面計82
を設け、液体酸素供給コントロールバルブ81を制御し
ている。したがって、製品酸素ガスまたは製品窒素ガス
の需要量が急激に増加し、それに応じて原料空気供給量
を増大させたときに、上記両膨脹タービン75,93に
よっては、発生寒冷を迅速に増加させることができない
が、このとき、上記液面計82からの出力信号によりコ
ントロールバルブ81が作動し、迅速に液体酸素を上部
塔59に供給し、寒冷不足を解消する。
In the apparatus of the above embodiment, the liquid level gauge 82
Is provided to control the liquid oxygen supply control valve 81. Therefore, when the demand amount of the product oxygen gas or the product nitrogen gas sharply increases and the raw material air supply amount is correspondingly increased, the cold generation generated can be rapidly increased by the expansion turbines 75 and 93. However, at this time, the control valve 81 is actuated by the output signal from the liquid level gauge 82 to quickly supply the liquid oxygen to the upper tower 59 to eliminate the lack of cold.

【0019】ただし、上記実施例では、液面計82によ
って上部塔59内の液体酸素の液面高さを読み取るよう
しているが、液面計82を下部塔60側に設け、下部塔
60内に溜まる液体空気の液面高さを読み取るようにし
ても差し支えはない。
However, in the above embodiment, the liquid level gauge 82 reads the liquid level height of the liquid oxygen in the upper tower 59. However, the liquid level gauge 82 is provided on the lower tower 60 side and the lower tower 60 is provided. There is no problem even if the liquid level height of the liquid air accumulated inside is read.

【0020】また、上記実施例では、液体窒素の一部
を、第2の還流用パイプ64から取り出すようにしてい
るが、液体窒素溜め67から取り出すようにしても差し
支えはない。
In the above embodiment, a part of the liquid nitrogen is taken out from the second reflux pipe 64, but it may be taken out from the liquid nitrogen reservoir 67.

【0021】図2は、この発明の他の実施例の装置を示
している。この装置は、第1の加圧ポンプ73を密封ケ
ーシング73cに収容し、このケーシング73c内に液
体酸素を導入し加圧してパイプ72に導出するようにし
ている。そして、上記ケーシング73cの上部から気化
して生成した酸素ガスを上部塔59に戻す戻しパイプ2
3bが設けられている。また、第2の加圧ポンプ91を
密封ケーシング91cに収容し、このケーシング91c
内に液体窒素を導入し加圧してパイプ90に導出するよ
うにしている。そして、上記ケーシング91cの上部か
ら気化して生成した窒素ガスを下部塔60に戻す戻しパ
イプ91bが設けられている。それ以外の部分は図1の
装置と同じである。このように構成することにより、ガ
ス気泡を吸い込んで第1の加圧ポンプ73および2の加
圧ポンプ91が空転する(ガス噛み現象)という事態の
発生が防止されるようになる。
FIG. 2 shows an apparatus according to another embodiment of the present invention. In this device, the first pressurizing pump 73 is housed in a hermetically sealed casing 73c, and liquid oxygen is introduced into the casing 73c to pressurize it and lead it out to the pipe 72. Then, the return pipe 2 that returns the oxygen gas vaporized from the upper portion of the casing 73c to the upper tower 59.
3b is provided. Further, the second pressurizing pump 91 is housed in the hermetically-sealed casing 91c.
Liquid nitrogen is introduced into the inside, pressurized, and led out to the pipe 90. A return pipe 91b for returning the nitrogen gas vaporized from the upper portion of the casing 91c to the lower tower 60 is provided. The other parts are the same as those of the apparatus shown in FIG. With this configuration, it is possible to prevent the occurrence of a situation in which gas bubbles are sucked and the first pressure pumps 73 and 2 of the first pressure pump 91 run idle (gas trapping phenomenon).

【0022】[0022]

【発明の効果】以上のように、この発明の酸素・窒素ガ
ス製造装置は、精留塔を上下2塔に分け、上部塔で生成
される液体酸素を取り出し、これを液体の状態で加圧
し、ついで熱交換器に送り、さらに冷熱発生用膨脹器に
導入し断熱膨脹させて寒冷を発生させ、その発生寒冷を
熱交換器に送り、装置の寒冷源としたものである。この
ように、酸素を液体の状態で加圧すると、気体の状態で
加圧する場合に比べて加圧コストを大幅に低減すること
ができる。しかも、この発明では、上記のように酸素を
液体の状態で加圧したのち熱交換器で気化させ、この圧
力を利用し膨脹タービン等の冷熱発生用膨脹器の駆動さ
せ寒冷を得ることから、上記酸素加圧のために用いるエ
ネルギーを寒冷発生に援用することができ、その結果、
製品コストの引き下げを実現できるようになる。これ
が、この発明の最大の特徴である。そのうえ、この発明
では、下部塔に導入される還流液体窒素の一部を、製品
窒素ガスを得るために取り出し、これについても液体の
状態で加圧し、ついで熱交換器で気化させ、これを冷熱
発生用膨脹器に導入し断熱膨脹させて寒冷を発生させ、
その発生寒冷を再度上記熱交換器に送り、装置全体の寒
冷源に用いる。したがって、製品窒素ガスについても、
その加圧エネルギーを、冷熱発生用膨脹器の駆動エネル
ギーに援用できることから、製品窒素ガスのコストも大
幅に引き下げることができるようになる。これらの利点
から、この発明の装置は、鉄鋼製造分野、化学工業分
野、火力発電分野等、広い分野で有効に用いられる。
As described above, in the oxygen / nitrogen gas production apparatus of the present invention, the rectification column is divided into upper and lower two columns, the liquid oxygen produced in the upper column is taken out, and pressurized in a liquid state. Then, it is sent to a heat exchanger, further introduced into an expander for generating cold heat, adiabatically expanded to generate cold, and the cold generated is sent to the heat exchanger to serve as a cold source for the device. As described above, pressurizing oxygen in a liquid state can significantly reduce the pressurization cost as compared with pressurizing in a gas state. Moreover, in the present invention, as described above, oxygen is pressurized in a liquid state and then vaporized by a heat exchanger, and this pressure is used to drive an expander for cold heat generation such as an expansion turbine to obtain cold, The energy used for oxygen pressurization can be used for cold generation, and as a result,
Product costs can be reduced. This is the greatest feature of this invention. Moreover, in the present invention, a part of the refluxed liquid nitrogen introduced into the lower column is taken out in order to obtain product nitrogen gas, which is also pressurized in a liquid state, and then vaporized in a heat exchanger to cool it. Introduced into a generating inflator and adiabatic expansion to generate cold,
The generated cold is sent to the heat exchanger again and used as a cold source for the entire apparatus. Therefore, for product nitrogen gas,
Since the pressurizing energy can be applied to the driving energy of the expander for generating cold heat, the cost of the product nitrogen gas can be significantly reduced. Due to these advantages, the device of the present invention can be effectively used in a wide range of fields such as steel manufacturing fields, chemical industry fields, and thermal power generation fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】この発明の他の実施例の構成図である。FIG. 2 is a configuration diagram of another embodiment of the present invention.

【図3】従来例の構成図である。FIG. 3 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

51 空気圧縮器 56,57 熱交換器 58 精留塔 59 上部塔 60 下部塔 61 液体空気 71 液体酸素 72 液体酸素取出パイプ 73 第1の加圧ポンプ 74 製品酸素ガス取出パイプ 75 第1の膨脹タービン 90 液体窒素取出パイプ 91 第2の加圧ポンプ 92 製品窒素ガス取出パイプ 93 第2の膨脹タービン 51 Air Compressor 56, 57 Heat Exchanger 58 Fractionation Tower 59 Upper Tower 60 Lower Tower 61 Liquid Air 71 Liquid Oxygen 72 Liquid Oxygen Extraction Pipe 73 First Pressurizing Pump 74 Product Oxygen Gas Extraction Pipe 75 First Expansion Turbine 90 Liquid nitrogen extraction pipe 91 Second pressurizing pump 92 Product nitrogen gas extraction pipe 93 Second expansion turbine

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年3月3日[Submission date] March 3, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料空気を圧縮する空気圧縮手段と、上
記圧縮空気を超低温に冷却する熱交換手段と、上記超低
温に冷却された圧縮空気を導入し液化分離により酸素を
液化し窒素を気体の状態で保持する下部精留塔と、上記
下部精留塔の底部から取り出された液体空気を塔内に導
入し液化分離により酸素を液化し底部に貯留する上部精
留塔と、上記上部精留塔の底部側から液体酸素を取り出
す液体酸素取出路と、上記液体酸素取出路の先端から延
び熱交換手段を経由して上記液体酸素を気化させ製品と
して取り出す製品酸素ガス取出路と、上記上部精留塔内
に設けられ上記下部精留塔内の気体窒素の一部を導入し
凝縮して液化する凝縮手段と、この凝縮手段から取り出
された液体窒素を上記下部精留塔に還流させる液体窒素
還流路と、上記液体窒素還流路を経由した液体窒素の一
部を取り出す液体窒素取出路と、上記液体窒素取出路の
先端から延び上記熱交換手段を経由して上記液体窒素を
気化させて製品窒素ガスとして取り出す窒素ガス取出路
とを備え、上記液体酸素取出路に液体酸素加圧用の第1
の加圧手段が設けられているとともに、その加圧手段よ
り下流側の流路が上記熱交換手段を経由したのち第1の
冷熱発生用膨脹器を経由し再度上記熱交換手段を経由し
て寒冷を付与する構造に形成されており、上記液体窒素
取出路に液体窒素加圧用の第2の加圧手段が設けられて
いるとともに、その加圧手段よりも下流側の流路が上記
熱交換器を経由したのち第2の冷熱発生用膨脹器を経由
して再度上記熱交換手段を経由して寒冷を付与する構造
に形成されていることを特徴とする酸素・窒素ガス製造
装置。
1. An air compression means for compressing raw material air, a heat exchange means for cooling the compressed air to an ultra low temperature, and a compressed air cooled to the ultra low temperature to introduce oxygen and liquefy oxygen to liquefy nitrogen by liquefaction separation. Lower rectification column to hold in a state, an upper rectification column to introduce liquid air taken out from the bottom of the lower rectification column into the column to liquefy and store oxygen in the bottom by liquefaction separation, and the upper rectification A liquid oxygen take-out passage for taking out liquid oxygen from the bottom side of the column, a product oxygen gas take-out passage extending from the tip of the liquid oxygen take-out passage to take out the liquid oxygen as a product through vaporization of the liquid oxygen, and the upper refinement. Condensing means provided in the distillation column for introducing and condensing a part of the gaseous nitrogen in the lower rectification column to liquefy, and liquid nitrogen for returning the liquid nitrogen taken out from the condensation means to the lower rectification column. Reflux path and above liquid Nitrogen gas taken out as a product nitrogen gas by evaporating the liquid nitrogen through the liquid nitrogen take-out path that takes out a part of the liquid nitrogen via the nitrogen reflux path and the tip of the liquid nitrogen take-out path through the heat exchange means. And a first outlet for pressurizing the liquid oxygen in the liquid oxygen outlet.
The pressurizing means is provided, and the flow path on the downstream side of the pressurizing means passes through the heat exchanging means, and then through the first expander for cold heat generation and again through the heat exchanging means. The liquid nitrogen take-out path is provided with a second pressurizing means for pressurizing liquid nitrogen, and a flow path downstream of the pressurizing means is provided with the heat exchange. An oxygen / nitrogen gas production apparatus having a structure in which cold is applied through the heat expansion means after passing through the second heat expansion means after passing through the second heat expansion device.
【請求項2】 上記上部精留塔に液体酸素を供給する液
体酸素貯蔵手段と、上記上部精留塔または下部精留塔の
液面が一定になるよう上記液体酸素貯蔵手段からの供給
液体酸素量を制御する制御手段が設けられている請求項
1記載の酸素・窒素ガス製造装置。
2. Liquid oxygen storage means for supplying liquid oxygen to the upper rectification column, and liquid oxygen supply from the liquid oxygen storage means so that the liquid level of the upper rectification column or the lower rectification column becomes constant. The oxygen / nitrogen gas production apparatus according to claim 1, further comprising control means for controlling the amount.
【請求項3】 上記第1の冷熱発生用膨脹器が、酸素に
対する反応性の小さい材料で構成された膨脹タービンで
ある請求項1記載の酸素・窒素ガス製造装置。
3. The oxygen / nitrogen gas production apparatus according to claim 1, wherein the first expander for cold heat generation is an expansion turbine made of a material having a low reactivity with oxygen.
JP35313593A 1993-12-29 1993-12-29 Oxygen and nitrogen gas production equipment Expired - Fee Related JP3355009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35313593A JP3355009B2 (en) 1993-12-29 1993-12-29 Oxygen and nitrogen gas production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35313593A JP3355009B2 (en) 1993-12-29 1993-12-29 Oxygen and nitrogen gas production equipment

Publications (2)

Publication Number Publication Date
JPH07198250A true JPH07198250A (en) 1995-08-01
JP3355009B2 JP3355009B2 (en) 2002-12-09

Family

ID=18428798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35313593A Expired - Fee Related JP3355009B2 (en) 1993-12-29 1993-12-29 Oxygen and nitrogen gas production equipment

Country Status (1)

Country Link
JP (1) JP3355009B2 (en)

Also Published As

Publication number Publication date
JP3355009B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
JP4331460B2 (en) Method and apparatus for producing krypton and / or xenon by low temperature air separation
US5098456A (en) Cryogenic air separation system with dual feed air side condensers
JP4728219B2 (en) Method and system for producing pressurized air gas by cryogenic distillation of air
CN110307695B (en) Method and device for manufacturing product nitrogen and product argon
JPH07174461A (en) Manufacture of gaseous oxygen product at supply pressure by separating air
AU680472B2 (en) Single column process and apparatus for producing oxygen at above atmospheric pressure
JPH0735470A (en) Method and device for manufacturing superhigh purity dinitrogen monoxide
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
KR0158730B1 (en) Pumped liquid oxygen method and apparatus
JPH04227458A (en) Cryogenic air separating system for forming boosted product gas
JP2636949B2 (en) Improved nitrogen generator
JP4401999B2 (en) Air separation method and air separation device
JP2000329456A (en) Method and device for separating air
JPH10306976A (en) Method of distilling air material at low temperature
US4530708A (en) Air separation method and apparatus therefor
JP2007003097A (en) Nitrogen generating method and device using the same
JP2686039B2 (en) Oxygen gas production equipment
EP2507568A2 (en) Krypton xenon recovery from pipeline oxygen
JP3476525B2 (en) Oxygen and nitrogen gas production equipment
JP3476524B2 (en) Oxygen and nitrogen gas production equipment
JPH07198250A (en) Oxygen and nitrogen gas manufacturing device
JPH07198253A (en) Oxygen and nitrogen gas manufacturing device
JP2859663B2 (en) Nitrogen gas and oxygen gas production equipment
JP3056979B2 (en) Quick start air separation equipment
KR100332436B1 (en) Oxygen Gas Manufacturing Equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020903

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees