JP2686039B2 - Oxygen gas production equipment - Google Patents
Oxygen gas production equipmentInfo
- Publication number
- JP2686039B2 JP2686039B2 JP5283575A JP28357593A JP2686039B2 JP 2686039 B2 JP2686039 B2 JP 2686039B2 JP 5283575 A JP5283575 A JP 5283575A JP 28357593 A JP28357593 A JP 28357593A JP 2686039 B2 JP2686039 B2 JP 2686039B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- liquid
- tower
- air
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、酸素ガスを加圧状態
で得ることができる酸素ガス製造装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen gas production apparatus capable of obtaining oxygen gas under pressure.
【0002】[0002]
【従来の技術】従来から、酸素ガスは、空気分離装置を
用い、窒素と酸素の沸点の差を利用し両者を分離するこ
とにより製造されている。この種の典型的な空気分離装
置は、図3に示すように、原料空気吸入管1から原料空
気を吸入し、これを空気圧縮器2で圧縮し、パイプ3を
経て第1および第2の熱交換器4,5を経由して冷却
し、さらに、パイプ7を経由し、精留塔8の下部塔8’
内に、液化点近くまで冷却した状態で導入するようにな
っている。この下部塔8’内においては、空気の精留が
行われ、酸素に富んだ液体空気が下部塔8’の底部に溜
まり、窒素は気体の状態で上方に移行し、下部塔8’の
塔頂からパイプ10によって導出される。導出された窒
素ガスは、第2および第1の熱交換器5,4で熱交換
し、常温近傍の製品窒素ガスとなり、パイプ33から導
出される。下部塔8’の塔頂から導出される窒素ガスの
一部は、パイプ17を経て上部塔8”の凝縮器16内に
導入され、ここで液化され液体窒素となってパイプ18
から、下部塔8’内に流下しその還流液となる。上部塔
8”には、下部塔8’の底部から酸素に富んだ液体空気
が、膨脹弁12’付きのパイプ12によって、導入され
る。上部塔8”では液体空気の精留が行われ、液体酸素
9が底部に溜まり、窒素に富んだ排ガスが塔頂からパイ
プ21で導出される。この導出された排ガスは、第2の
熱交換器5を経由し、パイプ24ならびに弁25を経て
膨脹タービン26に入り、ここで断熱膨脹して装置に必
要な寒冷を発生し、ついでパイプ29を経て第2および
第1の熱交換器5,4に導入され、ここで寒冷を原料空
気に付与し、それ自身はパイプ31から大気中に放出さ
れる。パイプ29に設けられた弁32は、上部塔8”内
の液面により、膨脹タービン26の系路21に対する排
ガスの供給量を制御する。液体酸素は、上部塔8”の底
部から、パイプ10’で導出され、第2および第1の熱
交換器5,4を経て気化し、酸素ガスとなり、ついで加
圧ポンプPで加圧され、加圧状態の製品酸素ガスとな
り、需要に供される。2. Description of the Related Art Oxygen gas has hitherto been produced by using an air separation device and separating them by utilizing the difference in boiling points of nitrogen and oxygen. As shown in FIG. 3, a typical air separation device of this type sucks raw material air from a raw material air suction pipe 1, compresses the raw material air with an air compressor 2, and passes the first air through a pipe 3 into a first air pipe and a second air pipe. It is cooled via the heat exchangers 4 and 5, and further via the pipe 7 to the lower tower 8'of the rectification tower 8.
It is designed to be introduced into the inside in a state of being cooled to near the liquefaction point. In this lower tower 8 ', rectification of air is carried out, oxygen-rich liquid air accumulates at the bottom of the lower tower 8', and nitrogen moves upward in the gaseous state, and the tower of the lower tower 8 ' It is led out by a pipe 10 from the top. The derived nitrogen gas is heat-exchanged in the second and first heat exchangers 5 and 4 to become product nitrogen gas near room temperature, and is discharged from the pipe 33. A part of the nitrogen gas discharged from the top of the lower tower 8 ′ is introduced into the condenser 16 of the upper tower 8 ″ via the pipe 17, and is liquefied therein to become liquid nitrogen, and the pipe 18
From this, it flows down into the lower tower 8 ', and becomes the reflux liquid. Oxygen-rich liquid air is introduced into the upper tower 8 "from the bottom of the lower tower 8'through a pipe 12 with an expansion valve 12 '. In the upper tower 8", liquid air is rectified. Liquid oxygen 9 collects at the bottom, and nitrogen-rich exhaust gas is discharged from the top of the tower through a pipe 21. The discharged exhaust gas passes through the second heat exchanger 5, passes through the pipe 24 and the valve 25, and enters the expansion turbine 26 where it undergoes adiabatic expansion to generate the cold required for the device, and then the pipe 29. After that, it is introduced into the second and first heat exchangers 5 and 4, where cold is added to the raw material air, which itself is discharged from the pipe 31 to the atmosphere. A valve 32 provided in the pipe 29 controls the amount of exhaust gas supplied to the system passage 21 of the expansion turbine 26 by means of the liquid level in the upper tower 8 ". Liquid oxygen is supplied from the bottom of the upper tower 8" to the pipe 10 ". ', And is vaporized through the second and first heat exchangers 5 and 4 to become oxygen gas, which is then pressurized by the pressurizing pump P to become product oxygen gas in a pressurized state, which is supplied for demand. .
【0003】[0003]
【発明が解決しようとする課題】この種の空気分離装置
において、製品ガスを加圧状態で得ようとする場合に
は、ガスを気体の状態で加圧ポンプにより加圧しなけれ
ばならない。しかしながら、上記ガスを気体の状態で加
圧するためには、かなりのエネルギーを必要とし、コス
ト高になるという難点がある。In order to obtain a product gas in a pressurized state in this type of air separation apparatus, the gas must be pressurized in a gaseous state by a pressure pump. However, in order to pressurize the above-mentioned gas in a gas state, considerable energy is required and there is a drawback that the cost becomes high.
【0004】この発明はこのような事情に鑑みなされた
もので、加圧状態の酸素ガスを低コストで効率よく製造
しうる酸素ガス製造装置の提供をその目的とする。The present invention has been made in view of the above circumstances, and an object thereof is to provide an oxygen gas production apparatus capable of efficiently producing pressurized oxygen gas at low cost.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
め、この発明は、原料空気を圧縮する空気圧縮手段と、
上記圧縮空気を超低温に冷却する熱交換手段と、上記超
低温に冷却された圧縮空気を導入し液化分離により酸素
を液化し窒素を気体の状態で保持する下部塔と、上記下
部塔の底部から取り出された液体空気を導入し液化分離
により酸素を液化し底部に貯留する上部塔と、上記上部
塔の底部から取り出された液体酸素を冷媒として上記熱
交換手段に案内し熱交換により気化させ気化酸素にする
液体酸素取出路と、上記液体酸素取出路の先端から延び
上記熱交換手段を経由し上記気化酸素を昇温させ製品化
する製品酸素ガス取出路を備え、上記液体酸素取出路に
その取出路を通る液体酸素を加圧する加圧手段が設けら
れているとともに、上記熱交換手段よりも上流側の上記
製品酸素ガス取出路の部分にその取出路を通る気化酸素
を利用する冷熱発生用膨脹器が設けられているという構
成をとる。To achieve the above object, the present invention provides an air compression means for compressing raw material air,
A heat exchange means for cooling the compressed air to an ultra-low temperature, a lower tower for introducing the compressed air cooled to the ultra-low temperature to liquefy oxygen by liquefaction separation and hold nitrogen in a gaseous state, and a bottom tower of the lower tower. Introducing liquid air that has been liquefied and liquefying and liquefying oxygen to liquefy and store it in the bottom, and liquid oxygen taken out from the bottom of the upper tower as a refrigerant is guided to the heat exchange means and vaporized by heat exchange to produce vaporized oxygen. And a product oxygen gas take-out path extending from the tip of the liquid oxygen take-out path to increase the temperature of the vaporized oxygen through the heat exchanging means to produce a product, and take out the liquid oxygen take-out path to the liquid oxygen take-out path. There is provided a pressurizing means for pressurizing the liquid oxygen passing through the passage, and at the part of the product oxygen gas taking-out passage upstream of the heat exchanging means, cold heat generation utilizing vaporized oxygen passing through the taking-out passage. A configuration that use expander is provided.
【0006】[0006]
【作用】すなわち、この発明の酸素ガス製造装置は、精
留塔の上部塔に溜まる液体酸素を取り出し、これを液体
の状態で加圧し、ついで熱交換器に送り、さらに膨脹タ
ービンに導入し断熱膨脹させて寒冷を発生させ、その発
生寒冷を熱交換器に送り、装置全体の寒冷源とする。こ
のように、この発明では、酸素を液体の状態で加圧する
ことから、気体の状態で加圧する場合に比べて加圧コス
トが大幅に低減(例えば、酸素は1モルが、気体であれ
ば22.4リットルであるに対し、液体では16グラム
にすぎない)する。また、この発明では、上記のように
酸素を液体の状態で加圧し、これを熱交換器を経由して
気化させ、この気化酸素を膨脹タービン等の冷熱発生用
膨脹器の駆動源として利用することから、膨脹タービン
に入る前の酸素ガスの圧力が大きくなり、それによって
断熱膨脹の効率を大幅に向上させることができるように
なる。その結果、膨脹タービン等の冷熱発生用膨脹器に
よる発生寒冷のコストを大幅に下げることが可能とな
り、製品酸素ガスのコストを引き下げることができるよ
うになる。That is, the oxygen gas producing apparatus of the present invention takes out liquid oxygen accumulated in the upper column of the rectification column, pressurizes it in a liquid state, then sends it to a heat exchanger, and further introduces it into an expansion turbine for heat insulation. It is expanded to generate cold, and the cold generated is sent to a heat exchanger to serve as a cold source for the entire device. As described above, according to the present invention, since the oxygen is pressurized in the liquid state, the pressurizing cost is significantly reduced as compared with the case where the oxygen is pressurized in the gaseous state (for example, 1 mol of oxygen is 22 mol if it is gas). 4 liters, compared to 16 grams for liquids). Further, in the present invention, as described above, oxygen is pressurized in a liquid state, vaporized through a heat exchanger, and the vaporized oxygen is used as a drive source for an expander for generating cold heat such as an expansion turbine. Therefore, the pressure of the oxygen gas before it enters the expansion turbine becomes large, which can significantly improve the efficiency of adiabatic expansion. As a result, it is possible to significantly reduce the cost of cold generation by the expander for generating cold heat, such as an expansion turbine, and it is possible to reduce the cost of product oxygen gas.
【0007】つぎに、この発明を実施例にもとづいて詳
しく説明する。Next, the present invention will be described in detail based on embodiments.
【0008】図1はこの発明の一実施例を示している。
図において、51は原料空気を圧縮する空気圧縮器、5
2はドレーン分離器、53はフロン冷却器、54は2個
一組の吸着塔である。吸着塔54は、内部にモレキュラ
ーシーブが充填されていて、空気圧縮機51により圧縮
された空気中のH2 O,CO2 ,CO等の不純分を吸着
除去する。55は、不純分が吸着除去された圧縮空気を
送る圧縮空気供給パイプである。56は、第1の熱交換
器であり、吸着塔54により不純分が吸着除去された圧
縮空気が送りこまれる。57は、第2の熱交換器であ
り、第1の熱交換器56を経た圧縮空気が送りこまれ
る。58は、上部塔59と下部塔60を備えた精留塔で
ある。下部塔60は、第1および第2の熱交換器56,
57により超低温に冷却され、パイプ55を経て送りこ
まれる圧縮空気を更に冷却し、その一部を液化し、液体
空気61として底部に溜め、窒素を気体状態で上部に溜
めるようになっている。上部塔59の底部側には、凝縮
器62が内蔵されており、下部塔60の上部に溜まる窒
素ガスの一部が第1の還流液用パイプ63を介して送入
される。この上部塔59内は、下部塔60内よりも減圧
状態になっており、下部塔の底部の貯留液体空気(N2
50〜70%,O2 30〜50%)61が膨脹弁65付
きパイプ66で送りこまれ、気化して、上部塔59の内
部温度を液体窒素の沸点以下の温度に冷却するようにな
っている。この冷却により、凝縮器62内に送りこまれ
た窒素ガスが液化する。液化した窒素ガスは、第2の還
流液用パイプ64を通って下部塔60の上部に還流液と
して導入され、これが液体窒素溜め67を経て下部塔6
0内を下方に流下し、下部塔60の底部から上昇する圧
縮空気と向流的に接触し、冷却してその一部を液化する
ようになっている。この過程で、圧縮空気中の高沸点成
分の酸素ガスは液化されて下部塔60の底部に溜まり、
低沸点成分の窒素ガスが下部塔60の上部に溜まる。6
4aは気液分離器である。68は下部塔60の天井部に
溜まった窒素ガスを製品窒素ガスとして取り出す取出パ
イプで、超低温の窒素ガスを第2および第1の熱交換器
57,56内に案内し、そこに送りこまれる圧縮空気と
熱交換させて常温にし、製品窒素ガスとして送出する。
一方、下部塔60の底部からパイプ66を経由して上部
塔59内に送りこまれた液体空気は、この上部塔59内
において精留作用を受け、それによって液体空気中の高
沸点成分の酸素が液化して上部塔59の底部に液体酸素
71として溜まる。80は、この酸素ガス製造装置の起
動時に、上部塔59内に液体酸素を供給するパイプであ
る。このパイプ80は、図示していない液体酸素貯蔵タ
ンクから延びている。このタンクには、当該装置でつく
られた液体酸素または他の装置でつくられタンクローリ
等で輸送されてきた液体酸素が貯蔵されている。81
は、液体酸素供給コントロールバルブで、液面計82の
液面により、運転中の寒冷バランスが、不足傾向になっ
たときに、開弁し寒冷液体酸素を供給し精留のバランス
をとる。窒素ガスを含む低沸点成分のガスは、上部塔5
9の塔頂からパイプ70によって排ガスとして導出さ
れ、第2および第1の熱交換器57,56を経由し、大
気中に放出される。上部塔59の底部に溜まった液体酸
素71は、液体酸素導出パイプ72により導出され、液
体酸素加圧ポンプ73によって加圧され、加圧された状
態で第2および第1の熱交換器57,56内に導入され
て気化し、製品酸素ガスとなる。このガスは酸素ガス取
出パイプ74に導入される。この酸素ガス取出パイプ7
4には、膨脹タービン75が設けられており、製品酸素
ガスはこの膨脹タービン75の駆動源となり寒冷を発生
する。すなわち、製品酸素ガスは、膨脹タービンに入る
までが35kg/cm2 程度の圧力であったものが、内
部で10kg/cm2 まで膨脹し、熱力学的外部仕事を
行うことにより著しく低温になって装置に必要な寒冷量
を発生し、その状態で第2および第1の熱交換器57,
56に入り、ここで原料空気と熱交換して発生寒冷を原
料空気に付与し、それ自身は常温となり、製品酸素ガス
取出パイプ74の先端から製品として取り出される。特
に、上記膨脹タービン75は、製品酸素ガスを駆動源と
することから、酸素と反応しにくい材料、例えば銅合金
(真ちゅう等),ニッケル合金(Ni−Cr−Fe),
ステンレス(SUS316L),アルミ合金(Al−Z
n)で構成され、爆発等の災害の発生が防止される。FIG. 1 shows an embodiment of the present invention.
In the figure, 51 is an air compressor for compressing raw material air, 5
2 is a drain separator, 53 is a Freon cooler, and 54 is a set of two adsorption towers. The adsorption tower 54 is filled with a molecular sieve, and adsorbs and removes impurities such as H 2 O, CO 2 and CO in the air compressed by the air compressor 51. Reference numeral 55 is a compressed air supply pipe that sends compressed air from which impurities have been adsorbed and removed. Reference numeral 56 is a first heat exchanger to which compressed air from which impurities have been adsorbed and removed by the adsorption tower 54 is sent. 57 is a 2nd heat exchanger, and the compressed air which passed the 1st heat exchanger 56 is sent in. Reference numeral 58 is a rectification column including an upper column 59 and a lower column 60. The lower tower 60 includes the first and second heat exchangers 56,
The compressed air, which is cooled to an ultra-low temperature by 57, is further cooled by sending it through the pipe 55, and a part of it is liquefied to be stored as liquid air 61 in the bottom portion and nitrogen in the gas state in the upper portion. A condenser 62 is built in at the bottom side of the upper tower 59, and a part of the nitrogen gas accumulated in the upper part of the lower tower 60 is fed through the first reflux liquid pipe 63. The pressure inside the upper tower 59 is lower than that in the lower tower 60, and the stored liquid air (N 2
(50 to 70%, O 2 30 to 50%) 61 is sent through a pipe 66 with an expansion valve 65 and vaporized to cool the internal temperature of the upper column 59 to a temperature below the boiling point of liquid nitrogen. . Due to this cooling, the nitrogen gas sent into the condenser 62 is liquefied. The liquefied nitrogen gas is introduced into the upper part of the lower tower 60 as the reflux liquid through the second reflux liquid pipe 64, and this is passed through the liquid nitrogen reservoir 67 to the lower tower 6
It flows downward in 0, and comes into countercurrent contact with the compressed air rising from the bottom of the lower tower 60, and is cooled to liquefy a part thereof. In this process, the high boiling point oxygen gas in the compressed air is liquefied and collected at the bottom of the lower tower 60,
Nitrogen gas having a low boiling point is accumulated in the upper part of the lower tower 60. 6
4a is a gas-liquid separator. Reference numeral 68 is an extraction pipe for taking out nitrogen gas accumulated in the ceiling portion of the lower tower 60 as product nitrogen gas. The ultra-low temperature nitrogen gas is guided into the second and first heat exchangers 57 and 56, and is compressed therein. It is heated to room temperature by exchanging heat with air and delivered as product nitrogen gas.
On the other hand, the liquid air sent into the upper tower 59 from the bottom of the lower tower 60 via the pipe 66 is subjected to a rectification action in the upper tower 59, whereby oxygen, which is a high-boiling component in the liquid air, is removed. It liquefies and accumulates as liquid oxygen 71 at the bottom of the upper tower 59. Reference numeral 80 is a pipe for supplying liquid oxygen into the upper tower 59 when the oxygen gas production apparatus is started. The pipe 80 extends from a liquid oxygen storage tank (not shown). This tank stores liquid oxygen produced by the device or liquid oxygen produced by another device and transported by a tank truck or the like. 81
Is a liquid oxygen supply control valve that opens the valve to supply cold liquid oxygen to balance rectification when the cold balance during operation tends to become insufficient due to the liquid level of the liquid level gauge 82. The low boiling point component gas including nitrogen gas is supplied to the upper tower 5
It is led out as an exhaust gas from the tower top of 9 through a pipe 70, and is discharged into the atmosphere via the second and first heat exchangers 57 and 56. The liquid oxygen 71 collected at the bottom of the upper tower 59 is led out by the liquid oxygen lead-out pipe 72, pressurized by the liquid oxygen pressurizing pump 73, and in the pressurized state, the second and first heat exchangers 57, It is introduced into 56 and vaporized to become product oxygen gas. This gas is introduced into the oxygen gas extraction pipe 74. This oxygen gas extraction pipe 7
4, an expansion turbine 75 is provided, and the product oxygen gas serves as a drive source for the expansion turbine 75 to generate cold. That is, the product oxygen gas, which had a pressure of about 35 kg / cm 2 before entering the expansion turbine, expands to 10 kg / cm 2 inside and becomes extremely low temperature by performing thermodynamic external work. The amount of cold required for the device is generated, and in that state the second and first heat exchangers 57,
56, in which heat is exchanged with the raw material air to give the generated cold to the raw material air, and the raw material air itself becomes normal temperature, and is taken out as a product from the tip of the product oxygen gas extraction pipe 74. In particular, since the expansion turbine 75 uses the product oxygen gas as a driving source, it is difficult to react with oxygen, for example, a material such as a copper alloy (brass), a nickel alloy (Ni-Cr-Fe),
Stainless steel (SUS316L), aluminum alloy (Al-Z
n), the occurrence of disaster such as explosion is prevented.
【0009】この装置は、つぎのようにして製品酸素ガ
スを製造する。すなわち、空気圧縮器51により原料空
気を圧縮し、その原料空気を、ドレーン分離器52,フ
ロン冷却器53,不純分除去用の吸着塔54,第1およ
び第2の熱交換器56,57を経由させ、超低温の状態
に冷却して精留塔58の下部塔60内に送入する。下部
塔60内では、この送入圧縮空気を、液体窒素溜め67
から溢流する液体窒素と向流的に接触させて冷却し、一
部を液化して下部塔の底部に液体空気61として溜め
る。この過程において窒素と酸素の沸点の差(酸素の沸
点−183℃,窒素の沸点−196℃)により圧縮空気
中の高沸点成分である酸素が液化し、窒素が気体のまま
残る。この気体のまま残った窒素を取出しパイプ68か
ら取出し、第2および第1の熱交換器57,56を経由
させて、熱交換させ、常温近くまで昇温させ製品窒素ガ
スとして送出する。一方、下部塔60の天井部に溜まっ
た窒素ガスの一部は、第1の還流液用パイプ63を経由
して上部塔59に設けられた凝縮器62内に導入され、
ここで上部塔59の底部に溜まった液体酸素により冷却
されて液化され、第2の還流液用パイプ64を経由し、
下部塔60の還流液溜め67に導出される。上記上部塔
59には、下部塔60の底部の貯留液体空気が、パイプ
66,膨脹弁65を経由し、断熱膨脹状態で送入され、
精留作用を受ける。そして、高沸点成分である酸素が液
化して底部に溜まり、窒素ガスを含む低沸点成分ガスが
排ガスとして上部塔59の塔頂からパイプ70を経由し
て送出される。この送出された排ガスは、第2および第
1の熱交換器57,56を経由し、常温近くに昇温され
大気中に放出される。上部塔59の底部に溜まった液体
酸素71は、パイプ72を経由し、液体の状態において
液体酸素をポンプ73で加圧され、その状態で第2およ
び第1の熱交換器57,56に導入され、ここで熱交換
してガス化し、製品酸素ガス取出パイプ74に導入され
る。そして、導入された酸素ガスは、この製品取出パイ
プ74に設けられた膨脹タービン75により断熱膨脹し
て装置全体に必要な寒冷量を発生し、それを第2および
第1の熱交換器57,56において原料空気と熱交換
し、それ自身は常温の酸素ガスとなり、製品酸素ガス取
出パイプ74の先端から取り出される。図2はこの発明
の他の実施例の装置を示している。この装置は、液体酸
素加圧ポンプを密封ケーシング73cに収容し、このケ
ーシング73c内に液体酸素を導入し加圧してパイプ7
2に導出するようにしている。そして、上記ケーシング
73cの上部から気化して生成した酸素ガスを上部塔5
9へ戻す戻しパイプ23bが設けられている。それ以外
の部分は図1の装置と同じである。このように構成する
ことにより、酸素ガス気泡を吸い込んで液体酸素加圧ポ
ンプ73が空転する(ガス噛み現象)という事態の発生
が防止されるようになる。This apparatus produces product oxygen gas as follows. That is, the raw material air is compressed by the air compressor 51, and the raw material air is supplied to the drain separator 52, the Freon cooler 53, the adsorption tower 54 for removing impurities, and the first and second heat exchangers 56 and 57. It is passed through, cooled to an ultra-low temperature state, and fed into the lower column 60 of the rectification column 58. In the lower tower 60, the introduced compressed air is supplied to the liquid nitrogen reservoir 67.
The liquid nitrogen is made to come into contact with the liquid nitrogen overflowing from the column countercurrently and cooled, and a part thereof is liquefied and stored as liquid air 61 at the bottom of the lower tower. In this process, due to the difference between the boiling points of nitrogen and oxygen (oxygen boiling point -183 ° C, nitrogen boiling point -196 ° C), oxygen, which is a high boiling point component in the compressed air, is liquefied and nitrogen remains as a gas. The nitrogen remaining in the gas state is taken out from the take-out pipe 68, heat-exchanged through the second and first heat exchangers 57 and 56, heated to near room temperature, and delivered as product nitrogen gas. On the other hand, a part of the nitrogen gas accumulated in the ceiling of the lower tower 60 is introduced into the condenser 62 provided in the upper tower 59 via the first reflux liquid pipe 63,
Here, it is cooled and liquefied by the liquid oxygen accumulated at the bottom of the upper tower 59, and passes through the second reflux liquid pipe 64,
It is led out to the reflux liquid reservoir 67 of the lower tower 60. The stored liquid air at the bottom of the lower tower 60 is sent to the upper tower 59 in adiabatic expansion state via a pipe 66 and an expansion valve 65.
Receives rectification. Then, oxygen, which is a high-boiling point component, is liquefied and accumulated at the bottom, and low-boiling point component gas containing nitrogen gas is sent out as exhaust gas from the top of the upper column 59 via the pipe 70. The discharged exhaust gas passes through the second and first heat exchangers 57 and 56, is heated to near room temperature, and is discharged into the atmosphere. The liquid oxygen 71 accumulated at the bottom of the upper tower 59 passes through the pipe 72, is pressurized by the pump 73 in the liquid state, and is introduced into the second and first heat exchangers 57 and 56 in that state. It is heat-exchanged here, gasified and introduced into the product oxygen gas extraction pipe 74. Then, the introduced oxygen gas is adiabatically expanded by the expansion turbine 75 provided in the product extraction pipe 74 to generate the amount of cold required for the entire device, which is then supplied to the second and first heat exchangers 57, At 56, heat is exchanged with the raw material air to become oxygen gas at room temperature, which is taken out from the tip of the product oxygen gas taking-out pipe 74. FIG. 2 shows an apparatus according to another embodiment of the present invention. This apparatus accommodates a liquid oxygen pressurizing pump in a sealed casing 73c, and introduces liquid oxygen into the casing 73c to pressurize the pipe 7
I am going to derive to 2. Then, the oxygen gas generated by vaporizing from the upper portion of the casing 73c is supplied to the upper tower 5
A return pipe 23b for returning to 9 is provided. The other parts are the same as those of the apparatus shown in FIG. With this configuration, it is possible to prevent the situation in which the liquid oxygen pressurizing pump 73 idles by sucking oxygen gas bubbles (gas trapping phenomenon).
【0010】[0010]
【発明の効果】以上のように、この発明の酸素ガス製造
装置は、精留塔の上部塔に溜まる液体酸素を取り出し、
これを液体の状態で加圧し、加圧状態の製品酸素を製造
する。このようにこの発明では、酸素を液体の状態で加
圧することから、気体の状態で加圧する場合に比べて加
圧コストが大幅に低減する。また、この発明では、上記
のように酸素を液体の状態で加圧し、これを熱交換器を
経由して気化させ、この気化酸素を膨脹タービン等の冷
熱発生用膨脹器の駆動源として利用する。そのため、膨
脹タービンに入る前の酸素ガスの圧力が大きくなり、そ
れによって断熱膨脹の効率を大幅に向上することができ
るようになり、製品酸素ガス等の製造コストを大幅に引
き下げることができるようになる。そして、この発明の
装置は、鉄鋼製造分野、化学工業分野、火力発電分野等
広い分野で有効に利用される。As described above, the oxygen gas production apparatus of the present invention takes out liquid oxygen accumulated in the upper column of the rectification column,
This is pressurized in a liquid state to produce product oxygen under pressure. As described above, according to the present invention, since the oxygen is pressurized in the liquid state, the pressurization cost is significantly reduced as compared with the case where the oxygen is pressurized in the gas state. Further, in the present invention, as described above, oxygen is pressurized in a liquid state, vaporized through a heat exchanger, and the vaporized oxygen is used as a drive source for an expander for generating cold heat such as an expansion turbine. . Therefore, the pressure of oxygen gas before it enters the expansion turbine becomes large, which makes it possible to greatly improve the efficiency of adiabatic expansion, so that the production cost of product oxygen gas etc. can be significantly reduced. Become. The device of the present invention is effectively used in a wide range of fields such as the steel manufacturing field, the chemical industry field, and the thermal power generation field.
【図1】この発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.
【図2】この発明の他の実施例の構成図である。FIG. 2 is a configuration diagram of another embodiment of the present invention.
【図3】従来例の構成図である。FIG. 3 is a configuration diagram of a conventional example.
51 空気圧縮器 56,57 熱交換器 58 精留塔 59 上部塔 60 下部塔 61 液体空気 71 液体酸素 72 液体酸素取出パイプ 73 液体酸素加圧ポンプ 74 製品酸素ガス取出パイプ 75 膨脹タービン 51 Air Compressor 56, 57 Heat Exchanger 58 Fractionation Tower 59 Upper Tower 60 Lower Tower 61 Liquid Air 71 Liquid Oxygen 72 Liquid Oxygen Extraction Pipe 73 Liquid Oxygen Pressurizing Pump 74 Product Oxygen Gas Extraction Pipe 75 Expansion Turbine
フロントページの続き (56)参考文献 特開 平2−4189(JP,A) 特開 昭63−187087(JP,A) 特開 平1−296078(JP,A) 特開 昭61−110872(JP,A) 特開 昭63−163772(JP,A) 特公 昭39−29823(JP,B1) 特公 平1−40271(JP,B2) 特公 昭58−1350(JP,B2) 特公 昭56−32543(JP,B2)Continuation of the front page (56) References JP-A-2-4189 (JP, A) JP-A-63-187087 (JP, A) JP-A1-296078 (JP, A) JP-A-61-110872 (JP , A) JP 63-163772 (JP, A) JP-B 39-29823 (JP, B1) JP-B 1-40271 (JP, B2) JP-B 58-1350 (JP, B2) JP-B 56-32543 (JP, B2)
Claims (2)
記圧縮空気を超低温に冷却する熱交換手段と、上記超低
温に冷却された圧縮空気を導入し液化分離により酸素を
液化し窒素を気体の状態で保持する下部塔と、上記下部
塔の底部から取り出された液体空気を導入し液化分離に
より酸素を液化し底部に貯留する上部塔と、上記上部塔
の底部から取り出された液体酸素を冷媒として上記熱交
換手段に案内し熱交換により気化させ気化酸素にする液
体酸素取出路と、上記液体酸素取出路の先端から延び上
記熱交換手段を経由し上記気化酸素を昇温させ製品化す
る製品酸素ガス取出路を備え、上記液体酸素取出路にそ
の取出路を通る液体酸素を加圧する加圧手段が設けられ
ているとともに、上記熱交換手段よりも上流側の上記製
品酸素ガス取出路の部分にその取出路を通る気化酸素を
利用する冷熱発生用膨脹器が設けられていることを特徴
とする酸素ガス製造装置。1. An air compression means for compressing raw material air, a heat exchange means for cooling the compressed air to an ultralow temperature, and compressed air cooled to the ultralow temperature to introduce oxygen by liquefaction separation.
A lower tower that liquefies and holds nitrogen in a gaseous state,
Liquid air taken out from the bottom of the tower is introduced for liquefaction separation.
The upper tower that liquefies more oxygen and stores it in the bottom, and the upper tower
The liquid oxygen taken out from the bottom of the liquid oxygen as a refrigerant to the heat exchange means and vaporized by heat exchange to form vaporized oxygen, and a liquid oxygen take-out path extending from the tip of the liquid oxygen take-out path and passing through the heat exchange means. A product oxygen gas take-out path for raising the temperature of vaporized oxygen to produce a product is provided, and a pressurizing means for pressurizing the liquid oxygen passing through the take-out path is provided in the liquid oxygen take-out path, and upstream of the heat exchange means. An oxygen gas production apparatus, characterized in that an expander for cold heat generation utilizing vaporized oxygen passing through the extraction passage is provided at the side of the product oxygen gas extraction passage on the side.
性の小さい材料で構成された膨脹タービンである請求項
1記載の酸素ガス製造装置。2. The oxygen gas production apparatus according to claim 1, wherein the expander for generating cold heat is an expansion turbine made of a material having a low reactivity with oxygen.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5283575A JP2686039B2 (en) | 1993-11-12 | 1993-11-12 | Oxygen gas production equipment |
TW84105421A TW322461B (en) | 1993-11-12 | 1995-05-30 | Oxygen gas manufacturing apparatus |
US08/796,746 US6082136A (en) | 1993-11-12 | 1997-02-07 | Oxygen gas manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5283575A JP2686039B2 (en) | 1993-11-12 | 1993-11-12 | Oxygen gas production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07139873A JPH07139873A (en) | 1995-06-02 |
JP2686039B2 true JP2686039B2 (en) | 1997-12-08 |
Family
ID=17667306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5283575A Expired - Fee Related JP2686039B2 (en) | 1993-11-12 | 1993-11-12 | Oxygen gas production equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2686039B2 (en) |
TW (1) | TW322461B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6974562B2 (en) * | 2015-08-13 | 2021-12-01 | パンパシフィック・カッパー株式会社 | How to operate the oxygen production equipment |
JP7032033B2 (en) * | 2015-08-13 | 2022-03-08 | パンパシフィック・カッパー株式会社 | How to operate the oxygen production equipment |
JP7358184B2 (en) * | 2019-10-11 | 2023-10-10 | エア・ウォーター・エンジニアリング株式会社 | air separation equipment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6440271A (en) * | 1987-08-03 | 1989-02-10 | Makino Milling Machine | Truing method for grinding wheel and device thereof |
AU2663188A (en) * | 1987-12-14 | 1989-06-15 | Air Products And Chemicals Inc. | Suitable distillation packing for the cryogenic separation of air |
-
1993
- 1993-11-12 JP JP5283575A patent/JP2686039B2/en not_active Expired - Fee Related
-
1995
- 1995-05-30 TW TW84105421A patent/TW322461B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JPH07139873A (en) | 1995-06-02 |
TW322461B (en) | 1997-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0313505B2 (en) | ||
CN110307695B (en) | Method and device for manufacturing product nitrogen and product argon | |
JPH0735470A (en) | Method and device for manufacturing superhigh purity dinitrogen monoxide | |
JPH06207775A (en) | Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide | |
US4192662A (en) | Process for liquefying and rectifying air | |
WO1987001184A1 (en) | Oxygen gas production unit | |
WO1986000694A1 (en) | Apparatus for producing high-purity nitrogen gas | |
JP2007147113A (en) | Nitrogen manufacturing method and device | |
JP2686039B2 (en) | Oxygen gas production equipment | |
JP5684058B2 (en) | Air separation method and air separation device | |
WO2006137331A1 (en) | Nitrogen generating device and apparatus for use therefor | |
EP0745817B1 (en) | oxygen gas manufacturing apparatus | |
JP2859663B2 (en) | Nitrogen gas and oxygen gas production equipment | |
JP3476525B2 (en) | Oxygen and nitrogen gas production equipment | |
JP3355009B2 (en) | Oxygen and nitrogen gas production equipment | |
JP3476524B2 (en) | Oxygen and nitrogen gas production equipment | |
US6082136A (en) | Oxygen gas manufacturing equipment | |
JP3476526B2 (en) | Nitrogen gas production equipment | |
JP4447501B2 (en) | Air liquefaction separation method and apparatus | |
KR100332436B1 (en) | Oxygen Gas Manufacturing Equipment | |
JP3748677B2 (en) | Method and apparatus for producing low purity oxygen | |
JPH06281322A (en) | Manufacturing apparatus for high purity nitrogen and oxygen gas | |
JPH11325716A (en) | Separation of air | |
JP3539709B2 (en) | Air separation equipment | |
JP2002147949A (en) | Air liquefying separation method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970729 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 16 |
|
LAPS | Cancellation because of no payment of annual fees |