JPH07198224A - Absorption type refrigerating machine - Google Patents

Absorption type refrigerating machine

Info

Publication number
JPH07198224A
JPH07198224A JP6001690A JP169094A JPH07198224A JP H07198224 A JPH07198224 A JP H07198224A JP 6001690 A JP6001690 A JP 6001690A JP 169094 A JP169094 A JP 169094A JP H07198224 A JPH07198224 A JP H07198224A
Authority
JP
Japan
Prior art keywords
cooling water
temperature
degree
condenser
water system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6001690A
Other languages
Japanese (ja)
Inventor
Masahiro Furukawa
雅裕 古川
Yukioku Yamazaki
志奥 山崎
Hisao Miyazaki
久夫 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6001690A priority Critical patent/JPH07198224A/en
Publication of JPH07198224A publication Critical patent/JPH07198224A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To continue a safety operation of an absorption type refrigerating machine by calculating and judging the degree of fouling of a cooling water system of a condenser to automatically control the heating amount of a refriger ant vapor generator. CONSTITUTION:Temperature data of various points are input from temperature sensors 31-35 to a controller, and the controller calculates and Judges the degree of fouling of a cooling water system against the refrigerating load at present. Then, a valve lift signal changed from the preset maximum valve lift is input to a fuel control valve 21, and furthermore, a valve lift signal by which the present valve lift is reduced by a specified ratio is output to the fuel control valve 21 when the degree of fouling of the cooling water system against the refrigerating load is already a specified value or higher. Thereby, a sudden shutdown of an absorption type refrigerating machine caused by a rise in pressure or temperature of a refrigerant vapor generator (high temperature regenerator) 1 can be prevented and safety operation of the refrigerating machine came be continued.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収液を加熱して冷媒
蒸気を発生する発生器を備えた吸収冷凍機に関する。さ
らに言うと、凝縮器の冷却水系の汚れ度合いを計算し判
定し、発生器における加熱量を自動的にコントロール
し、それにより、安全に運転を継続するようにした吸収
冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator having a generator that heats an absorbing liquid to generate a refrigerant vapor. Furthermore, the present invention relates to an absorption refrigerating machine in which the degree of fouling of the cooling water system of the condenser is calculated and judged, and the heating amount in the generator is automatically controlled, so that the operation can be safely continued.

【0002】[0002]

【従来の技術】従来の吸収冷凍機においては、冷却水系
の汚れについての予知についてはいろいろな方法が採ら
れている。しかしながら、これらの従来技術は、冷却水
系の汚れの予知と表示のみに終わり、機械の安全な運転
の継続を行わせるような自動的なコントロールまではな
されていなかった。
2. Description of the Related Art In conventional absorption refrigerators, various methods are used for predicting contamination of the cooling water system. However, these prior arts have been limited to the prediction and display of the contamination of the cooling water system, and have not been automatically controlled to continue safe operation of the machine.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術におい
て、起動後の吸収冷凍機の運転時に、凝縮器の冷却水系
の汚れにより、凝縮器の熱交換量が減少して凝縮器の内
圧が上昇する。凝縮器の内圧が上昇すると、それに伴い
発生器の圧力と温度が上昇する。そして、その圧力また
は温度が上昇して設定値になると、吸収冷凍機に一般に
設けられている安全装置が作動し、吸収冷凍機が停止し
てしまうという問題が発生していた。
In the above prior art, when the absorption chiller is operated after starting, the cooling water system of the condenser becomes dirty, so that the heat exchange amount of the condenser is decreased and the internal pressure of the condenser is increased. To do. As the internal pressure of the condenser rises, so does the pressure and temperature of the generator. Then, when the pressure or temperature rises to reach the set value, a safety device generally provided in the absorption refrigerator operates, and the absorption refrigerator stops.

【0004】当然の事ながら、吸収冷凍機の修理を行
い、冷却水配管内を洗浄し、汚れを取り去れば、運転は
可能となる。しかし、吸収冷凍機の稼働が必要なとき
に、例えば、盛夏の最も冷房運転の必要なときに、突然
運転が停止してしまえば、使用者は非常に困ることにな
る。この場合、冷房能力を落としても安全な範囲での運
転を継続し、休日やシーズンオフなどの吸収冷凍機の運
転を必要としない日に、計画的に保全・修理を行えるな
ら、使用者には好都合である。
As a matter of course, if the absorption refrigerator is repaired, the inside of the cooling water pipe is washed, and the dirt is removed, the operation becomes possible. However, if the absorption chiller needs to be operated, for example, when the cooling operation is required most in the midsummer, if the operation is suddenly stopped, the user will be very troubled. In this case, even if the cooling capacity is reduced, the operation will continue within a safe range, and if maintenance and repair can be planned on days that do not require the operation of the absorption chiller, such as on holidays or off-season, the user will be advised. Is convenient.

【0005】本発明は、発生器の圧力または温度の上昇
による吸収冷凍機の突然の停止を未然に防止し、吸収冷
凍機を安全な運転状態にコントロールして、その運転を
継続させることを目的とする。
An object of the present invention is to prevent the absorption refrigerating machine from suddenly stopping due to a rise in the pressure or temperature of the generator, to control the absorption refrigerating machine in a safe operating state, and to continue its operation. And

【0006】[0006]

【課題を解決するための手段】本発明は上記の課題を解
決するために、凝縮器からの冷却水出口温度を検出する
温度センサと、凝縮器で凝縮した冷媒の温度を検出する
温度センサと、これらの温度センサから信号を入力して
冷却水系の汚れ度合いを計算し判定し、少なくも冷却水
系の汚れ度合いにより燃料制御弁の最大弁開度の設定値
変更の開度信号を燃料制御弁に出力するか、または冷却
水系の汚れ度合いが所定値以上である場合に現在の弁開
度を所定割合だけ減少させる開度信号を燃料制御弁に出
力する制御装置とを備えさせた。
In order to solve the above problems, the present invention provides a temperature sensor for detecting the outlet temperature of cooling water from a condenser, and a temperature sensor for detecting the temperature of a refrigerant condensed in the condenser. , The signals from these temperature sensors are input to calculate and determine the degree of fouling of the cooling water system, and at least depending on the degree of fouling of the cooling water system, an opening signal for changing the set value of the maximum valve opening of the fuel control valve is sent to the fuel control valve. Or a controller that outputs an opening signal to the fuel control valve to decrease the current valve opening by a predetermined ratio when the degree of contamination of the cooling water system is equal to or greater than a predetermined value.

【0007】また、凝縮器の冷却水入口、出口温度を検
出する温度センサと、凝縮器で凝縮した冷媒の温度を検
出する温度センサと、これらの温度センサから信号を入
力して凝縮器の対数平気温度差を計算し、この対数平気
温度差と冷凍負荷に基づいて冷却水系の汚れ度合いを計
算し判定し、少なくも冷却水系の汚れ度合いにより燃料
制御弁の最大弁開度の設定値変更の開度信号を燃料制御
弁に出力するか、または冷却水系の汚れ度合いが所定値
以上である場合に現在の弁開度を所定割合だけ減少させ
る開度信号を燃料制御弁に出力する制御装置とを備えさ
せた。
Further, a temperature sensor for detecting the cooling water inlet and outlet temperatures of the condenser, a temperature sensor for detecting the temperature of the refrigerant condensed in the condenser, and a logarithm of the condenser by inputting signals from these temperature sensors. The air temperature difference is calculated, and the degree of fouling of the cooling water system is calculated and judged based on this logarithmic temperature difference and the refrigeration load, and at least the set value of the maximum valve opening of the fuel control valve is changed according to the degree of fouling of the cooling water system. A control device that outputs an opening signal to the fuel control valve, or outputs an opening signal to the fuel control valve to reduce the current valve opening by a predetermined ratio when the degree of contamination of the cooling water system is a predetermined value or more. Prepared.

【0008】[0008]

【作用】本発明では、制御装置により温度センサから各
部の温度データを入力して、現在の冷凍負荷に対する冷
却水系の汚れ度合いを計算し判定し、燃料制御弁へあら
かじめの最大弁開度の設定値変更の開度信号、または、
すでに冷凍負荷に対する冷却水系の汚れ度合いが所定値
以上になった場合に現在の弁開度を所定割合だけ減少さ
せるような開度信号を、燃料制御弁21に出力する。従
って、どちらも、吸収冷凍機の発生器への燃料供給量を
制限し、発生器の圧力と温度が上昇するのを設定値内に
押さえて、安全装置が作動し吸収冷凍機が停止してしま
うのを防ぐことができる。
In the present invention, the temperature data of each part is input from the temperature sensor by the control device, the degree of contamination of the cooling water system with respect to the current refrigeration load is calculated and judged, and the maximum valve opening degree is set in advance in the fuel control valve. Value change opening signal, or
When the degree of contamination of the cooling water system with respect to the refrigerating load has already reached a predetermined value or more, an opening signal for decreasing the current valve opening by a predetermined rate is output to the fuel control valve 21. Therefore, both limit the amount of fuel supply to the generator of the absorption refrigerator, keep the rise of the pressure and temperature of the generator within the set value, the safety device operates and the absorption refrigerator stops. It is possible to prevent it.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。図面に示したものは二重効用吸収冷凍機
であり、冷媒に水(H2 O)、吸収液に臭化リチウム
(LiBr)水溶液を使用したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. What is shown in the drawing is a double-effect absorption refrigerator, in which water (H 2 O) is used as the refrigerant and lithium bromide (LiBr) aqueous solution is used as the absorption liquid.

【0010】図面において、1はガスバーナ1Bを備え
た高温再生器(発生器)、2は低温再生器、3は凝縮
器、4は蒸発器、5は吸収器、6は低温熱交換器、7は
高温熱交換器、8から12までは吸収液配管、15は吸
収液ポンプ、16から18までは冷媒配管、19は冷媒
ポンプ、20はガスバーナ1Bに接続されたガス配管、
21は燃料制御弁、22は冷水配管であり、それぞれは
図1に示したように配管接続されている。また、25は
冷却水配管であり、この冷却水配管25の途中には吸収
器熱交換器26、及び凝縮器熱交換器27が設けられて
いる。
In the drawings, 1 is a high temperature regenerator (generator) equipped with a gas burner 1B, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low temperature heat exchanger, and 7 Is a high temperature heat exchanger, 8 to 12 is an absorption liquid pipe, 15 is an absorption liquid pump, 16 to 18 is a refrigerant pipe, 19 is a refrigerant pump, 20 is a gas pipe connected to the gas burner 1B,
Reference numeral 21 is a fuel control valve, 22 is a cold water pipe, and each pipe is connected as shown in FIG. Further, 25 is a cooling water pipe, and an absorber heat exchanger 26 and a condenser heat exchanger 27 are provided in the middle of the cooling water pipe 25.

【0011】また、30はマイクロコンピュータにより
構成された吸収冷凍機の制御装置、31は凝縮器3から
の冷却水出口温度を検出する温度センサ、32は凝縮器
3で冷却されて凝縮した冷媒の温度を冷媒配管17の所
で検出する温度センサ、33、34はそれぞれ蒸発器4
で冷却される冷水の入口と出口での温度を検出する温度
センサである。これらの31から34までの温度センサ
は制御装置30に接続されている。また燃料制御弁21
も、制御装置30に接続されて、制御装置30から出力
される開度信号により弁開度を制御可能とされている。
Further, 30 is a control unit for the absorption refrigerator, which is composed of a microcomputer, 31 is a temperature sensor for detecting the outlet temperature of the cooling water from the condenser 3, and 32 is a refrigerant which is cooled in the condenser 3 and condensed. The temperature sensor for detecting the temperature at the refrigerant pipe 17, 33 and 34 are the evaporator 4 respectively.
It is a temperature sensor that detects the temperature at the inlet and outlet of cold water cooled by. These temperature sensors 31 to 34 are connected to the control device 30. Also, the fuel control valve 21
Also, the valve opening degree can be controlled by being connected to the control device 30 and using an opening degree signal output from the control device 30.

【0012】制御装置30は少なくとも次ぎの機能を有
する。即ち、31から34までの温度センサからの各部
の温度データについて入力して、冷却水系の汚れ度合い
を計算して、安全な範囲での運転の継続を可能とするよ
うに、燃料制御弁21へその弁開度をコントロールする
ための開度信号を出力する。
The controller 30 has at least the following functions. That is, the temperature data of each part from the temperature sensors 31 to 34 are input, the degree of contamination of the cooling water system is calculated, and the fuel control valve 21 is operated so that the operation can be continued in a safe range. An opening signal for controlling the valve opening is output.

【0013】これを分けて説明すると、第一に、温度セ
ンサ33、34から入力された冷水の入口と出口の温度
から、その時の冷凍負荷を計算する。第二に、温度セン
サ31、32からの入力で、凝縮器3の冷媒液温度と冷
却水出口温度の差を計算し、冷凍負荷に対する冷却水系
の汚れ度合いを計算する。第三に、計算した冷却水系の
汚れ度合いをあらかじめ与えられたデータと比較判定し
て、燃料制御弁21へその弁開度をコントロールするた
めの開度信号を出力する。
This will be described separately. First, the refrigeration load at that time is calculated from the temperatures of the inlet and outlet of the cold water input from the temperature sensors 33 and 34. Secondly, with the inputs from the temperature sensors 31 and 32, the difference between the refrigerant liquid temperature of the condenser 3 and the cooling water outlet temperature is calculated, and the degree of contamination of the cooling water system with respect to the refrigeration load is calculated. Thirdly, the calculated degree of contamination of the cooling water system is compared and judged with data given in advance, and an opening signal for controlling the opening degree of the valve is output to the fuel control valve 21.

【0014】この開度信号の出し方は2つの方法があ
る。1つは、冷却水系の汚れ度合いによって燃料制御弁
21の弁開度の最大値を小さい方に設定変更させるもの
である。これは、現在は冷凍負荷量が小さくて弁開度も
小さく余裕のある運転状況であるが、あらかじめ最大弁
開度を設置しておくことで、冷凍負荷量が増大してきた
場合の安全運転を確保しようとするものである。
There are two methods for outputting this opening signal. One is to change the maximum value of the valve opening of the fuel control valve 21 to a smaller one depending on the degree of contamination of the cooling water system. This is an operating condition where the refrigeration load is small and the valve opening is small at present, but there is a margin, but by installing the maximum valve opening in advance, safe operation when the refrigeration load increases It is something to try to secure.

【0015】他の1つは、冷却水系の汚れ度合いを判定
し、その汚れ度合いが所定値以上になった場合に、現在
の弁開度を所定割合だけ減少させるように開度信号を出
力するものである。これは、吸収冷凍機の冷凍能力に対
する冷凍負荷の割合がすでに大きくなってる場合に効果
がある。
The other is to judge the degree of fouling of the cooling water system and, when the degree of fouling exceeds a predetermined value, output an opening degree signal so as to reduce the current valve opening degree by a predetermined rate. It is a thing. This is effective when the ratio of the refrigerating load to the refrigerating capacity of the absorption refrigerator is already large.

【0016】上記の吸収冷凍機の運転時における冷媒や
吸収液の流れは、従来の吸収冷凍機と同様である。すな
わち、高温再生器(発生器)1で加熱されて蒸発した冷
媒は、低温再生器2を経て凝縮器3へ流れ、凝縮器熱交
換器27を流れる冷却水と熱交換して、凝縮液化した
後、冷媒配管17を介して蒸発器4へ流れる。そして、
冷媒は冷水配管22内の水と熱交換して蒸発し、その気
化熱によって冷水配管22内の水を冷却する。冷却され
た冷水が負荷に循環して冷房運転が行われる。
The flow of the refrigerant and the absorbing liquid during the operation of the absorption refrigerator is the same as that of the conventional absorption refrigerator. That is, the refrigerant heated and evaporated in the high temperature regenerator (generator) 1 flows to the condenser 3 via the low temperature regenerator 2 and exchanges heat with the cooling water flowing in the condenser heat exchanger 27 to be condensed and liquefied. After that, it flows to the evaporator 4 through the refrigerant pipe 17. And
The refrigerant exchanges heat with the water in the cold water pipe 22 and evaporates, and the water in the cold water pipe 22 is cooled by the heat of vaporization. Cooled cold water is circulated to the load to perform cooling operation.

【0017】また、蒸発器4で蒸発した冷媒は吸収器5
へ流れて吸収液に吸収される。そして、冷媒を吸収して
濃度の薄くなった吸収液が吸収液ポンプ15の運転によ
り低温熱交換器6と高温熱交換器7を経て高温再生器
(発生器)1へ送られる。高温再生器(発生器)1に入
った吸収液はガスバーナ1Bによって加熱され、冷媒が
蒸発し、中濃度の吸収液が高温熱交換器7を経て低温再
生器2へ入る。そして、吸収液は高温再生器(発生器)
1から冷媒配管16を流れてきた冷媒蒸気によって加熱
され、さらに冷媒が蒸発分離されて濃度が高くなる。高
濃度になった吸収液(以下濃液という)は低温熱交換器
6を経て温度低下して吸収器5へ送られ、散布される。
The refrigerant evaporated in the evaporator 4 is absorbed by the absorber 5.
And is absorbed by the absorbent. Then, the absorption liquid that has absorbed the refrigerant and becomes thin in concentration is sent to the high temperature regenerator (generator) 1 through the low temperature heat exchanger 6 and the high temperature heat exchanger 7 by the operation of the absorption liquid pump 15. The absorbing liquid that has entered the high temperature regenerator (generator) 1 is heated by the gas burner 1B, the refrigerant evaporates, and the medium concentration absorbing liquid enters the low temperature regenerator 2 through the high temperature heat exchanger 7. And the absorbing liquid is a high temperature regenerator (generator)
It is heated by the refrigerant vapor flowing from the refrigerant pipe 16 from 1, and the refrigerant is evaporated and separated to have a high concentration. The high-concentration absorbing liquid (hereinafter, referred to as a concentrated liquid) is sent to the absorber 5 after being lowered in temperature through the low temperature heat exchanger 6 and sprayed.

【0018】上記のように吸収冷凍機が運転されている
とき、制御装置30は冷水出口温度センサ34から温度
信号を入力し、冷水出口温度に応じてあらかじめ設定さ
れた開度信号を燃料制御弁21へ出力する。そして、燃
料制御弁21の開度が冷水出口温度により変化して、高
温再生器(発生器)1での冷媒蒸気の発生量が変化す
る。そして、冷水出口温度が略設定温度に保たれる。
When the absorption refrigerator is operated as described above, the control device 30 inputs a temperature signal from the chilled water outlet temperature sensor 34, and outputs an opening signal preset according to the chilled water outlet temperature to the fuel control valve. It outputs to 21. Then, the opening degree of the fuel control valve 21 changes according to the cold water outlet temperature, and the amount of refrigerant vapor generated in the high temperature regenerator (generator) 1 changes. Then, the cold water outlet temperature is maintained at a substantially set temperature.

【0019】また、吸収冷凍機が運転されているとき、
冷却水配管25に冷却水が循環する。そして、冷却水に
含まれている汚れ成分(スケール、スライム、腐食生成
物など)が凝縮器熱交換器27の内面に付着する。この
汚れ成分の付着により凝縮器3での冷媒蒸気から冷却水
への伝熱が阻害され、凝縮器3内の圧力が上昇する。そ
して、凝縮器3内の圧力上昇により高温再生器(発生
器)1内の圧力と再生温度が上昇する。
Further, when the absorption refrigerator is operated,
Cooling water circulates in the cooling water pipe 25. Then, dirt components (scale, slime, corrosion products, etc.) contained in the cooling water adhere to the inner surface of the condenser heat exchanger 27. Due to the adhesion of the dirt component, heat transfer from the refrigerant vapor in the condenser 3 to the cooling water is hindered, and the pressure in the condenser 3 rises. Then, as the pressure inside the condenser 3 rises, the pressure inside the high temperature regenerator (generator) 1 and the regeneration temperature rise.

【0020】また、凝縮器3内の圧力が上昇すると、冷
媒の凝縮温度が上がり、従って、凝縮して下に溜まる冷
媒液の温度も上昇する。逆に冷却水の方は、凝縮器3が
汚れて伝熱能力が低下すると、冷却水量一定なら凝縮器
3内での温度上昇は少なくなるから、冷却水出口温度は
低くなる。結果として、冷却水系の汚れが大きくなるに
従い、同じ冷凍負荷量に対して、凝縮器3の冷媒液温度
と冷却水出口温度の差は大きくなる。
Further, when the pressure inside the condenser 3 rises, the condensing temperature of the refrigerant rises, so that the temperature of the refrigerant liquid which condenses and accumulates below also rises. On the other hand, in the case of the cooling water, when the condenser 3 becomes dirty and the heat transfer capacity is reduced, the temperature rise in the condenser 3 will be small if the amount of cooling water is constant, so the cooling water outlet temperature will be low. As a result, as the cooling water system becomes more dirty, the difference between the refrigerant liquid temperature of the condenser 3 and the cooling water outlet temperature becomes larger for the same refrigeration load amount.

【0021】吸収冷凍機の冷凍負荷は、蒸発器4で冷水
を冷却する単位時間当たりの熱量である。従って、冷水
配管22を流れる冷水の単位時間当たりの量と、蒸発器
4を通過する冷水の入口と出口の温度とを検出すれば、
冷凍負荷を計算することができる。もし冷水流量が一定
ならば、あらかじめ冷水流量をインプットしておき冷水
の入口と出口の温度のみを検出すれば、冷凍負荷を計算
することができる。その冷凍負荷に対して、凝縮器3の
冷媒液温度と冷却水出口温度とを検出すれば、その差を
計算し、冷却水系の汚れ度合を計算することができる。
The refrigerating load of the absorption refrigerator is the amount of heat per unit time for cooling the cold water in the evaporator 4. Therefore, if the amount of cold water flowing through the cold water pipe 22 per unit time and the temperatures of the inlet and outlet of the cold water passing through the evaporator 4 are detected,
The refrigeration load can be calculated. If the cold water flow rate is constant, the refrigeration load can be calculated by inputting the cold water flow rate in advance and detecting only the temperatures of the cold water inlet and outlet. If the refrigerant liquid temperature of the condenser 3 and the cooling water outlet temperature are detected with respect to the refrigeration load, the difference can be calculated and the degree of contamination of the cooling water system can be calculated.

【0022】図2は、1つの吸収冷凍機について所定冷
却水量が流れている場合の冷凍負荷(%)と、凝縮器の
冷媒液温度と冷却水出口温度との差(℃)の関係を示す
例図である。この図で、直線(A)は汚れなしの場合の
関係を示す。同じ冷凍負荷でも、冷却水系の汚れが出て
大きくなるほど温度差は大きくなっていく。注意(B)
の範囲は、冷却水系の汚れ度合いに注意が必要である。
異常(C)の範囲は、このままの運転は危険で何らかの
処置が必要である。
FIG. 2 shows the relationship between the refrigerating load (%) when a predetermined amount of cooling water is flowing in one absorption refrigerator, and the difference (° C.) between the refrigerant liquid temperature of the condenser and the cooling water outlet temperature. It is an example figure. In this figure, the straight line (A) shows the relationship when there is no stain. Even with the same refrigeration load, the temperature difference increases as the cooling water system becomes dirty and becomes larger. Caution (B)
In the range of, it is necessary to pay attention to the degree of contamination of the cooling water system.
In the abnormal (C) range, it is dangerous to operate as it is and some measures are required.

【0023】図2で、冷凍負荷100%、汚れなしで
は、温度差は3.5℃である。冷却水系が汚れてきて、
温度差が4.9℃に上昇したときの冷却水汚れ度合い
は、次ぎのように計算して、40%となる。 冷却水汚れ度合=(4.9−3.5)÷3.5=0.4
In FIG. 2, the temperature difference is 3.5 ° C. when the refrigeration load is 100% and there is no stain. The cooling water system is getting dirty,
The degree of contamination of the cooling water when the temperature difference rises to 4.9 ° C. is 40%, calculated as follows. Cooling water contamination degree = (4.9−3.5) ÷ 3.5 = 0.4

【0024】図3は、図2と関連し、冷却水系汚れ度合
い(%)と規制すべき最大入熱量(%)(=燃料制御弁
21の弁開度の規制による発生器での最大加熱量)との
関係を示す例図である。図2からの計算で、冷凍負荷1
00%、冷却水汚れ度合い40%の場合は、図3では、
最大入熱量(最大加熱量)を95%に制限すべきである
ことを示している。
FIG. 3 is related to FIG. 2, and the degree of contamination of the cooling water system (%) and the maximum heat input (%) to be regulated (= maximum heating amount in the generator due to regulation of the valve opening of the fuel control valve 21) ) Is an example diagram showing a relationship with FIG. Refrigeration load 1 calculated from FIG.
In the case of 00% and the degree of cooling water contamination of 40%, in FIG.
It indicates that the maximum heat input (maximum heating amount) should be limited to 95%.

【0025】燃料制御弁21にその弁開度をコントロー
ルするための開度信号を出力する別な方法として、凝縮
器3に流入する冷却水の温度を測定するように設けた温
度センサ35と、前記温度センサ31、32からの温度
データに基づいて制御器30が凝縮器3の対数平気温度
差を計算し、この対数平気温度差と冷凍負荷に基づいて
冷却水系の汚れ度合いを計算し、安全な範囲での運転の
継続を可能とするように、燃料制御弁21へその弁開度
をコントロールするための開度信号を出力する方法を採
ることもできる。
As another method of outputting an opening signal for controlling the opening of the fuel control valve 21, a temperature sensor 35 provided to measure the temperature of the cooling water flowing into the condenser 3, The controller 30 calculates the logarithmic average temperature difference of the condenser 3 based on the temperature data from the temperature sensors 31 and 32, calculates the degree of contamination of the cooling water system based on the logarithmic average temperature difference and the refrigeration load, and A method of outputting an opening degree signal for controlling the valve opening degree to the fuel control valve 21 can be adopted so that the operation can be continued in various ranges.

【0026】この場合も、前記したように、冷却水系の
汚れ度合いによって燃料制御弁21の弁開度の最大値を
小さい方に設定変更させる制御方法と、その汚れ度合い
が所定値以上になった場合に現在の弁開度を所定割合だ
け減少させるように開度信号を出力する制御方法の二つ
の制御方法があり、各々前記同様の特長がある。
Also in this case, as described above, the control method in which the maximum value of the valve opening degree of the fuel control valve 21 is changed to a smaller one depending on the degree of contamination of the cooling water system, and the degree of contamination exceeds a predetermined value. In this case, there are two control methods, that is, a control method of outputting an opening signal so as to reduce the current valve opening by a predetermined ratio, and each has the same characteristics as described above.

【0027】図5は、温度センサ32が測定した冷媒温
度をT32、温度センサ31、35が測定した冷却水温
度をT31、T35としたとき、 ΔTlm={(T32-T35)-(T32-T31)}÷ln{(T32-T35)÷
(T32-T31) } として求められる凝縮器3における対数平気温度差ΔT
lmと冷凍負荷との関係図である。
In FIG. 5, when the refrigerant temperature measured by the temperature sensor 32 is T32 and the cooling water temperatures measured by the temperature sensors 31 and 35 are T31 and T35, ΔTlm = {(T32-T35)-(T32-T31 )} ÷ ln {(T32-T35) ÷
(T32-T31)} as the logarithmic average temperature difference ΔT in the condenser 3
It is a relationship diagram between lm and a refrigeration load.

【0028】図5から判るように、対数平気温度差を求
めているため、冷却水の汚れ度合いを図2の場合より一
層正確に判定することができる。
As can be seen from FIG. 5, since the logarithmic mean temperature difference is obtained, the degree of contamination of the cooling water can be determined more accurately than in the case of FIG.

【0029】制御装置30は、31から35までの温度
センサから各部の温度データを入力して、上記の計算を
行い、冷却水系の汚れ度合いにより、燃料制御弁21へ
最大弁開度の設定値変更、または、現行弁開度の変更の
開度信号を出力する。計算、冷却水系の汚れ度合いの判
定、その判定に対する弁開度変更の指示基準などは、吸
収冷凍機の能力・仕様などに応じて設定される。
The control device 30 inputs the temperature data of each part from the temperature sensors 31 to 35, performs the above calculation, and sets the maximum valve opening value to the fuel control valve 21 according to the degree of contamination of the cooling water system. An opening signal for changing or changing the current valve opening is output. The calculation, the determination of the degree of contamination of the cooling water system, the instruction standard for changing the valve opening degree for the determination, and the like are set according to the capacity and specifications of the absorption refrigerator.

【0030】なお、以上の実施例は二重効用吸収冷凍機
であったが、一重効用吸収冷凍機、その他の吸収冷凍機
にも本発明を適用できる。制御装置30の機能は、本発
明に必要な機能を述べたものであるから、それ以外の機
能、例えば、冷水出口温度や冷房空気温度を検出して燃
料制御弁の弁開度をコントロールする機能や、冷却水系
の汚れ度合いに応じた警告信号を出す機能などを合わせ
持っても、何の不都合もない。
Although the above-described embodiment is a double-effect absorption refrigerator, the present invention can be applied to a single-effect absorption refrigerator and other absorption refrigerators. Since the function of the control device 30 describes the function necessary for the present invention, other functions, for example, the function of detecting the chilled water outlet temperature or the cooling air temperature and controlling the valve opening degree of the fuel control valve. There is no inconvenience even if it has a function of issuing a warning signal according to the degree of contamination of the cooling water system.

【0031】[0031]

【発明の効果】本発明は以上のように構成された吸収冷
凍機であり、制御装置30により、31から35までの
温度センサから各部の温度データを入力して、現在の冷
凍負荷、冷凍負荷に対する冷却水系の汚れ度合いの計算
を行い、冷却水系の汚れ度合いを判定し、燃料制御弁2
1へあらかじめの最大弁開度の設定値変更の開度信号、
または、すでに冷凍負荷に対する冷却水系の汚れ度合い
が所定値以上になった場合に現在の弁開度を所定割合だ
け減少させるような開度信号を、燃料制御弁21に出力
する。
The present invention is an absorption refrigerating machine configured as described above, and the control device 30 inputs temperature data of each part from temperature sensors 31 to 35 to obtain the present refrigerating load and refrigerating load. The degree of contamination of the cooling water system is calculated to determine the degree of contamination of the cooling water system, and the fuel control valve 2
Opening signal for changing the set value of the maximum valve opening in advance to 1.
Alternatively, when the degree of contamination of the cooling water system with respect to the refrigeration load has reached a predetermined value or more, an opening signal for decreasing the current valve opening by a predetermined rate is output to the fuel control valve 21.

【0032】これにより、1つは、現在は冷凍負荷量が
小さくて弁開度も小さく余裕のある運転状況であるが、
あらかじめ最大弁開度を小さい方に変更しておくこと
で、冷凍負荷量が増大してきた場合の安全運転による運
転継続を確保することができる。もう1つは、冷却水系
の汚れ度合いがすでに所定値以上になった場合に、直ち
に現在の弁開度を所定割合だけ減少させることで、安全
運転による運転継続を確保することができる。
As a result, one of the operating conditions is that the refrigeration load is small and the valve opening is small at the present time.
By changing the maximum valve opening degree to the smaller one in advance, it is possible to ensure the continuation of safe driving when the refrigeration load increases. Second, when the degree of contamination of the cooling water system has already reached a predetermined value or more, the current valve opening degree is immediately reduced by a predetermined rate, so that it is possible to ensure continued operation by safe operation.

【0033】そして、どちらの場合も冷却水系の汚れの
成長を知らずにきて、その冷却水系の汚れで発生器の圧
力と温度が上昇して設定値になることにより、吸収冷凍
機に設けられている安全装置が作動し、吸収冷凍機が突
然に停止してしまい、使用者に迷惑が掛かるのを、阻止
することができる。
In both cases, the growth of the contamination of the cooling water system is not known, and the contamination of the cooling water system raises the pressure and temperature of the generator to a set value, whereby the absorption refrigerator is provided. It is possible to prevent the user from being inconvenienced by the safety device being activated and the absorption refrigerator being stopped suddenly.

【0034】特に、凝縮器における対数平気温度差を求
めて制御する方法は、単に各部の温度差を求めて制御す
る方法に比べて、冷却水系の汚れ度合いを一層正確に判
定して吸収冷凍機の運転を安定して継続することができ
る。
In particular, the method of controlling by obtaining the logarithmic mean temperature difference in the condenser is more accurate than the method of simply obtaining and controlling the temperature difference of each part to determine the degree of contamination of the cooling water system more accurately and the absorption refrigerator. The operation of can be continued stably.

【0035】従って、本発明になる吸収冷凍機の使用者
は、吸収冷凍機の冷凍能力の低下を体感して、計画的に
シーズンオフや休日などに吸収冷凍機の保全・修理を行
うことができる。
Therefore, the user of the absorption refrigerating machine according to the present invention can experience the deterioration of the refrigerating capacity of the absorption refrigerating machine and systematically perform maintenance / repair of the absorption refrigerating machine during off season or on holidays. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す吸収冷凍機の回路構成
図である。
FIG. 1 is a circuit configuration diagram of an absorption refrigerator according to an embodiment of the present invention.

【図2】吸収冷凍機について冷凍負荷(%)と、凝縮器
の冷媒液温度と冷却水出口温度との差(゜C)の関係の
1例を示すグラフである。
FIG. 2 is a graph showing an example of the relationship between the refrigeration load (%) and the difference (° C.) between the refrigerant liquid temperature of the condenser and the cooling water outlet temperature for the absorption refrigerator.

【図3】図2と関連し、冷却水系汚れ度合い(%)と規
制すべき最大入熱量(%)との関係を示すグラフであ
る。
FIG. 3 is a graph showing a relationship between the degree of cooling water system contamination (%) and the maximum heat input (%) to be regulated, in relation to FIG. 2.

【図4】凝縮器出入口部における冷媒温度(T32)と
冷却水温度(T31、T35)との関係の1例を示すグ
ラフである。
FIG. 4 is a graph showing an example of the relationship between the refrigerant temperature (T32) and the cooling water temperature (T31, T35) at the inlet and outlet of the condenser.

【図5】冷凍負荷(%)と、凝縮器における対数平均温
度差(ΔTlm)との関係の1例を示すグラフである。
FIG. 5 is a graph showing an example of the relationship between the refrigeration load (%) and the logarithmic average temperature difference (ΔTlm) in the condenser.

【符号の説明】[Explanation of symbols]

1 高温再生器(発生器) 3 凝縮器 5 吸収器 21 燃料制御弁 30 制御装置 31 温度センサ(凝縮器からの冷却水出口温度を検出
する) 32 温度センサ(凝縮器で凝縮した冷媒の温度を検出
する) 35 温度センサ(凝縮器に入る冷却水出口温度を検出
する)
1 High Temperature Regenerator (Generator) 3 Condenser 5 Absorber 21 Fuel Control Valve 30 Control Device 31 Temperature Sensor (Detects Cooling Water Outlet Temperature from Condenser) 32 Temperature Sensor (Refers to Temperature of Refrigerant Condensed in Condenser) 35 temperature sensor (detects the cooling water outlet temperature entering the condenser)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸収器から送られてきた吸収液を加熱し
て冷媒蒸気を発生する発生器を備えた吸収冷凍機におい
て、凝縮器からの冷却水出口温度を検出する温度センサ
と、凝縮器で凝縮した冷媒の温度を検出する温度センサ
と、これらの温度センサから信号を入力して冷却水系の
汚れ度合いを計算し判定し、冷却水系の汚れ度合いによ
り燃料制御弁の最大弁開度の設定値変更の開度信号を燃
料制御弁に出力する制御装置とを備えたことを特徴とす
る吸収冷凍機。
1. An absorption refrigerating machine equipped with a generator for heating an absorbing liquid sent from an absorber to generate a refrigerant vapor, and a temperature sensor for detecting a cooling water outlet temperature from the condenser, and a condenser. The temperature sensors that detect the temperature of the refrigerant condensed in step 1 and the signals from these temperature sensors are input to calculate and determine the degree of contamination of the cooling water system, and the maximum valve opening of the fuel control valve is set according to the degree of contamination of the cooling water system. An absorption chiller comprising: a control device that outputs an opening signal for changing a value to a fuel control valve.
【請求項2】 吸収器から送られてきた吸収液を加熱し
て冷媒蒸気を発生する発生器を備えた吸収冷凍機におい
て、凝縮器からの冷却水出口温度を検出する温度センサ
と、凝縮器で凝縮した冷媒の温度を検出する温度センサ
と、これらの温度センサから信号を入力して冷却水系の
汚れ度合いを計算し判定し、その冷却水系の汚れ度合い
が所定値以上である場合に現在の弁開度を所定割合だけ
減少させる開度信号を燃料制御弁に出力する制御装置と
を備えたことを特徴とする吸収冷凍機。
2. An absorption refrigerating machine equipped with a generator for heating an absorbing liquid sent from an absorber to generate a refrigerant vapor, and a temperature sensor for detecting a cooling water outlet temperature from the condenser, and a condenser. In the temperature sensor that detects the temperature of the condensed refrigerant in, the signal from these temperature sensors is input to calculate and determine the degree of contamination of the cooling water system, and if the degree of contamination of the cooling water system is greater than or equal to a predetermined value, the current An absorption refrigerating machine, comprising: a control device that outputs an opening degree signal for reducing a valve opening degree by a predetermined ratio to a fuel control valve.
【請求項3】 吸収器から送られてきた吸収液を加熱し
て冷媒蒸気を発生する発生器を備えた吸収冷凍機におい
て、凝縮器の冷却水入口、出口温度を検出する温度セン
サと、凝縮器で凝縮した冷媒の温度を検出する温度セン
サと、これらの温度センサから信号を入力して凝縮器の
対数平気温度差を計算し、この対数平気温度差と冷凍負
荷に基づいて冷却水系の汚れ度合いを計算し判定し、冷
却水系の汚れ度合いにより燃料制御弁の最大弁開度の設
定値変更の開度信号を燃料制御弁に出力する制御装置と
を備えたことを特徴とする吸収冷凍機。
3. An absorption refrigerating machine equipped with a generator for heating an absorption liquid sent from an absorber to generate a refrigerant vapor, and a temperature sensor for detecting a cooling water inlet / outlet temperature of a condenser, and a condenser. The temperature sensors that detect the temperature of the refrigerant condensed in the condenser, and the signals from these temperature sensors are input to calculate the logarithmic average temperature difference between the condensers, and the contamination of the cooling water system is calculated based on this logarithmic average temperature difference and the refrigeration load. An absorption refrigerating machine, comprising: a control device that calculates and determines the degree and outputs an opening signal for changing the set value of the maximum valve opening of the fuel control valve to the fuel control valve according to the degree of contamination of the cooling water system. .
【請求項4】 吸収器から送られてきた吸収液を加熱し
て冷媒蒸気を発生する発生器を備えた吸収冷凍機におい
て、凝縮器の冷却水入口、出口温度を検出する温度セン
サと、凝縮器で凝縮した冷媒の温度を検出する温度セン
サと、これらの温度センサから信号を入力して凝縮器の
対数平気温度差を計算し、この対数平気温度差と冷凍負
荷に基づいて冷却水系の汚れ度合いを計算し判定し、そ
の冷却水系の汚れ度合いが所定値以上である場合に現在
の弁開度を所定割合だけ減少させる開度信号を燃料制御
弁に出力する制御装置とを備えたことを特徴とする吸収
冷凍機。
4. An absorption refrigerating machine equipped with a generator for heating an absorbing liquid sent from an absorber to generate a refrigerant vapor, wherein a temperature sensor for detecting a cooling water inlet / outlet temperature of a condenser, and a condenser. The temperature sensors that detect the temperature of the refrigerant condensed in the condenser, and the signals from these temperature sensors are input to calculate the logarithmic average temperature difference between the condensers, and the contamination of the cooling water system is calculated based on this logarithmic average temperature difference and the refrigeration load. And a controller for outputting an opening signal to the fuel control valve that reduces the current valve opening by a predetermined ratio when the degree of contamination of the cooling water system is greater than or equal to a predetermined value. A characteristic absorption refrigerator.
JP6001690A 1994-01-12 1994-01-12 Absorption type refrigerating machine Pending JPH07198224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6001690A JPH07198224A (en) 1994-01-12 1994-01-12 Absorption type refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6001690A JPH07198224A (en) 1994-01-12 1994-01-12 Absorption type refrigerating machine

Publications (1)

Publication Number Publication Date
JPH07198224A true JPH07198224A (en) 1995-08-01

Family

ID=11508524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6001690A Pending JPH07198224A (en) 1994-01-12 1994-01-12 Absorption type refrigerating machine

Country Status (1)

Country Link
JP (1) JPH07198224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172925A (en) * 2011-02-22 2012-09-10 Kurita Water Ind Ltd Dirt evaluation method in coolant line in refrigeration system
JP2012207832A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Method of evaluating contamination of cooling water line in refrigerating system
JP2012207834A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Method for monitoring contamination in cooling water line in refrigerating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172925A (en) * 2011-02-22 2012-09-10 Kurita Water Ind Ltd Dirt evaluation method in coolant line in refrigeration system
JP2012207832A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Method of evaluating contamination of cooling water line in refrigerating system
JP2012207834A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Method for monitoring contamination in cooling water line in refrigerating system

Similar Documents

Publication Publication Date Title
JP3732877B2 (en) Absorption refrigerator control method and control apparatus
JPH07318188A (en) Controlling equipment of absorption type water cooling-heating appliance
JPH07198224A (en) Absorption type refrigerating machine
JP3184034B2 (en) Control method of absorption chiller / heater
JP3081472B2 (en) Control method of absorption refrigerator
JP3831427B2 (en) Heat input control method of absorption refrigerator
JPH073300B2 (en) Absorption refrigerator protection device
JP3534682B2 (en) Absorption refrigerator and cooling water flow control method
JPH07190537A (en) Absorption type refrigerating machine
JP3172315B2 (en) Number of operation units for absorption chillers
US5722246A (en) Absorption refrigerating apparatus control method
JP2900608B2 (en) Absorption refrigerator
JPH0320671B2 (en)
KR100423817B1 (en) Control method of absorption chiller
JP3138164B2 (en) Absorption refrigerator
JPH0749894B2 (en) Absorption refrigerator control method
JP3279069B2 (en) Absorption refrigerator
JP2654137B2 (en) Control method of absorption refrigerator
JPH02140564A (en) Controlling method for absorption refrigerator
JP2000310452A (en) Turbo refrigerator
JPH04151470A (en) Control device for absorption type cold-hot water heater
JP2906834B2 (en) Absorption refrigerator
JP2900609B2 (en) Absorption refrigerator
JPH06159852A (en) Absorption type freezer
JPS6157537B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071016

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081016

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091016

LAPS Cancellation because of no payment of annual fees