JPH0719657A - Absorption type refrigerator - Google Patents

Absorption type refrigerator

Info

Publication number
JPH0719657A
JPH0719657A JP15651793A JP15651793A JPH0719657A JP H0719657 A JPH0719657 A JP H0719657A JP 15651793 A JP15651793 A JP 15651793A JP 15651793 A JP15651793 A JP 15651793A JP H0719657 A JPH0719657 A JP H0719657A
Authority
JP
Japan
Prior art keywords
regenerator
condenser
absorber
function
concentrated solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15651793A
Other languages
Japanese (ja)
Inventor
Masayuki Fujimoto
正之 藤本
Hiromi Kurosawa
洋巳 黒澤
Yoichi Ohira
洋一 大平
Yasuo Takase
保夫 高瀬
Shozo Kato
昇三 加藤
Kazuhiro Tajima
一弘 田島
Tetsuo Miyamoto
哲雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tokyo Gas Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15651793A priority Critical patent/JPH0719657A/en
Publication of JPH0719657A publication Critical patent/JPH0719657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide an absorption type refrigerator which is stably operated in a wide operating range. CONSTITUTION:An absorption type refrigerator 23 comprises a regenerator 1 having a cooling burner 2 as a heat source, an absorber 7 in which dense solution is supplied from the generator 1 through a U-shaped sealing tube 8, a condenser 3 communicating with the regenerator 1, and an evaporator 5, wherein the pressure or the temperature of the regenerator 1 or the condenser 3 is controlled according to a predetermined linear equation to stably supply dense solution of the regenerator to the absorber 7 through the tube 8. The coefficients of the equation are stored in the form corresponding to various operating conditions in a table, and the coefficients of the equation are determined in response to the condition based on the table. Thus, since the equation for determining the set temperature of the condenser 3 is so selected as to become optimum in the form corresponding to various condition, its operating range is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、広範囲な運転領域にお
いて安定した運転をさせることが出来る吸収式冷凍装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type refrigeration system capable of stable operation in a wide range of operation areas.

【0002】[0002]

【従来の技術】従来の吸収式冷凍装置における凝縮器の
圧力制御は、凝縮器の下部に設けたサーミスタよりなる
温度センサで凝縮温度を検出し、冷凍負荷に応じた1次
式Tcs=AG+B(但し、Tcsは凝縮器の設定温
度、A、Bは係数、Gは負荷率である。)に則って制御
していた(特願平4−190385号参照)。
2. Description of the Related Art In controlling the pressure of a condenser in a conventional absorption refrigeration system, a condensation temperature is detected by a temperature sensor composed of a thermistor provided at the bottom of the condenser, and a primary expression Tcs = AG + B ( However, Tcs was controlled according to the preset temperature of the condenser, A and B are coefficients, and G is a load factor (see Japanese Patent Application No. 4-190385).

【0003】[0003]

【発明が解決しようとする課題】しかし、これでは、上
記1次式中の係数A、Bが、再生器と吸収器との間の抵
抗や運転状況、或いは外気の変化などの種々の運転条件
とは無関係に設定された定数であることから、溶液が凝
縮器へ混入し、不安定な運転をすることがあった。
However, in this case, the coefficients A and B in the above-mentioned primary equation are set to various operating conditions such as resistance between the regenerator and the absorber, operating conditions, or changes in outside air. Since it is a constant set regardless of, the solution may mix into the condenser and cause unstable operation.

【0004】本発明は、上記事情に鑑み、1次式等の関
数を運転条件に応じて選択できるようにすることによ
り、安定した運転領域を拡大し得る吸収式冷凍装置を提
供することを目的とする。
In view of the above circumstances, the present invention has an object to provide an absorption type refrigerating apparatus capable of expanding a stable operating region by making it possible to select a function such as a linear expression according to operating conditions. And

【0005】[0005]

【課題を解決するための手段】即ち、本発明は、加熱装
置(2)を熱源とする再生器(1)と、該再生器からU
シール管(8)を介して濃溶液が供給される吸収器
(7)と、前記再生器に連通する凝縮器(3)と、蒸発
器(5)とからなる吸収式冷凍装置(23)において、
前記再生器又は前記凝縮器の圧力又は温度を前記再生器
の濃溶液が前記Uシール管を通って前記吸収器に安定供
給されるように所定の関数(例えば、1次式)に則って
制御する濃溶液量制御手段(19c)を設け、前記関数
が種々の運転条件に対応した形でテーブル(TAB)と
して格納されたメモリ手段(19d)を設け、前記メモ
リ手段に格納されたテーブルに基づいて前記関数を運転
条件に応じて決定する関数決定手段(19e)を設けて
構成される。
That is, according to the present invention, a regenerator (1) having a heating device (2) as a heat source and a U-type regenerator is used.
In an absorption refrigeration system (23) comprising an absorber (7) to which a concentrated solution is supplied via a seal pipe (8), a condenser (3) communicating with the regenerator, and an evaporator (5) ,
Control the pressure or temperature of the regenerator or the condenser according to a predetermined function (for example, a linear equation) so that the concentrated solution of the regenerator is stably supplied to the absorber through the U-seal tube. And a memory means (19d) in which the function is stored as a table (TAB) in a form corresponding to various operating conditions, and based on the table stored in the memory means. Function determining means (19e) for determining the function according to operating conditions.

【0006】[0006]

【作用】上記した構成により、本発明は、凝縮器(3)
の設定温度(Tcs)を定める1次式等の関数が、種々
の運転条件に対応した形で最適なものとなるべく選択さ
れるように作用する。
With the above-mentioned structure, the present invention provides a condenser (3).
The function such as a linear equation that determines the set temperature (Tcs) of the above-mentioned function acts so as to be optimal in a form corresponding to various operating conditions.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1は本発明による吸収式冷凍装置の一実
施例を示す概略図、図2は図1に示す吸収式冷凍装置の
制御装置の制御ブロック図、図3及び図4は溶液循環制
御プログラムの一例を示すフローチャート、図5は冷房
用バーナの加熱量と凝縮器の設定温度との関係を表わす
1次式中の係数が格納されたテーブルの一例を示す模式
図である。
FIG. 1 is a schematic view showing an embodiment of an absorption refrigeration system according to the present invention, FIG. 2 is a control block diagram of a control device for the absorption refrigeration system shown in FIG. 1, and FIGS. 3 and 4 are solution circulation control. FIG. 5 is a flow chart showing an example of a program, and FIG. 5 is a schematic diagram showing an example of a table in which coefficients in a linear expression representing the relationship between the heating amount of the cooling burner and the set temperature of the condenser are stored.

【0009】本発明による吸収式冷凍装置23は、図1
に示すように、室外機27を有しており、室外機27
は、下側に冷房用バーナ2を備えた再生器1を有してい
る。再生器1の上部には連通する凝縮器3が配設されて
おり、凝縮器3には冷媒配管4を介して冷媒タンク6が
接続されている。なお、凝縮器3の下部にはサーミスタ
よりなる温度センサ10が取り付けられている。冷媒タ
ンク6の上方には蒸発器5が配設されており、蒸発器5
の図1左方には吸収器7が配設されている。また、吸収
器7には、前記再生器1から配管したUシール管8が接
続されており、Uシール管8の途中には溶液熱交換器9
が設けられている。また、Uシール管8には真空弁24
を介して溶液タンク12が設置されている。溶液タンク
12は稀溶液配管13を介して前記再生器1に接続され
ており、稀溶液配管13の途中にはポンプ25及び前記
溶液熱交換器9が設けられている。また、再生器1の図
1左方には、下側に暖房用バーナ17を備えた温水熱交
換器16が並設されており、これら再生器1及び温水熱
交換器16の上側には排気フード18が冠着されてい
る。
The absorption refrigerating apparatus 23 according to the present invention is shown in FIG.
As shown in FIG.
Has a regenerator 1 provided with a cooling burner 2 on the lower side. A condenser 3 communicating with the regenerator 1 is disposed above the regenerator 1, and a refrigerant tank 6 is connected to the condenser 3 via a refrigerant pipe 4. A temperature sensor 10 including a thermistor is attached to the lower portion of the condenser 3. The evaporator 5 is disposed above the refrigerant tank 6, and the evaporator 5
An absorber 7 is disposed on the left side of FIG. The absorber 7 is connected to a U-seal pipe 8 from the regenerator 1, and a solution heat exchanger 9 is provided in the middle of the U-seal pipe 8.
Is provided. In addition, the U seal tube 8 has a vacuum valve 24
The solution tank 12 is installed via the. The solution tank 12 is connected to the regenerator 1 via a dilute solution pipe 13, and a pump 25 and the solution heat exchanger 9 are provided in the middle of the dilute solution pipe 13. Further, on the left side of the regenerator 1 in FIG. 1, a hot water heat exchanger 16 having a heating burner 17 is arranged in parallel on the lower side, and exhaust gas is provided on the upper side of the regenerator 1 and the hot water heat exchanger 16. The hood 18 is worn.

【0010】また、凝縮器3と吸収器7の近傍には送風
ファン21が、これら凝縮器3及び吸収器7を冷却し得
る形で設置されている。また、吸収器7には、該吸収器
7を水冷するための冷却水を吐出し得る冷却水管30が
接続されており、冷却水管30の途中には流量弁31が
設けられている。
A blower fan 21 is installed in the vicinity of the condenser 3 and the absorber 7 so as to cool the condenser 3 and the absorber 7. A cooling water pipe 30 capable of discharging cooling water for cooling the absorber 7 is connected to the absorber 7, and a flow valve 31 is provided in the middle of the cooling water pipe 30.

【0011】更に、室外機27は制御装置19を有して
おり、制御装置19は、図2に示すように、主制御部1
9aを有している。主制御部19aにはバス線19bを
介して濃溶液量制御部19c、テーブルメモリ19d、
係数決定部19e及び前記温度センサ10等が接続され
ており、濃溶液量制御部19cには前記冷房用バーナ2
が接続されている。
Further, the outdoor unit 27 has a control device 19, and the control device 19 is, as shown in FIG.
9a. The main controller 19a is provided with a concentrated solution amount controller 19c, a table memory 19d, and a bus line 19b.
The coefficient determination unit 19e and the temperature sensor 10 are connected, and the concentrated solution amount control unit 19c is connected to the cooling burner 2
Are connected.

【0012】一方、室外機27の図1右方には複数台の
室内機28、29、…が設置されており、これら室内機
28、29、…と前記蒸発器5及び前記温水熱交換器1
6とは冷水管14で接続されている。
On the other hand, a plurality of indoor units 28, 29, ... Are installed on the right side of the outdoor unit 27 in FIG. 1, and these indoor units 28, 29 ,. 1
It is connected to 6 by a cold water pipe 14.

【0013】本発明による吸収式冷凍装置23は以上の
ような構成を有するので、該吸収式冷凍装置23の冷房
運転に際しては、まず、冷房用バーナ2の加熱で再生器
1の溶液が沸騰し、冷媒蒸気が凝縮器3へ導かれた後、
凝縮して冷媒液となる。この冷媒液は冷媒タンク6に溜
まり、冷媒ポンプ22から蒸発器5へ給送され、この散
布時に生ずる潜熱で冷水管14を流れる冷水を冷やすと
共に、発生した冷媒蒸気を連通の吸収器7で、再生器1
から別途導かれる濃溶液の散布で吸収し稀溶液として溶
液タンク12に集め、再生器1に戻す冷凍サイクルを構
成する。
Since the absorption refrigerating apparatus 23 according to the present invention has the above-described structure, when the absorption refrigerating apparatus 23 is in the cooling operation, first, the solution in the regenerator 1 is boiled by heating the cooling burner 2. , After the refrigerant vapor is guided to the condenser 3,
It becomes a refrigerant liquid by condensing. This refrigerant liquid accumulates in the refrigerant tank 6, is fed from the refrigerant pump 22 to the evaporator 5, cools the cold water flowing through the cold water pipe 14 by the latent heat generated at the time of the spraying, and the generated refrigerant vapor is communicated by the absorber 7. Regenerator 1
A refrigeration cycle is constructed in which the solution is absorbed by spraying a concentrated solution separately guided from the above and collected as a dilute solution in the solution tank 12 and returned to the regenerator 1.

【0014】また、再生器1から吸収器7への濃溶液の
安定供給に際しては、再生器1に連通する凝縮器3の温
度(又は圧力)を所定の範囲内に維持するものである。
即ち、この吸収式冷凍装置23を安定的に正常に運転さ
せるためには、凝縮器3の圧力(再生器1の圧力)を濃
溶液の流動抵抗に打ち勝って流れる圧力にする必要があ
るが、この凝縮器3の圧力によってUシール管8を流動
する濃溶液には、濃溶液が吹き飛ぶ運転限界(Uシール
が切れる上限)と濃溶液が流れない限界となる下限とが
ある。凝縮器3の圧力を制御するには、この圧力を濃溶
液のUシールが切れる上限と濃溶液が流れなくなる下限
との間に保つことが重要である。
When the concentrated solution is stably supplied from the regenerator 1 to the absorber 7, the temperature (or pressure) of the condenser 3 communicating with the regenerator 1 is maintained within a predetermined range.
That is, in order to stably and normally operate the absorption refrigeration system 23, it is necessary to set the pressure of the condenser 3 (pressure of the regenerator 1) to a pressure that overcomes the flow resistance of the concentrated solution and flows. The concentrated solution flowing through the U-seal pipe 8 by the pressure of the condenser 3 has an operating limit (upper limit at which the U-seal is cut off) for blowing the concentrated solution and a lower limit at which the concentrated solution does not flow. In order to control the pressure of the condenser 3, it is important to maintain this pressure between the upper limit at which the U-seal of the concentrated solution is cut off and the lower limit at which the concentrated solution stops flowing.

【0015】ここで、凝縮器3の圧力制御に際して、制
御装置19の主制御部19aは、濃溶液量制御部19c
に対して、再生器1の濃溶液がUシール管8を通って吸
収器7に安定供給されるべく制御するように指令する。
これを受けて濃溶液量制御部19cは、凝縮器3の下部
に取り付けられた温度センサ10で凝縮器3の温度を検
出し、冷凍負荷に応じた1次式Tcs=AQg+B(但
し、Tcsは凝縮器の設定温度、A、Bは係数、Qgは
加熱量である。)に則って制御を行なう。つまり、温度
センサ10の検出温度が、冷凍負荷によって決まる設定
温度Tcsになるように送風ファン21の回転数を適宜
変えて風量を制御すれば、凝縮器3の冷媒温度が変化
し、この凝縮温度の変化に連れて凝縮器3の圧力が変わ
るので、該凝縮器3と連通する再生器1の圧力を変える
ことが出来る。
Here, in controlling the pressure of the condenser 3, the main control unit 19a of the control device 19 has a concentrated solution amount control unit 19c.
In response, the concentrated solution of the regenerator 1 is instructed to be controlled so as to be stably supplied to the absorber 7 through the U seal tube 8.
In response to this, the concentrated solution amount control unit 19c detects the temperature of the condenser 3 with the temperature sensor 10 attached to the lower portion of the condenser 3, and the linear expression Tcs = AQg + B (where Tcs is Control is performed in accordance with the set temperature of the condenser, A and B are coefficients, and Qg is a heating amount. That is, if the air volume is controlled by appropriately changing the rotation speed of the blower fan 21 so that the temperature detected by the temperature sensor 10 becomes the set temperature Tcs determined by the refrigeration load, the refrigerant temperature of the condenser 3 changes, and this condensation temperature Since the pressure of the condenser 3 changes in accordance with the change of, the pressure of the regenerator 1 communicating with the condenser 3 can be changed.

【0016】しかも、凝縮器3の圧力制御は、再生器1
と吸収器7との間の抵抗、運転状況及び外気の変化など
の種々の運転条件に応じて上述の1次式中の係数A、B
を適宜変えることによって適正に行なわれるので、安定
した冷房運転を行なうことが可能となる。即ち、制御装
置19の主制御部19aは、係数決定部19eに対し
て、運転条件に応じた最適な係数A、Bを決定するよう
に指令する。これを受けて係数決定部19eは、図5に
示すようなテーブルTABをテーブルメモリ19dから
読み出し、該テーブルTABを参照して、その時点の運
転条件C1、C2、…、C6に対応した係数A、Bを決
定する。なお、溶液を適正流量だけ流したい場合には、
係数A、Bを変えたときに加熱量Qgも同時に変える。
Moreover, the pressure control of the condenser 3 is controlled by the regenerator 1.
According to various operating conditions such as resistance between the absorber and the absorber 7, operating conditions, and changes in the outside air, the coefficients A and B in the above-described linear equation are used.
Is appropriately performed, so that stable cooling operation can be performed. That is, the main control unit 19a of the control device 19 commands the coefficient determination unit 19e to determine the optimum coefficients A and B according to the operating conditions. In response to this, the coefficient determination unit 19e reads the table TAB as shown in FIG. 5 from the table memory 19d, refers to the table TAB, and refers to the coefficient A corresponding to the operating conditions C1, C2, ..., C6 at that time. , B is determined. If you want to flow the solution at an appropriate flow rate,
When the coefficients A and B are changed, the heating amount Qg is also changed.

【0017】なお、上述の実施例においては、加熱量Q
gと凝縮器の設定温度Tcsとを関係付ける関数が1次
式(Tcs=AQg+B)である場合について説明した
が、本発明は、該関数が1次式以外の関数(例えば、2
次式や3次式など)である場合にも適用可能であること
は言及するまでもない。
In the above embodiment, the heating amount Q
Although the case where the function relating g to the set temperature Tcs of the condenser is a linear expression (Tcs = AQg + B) has been described, the present invention describes that the function is a function other than the linear expression (for example, 2
Needless to say, it is also applicable to the case of the following equation or cubic equation).

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
冷房用バーナ2等の加熱装置を熱源とする再生器1と、
該再生器1からUシール管8を介して濃溶液が供給され
る吸収器7と、前記再生器1に連通する凝縮器3と、蒸
発器5とからなる吸収式冷凍装置23において、前記再
生器1又は前記凝縮器3の圧力又は温度を前記再生器1
の濃溶液が前記Uシール管8を通って前記吸収器7に安
定供給されるように所定の関数(例えば、1次式)に則
って制御する濃溶液量制御部19c等の濃溶液量制御手
段を設け、前記関数が種々の運転条件に対応した形でテ
ーブルTABとして格納されたテーブルメモリ19d等
のメモリ手段を設け、前記メモリ手段に格納されたテー
ブルTABに基づいて前記関数を運転条件に応じて決定
する係数決定部19e等の関数決定手段を設けて構成し
たので、凝縮器3の設定温度Tcsを定める1次式等の
関数が、種々の運転条件に対応した形で最適なものとな
るように選択されることから、広範囲な運転領域におい
て安定した運転をさせることが出来る吸収式冷凍装置2
3を提供することが可能となる。
As described above, according to the present invention,
A regenerator 1 using a heating device such as a cooling burner 2 as a heat source,
In the absorption refrigeration system 23 including an absorber 7 to which a concentrated solution is supplied from the regenerator 1 via a U-seal tube 8, a condenser 3 communicating with the regenerator 1, and an evaporator 5, The pressure or temperature of the condenser 1 or the condenser 3 is adjusted to the regenerator 1
Concentrated solution amount control unit 19c, etc., which controls the concentrated solution according to a predetermined function (for example, a linear expression) so that the concentrated solution is stably supplied to the absorber 7 through the U-seal tube 8. Means is provided, and memory means such as a table memory 19d in which the function is stored as a table TAB in a form corresponding to various operating conditions is provided, and the function is set as the operating condition based on the table TAB stored in the memory means. Since the function determining means such as the coefficient determining unit 19e for determining the temperature according to the present invention is provided, the function such as a linear expression that determines the set temperature Tcs of the condenser 3 is optimal in a form corresponding to various operating conditions. The absorption type refrigerating device 2 that can be stably operated in a wide range of operation region
3 can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による吸収式冷凍装置の一実施例を示す
概略図である。
FIG. 1 is a schematic view showing an embodiment of an absorption refrigeration system according to the present invention.

【図2】図1に示す吸収式冷凍装置の制御装置の制御ブ
ロック図である。
FIG. 2 is a control block diagram of a control device of the absorption refrigeration system shown in FIG.

【図3】溶液循環制御プログラムの一例の一部を示すフ
ローチャートである。
FIG. 3 is a flowchart showing a part of an example of a solution circulation control program.

【図4】図3に示す溶液循環制御プログラムの残部を示
すフローチャートである。
FIG. 4 is a flowchart showing the rest of the solution circulation control program shown in FIG.

【図5】冷房用バーナの加熱量と凝縮器の設定温度との
関係を表わす1次式中の係数が格納されたテーブルの一
例を示す模式図である。
FIG. 5 is a schematic diagram showing an example of a table in which coefficients in a linear expression representing a relationship between a heating amount of a cooling burner and a set temperature of a condenser are stored.

【符号の説明】[Explanation of symbols]

1……再生器 2……加熱装置(冷房用バーナ) 3……凝縮器 5……蒸発器 7……吸収器 8……Uシール管 19c……濃溶液量制御手段(濃溶液量制御部) 19d……メモリ手段(テーブルメモリ) 19e……関数決定手段(係数決定部) 23……吸収式冷凍装置 1 ... Regenerator 2 ... Heating device (burner for cooling) 3 ... Condenser 5 ... Evaporator 7 ... Absorber 8 ... U seal tube 19c ... Concentrated solution amount control means (concentrated solution amount control unit) ) 19d ... Memory means (table memory) 19e ... Function determining means (coefficient determining unit) 23 ... Absorption type refrigerating apparatus

フロントページの続き (72)発明者 高瀬 保夫 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 加藤 昇三 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 田島 一弘 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 宮本 哲雄 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内Front page continuation (72) Inventor Yasuo Takase 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Shozo Kato 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Kazuhiro Tajima 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Tetsuo Miyamoto 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加熱装置を熱源とする再生器と、該再生
器からUシール管を介して濃溶液が供給される吸収器
と、前記再生器に連通する凝縮器と、蒸発器とからなる
吸収式冷凍装置において、 前記再生器又は前記凝縮器の圧力又は温度を前記再生器
の濃溶液が前記Uシール管を通って前記吸収器に安定供
給されるように所定の関数に則って制御する濃溶液量制
御手段を設け、 前記関数が種々の運転条件に対応した形でテーブルとし
て格納されたメモリ手段を設け、 前記メモリ手段に格納されたテーブルに基づいて前記関
数を運転条件に応じて決定する関数決定手段を設けて構
成した吸収式冷凍装置。
1. A regenerator using a heating device as a heat source, an absorber to which a concentrated solution is supplied from the regenerator through a U-seal tube, a condenser in communication with the regenerator, and an evaporator. In an absorption refrigeration system, the pressure or temperature of the regenerator or the condenser is controlled according to a predetermined function so that a concentrated solution of the regenerator is stably supplied to the absorber through the U-seal pipe. Concentrated solution amount control means is provided, memory means in which the function is stored as a table in a form corresponding to various operating conditions is provided, and the function is determined according to the operating condition based on the table stored in the memory means. An absorption type refrigerating apparatus configured by providing function determining means for performing the function.
JP15651793A 1993-06-28 1993-06-28 Absorption type refrigerator Pending JPH0719657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15651793A JPH0719657A (en) 1993-06-28 1993-06-28 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15651793A JPH0719657A (en) 1993-06-28 1993-06-28 Absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPH0719657A true JPH0719657A (en) 1995-01-20

Family

ID=15629518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15651793A Pending JPH0719657A (en) 1993-06-28 1993-06-28 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPH0719657A (en)

Similar Documents

Publication Publication Date Title
JP2937090B2 (en) Dehumidifier
JP3753356B2 (en) Triple effect absorption refrigerator
JPH0719657A (en) Absorption type refrigerator
JP3318505B2 (en) Control device for absorption air conditioner
JP2956362B2 (en) Absorption refrigerator
JP3303440B2 (en) Cold water temperature control method for cold water generator
KR0171307B1 (en) Proportional control apparatus of absorptive type airconditioner
JP4494624B2 (en) Air conditioner
JPH0868572A (en) Dual-effect absorption refrigerator
JP2530487B2 (en) Refrigerant natural circulation type cooling system
KR100321586B1 (en) Device for preventing generation of adhering ores in mixing material processing shut
JP3138164B2 (en) Absorption refrigerator
JPH10184453A (en) Engine heat pump type air-conditioning device
JPH08261504A (en) Air-conditioner for coating booth
JPH07218004A (en) Motor operated expansion valve controller for air conditioner
JP3122282B2 (en) Absorption refrigerator
JPH11182965A (en) Air conditioner and air conditioning method using absorption hot and chilled water generator
JPH0719534A (en) Air-conditioning apparatus equipped with flow-rate controller for chilled/hot water
JPH0829000A (en) Absorption type air conditioner
JPH0875297A (en) Air conditioning apparatus using absorption refrigerator
JPH0798164A (en) Air-conditioner using absorptive freezer
JPH0791767A (en) Air conditioner using absorption refrigerator
JPH0626691A (en) Air conditioner
JPH10153334A (en) Air-conditioner
JPH0829005A (en) Air-conditioner using absorptive refrigerating machine