JPH07196386A - Heat-resistant member - Google Patents

Heat-resistant member

Info

Publication number
JPH07196386A
JPH07196386A JP35026393A JP35026393A JPH07196386A JP H07196386 A JPH07196386 A JP H07196386A JP 35026393 A JP35026393 A JP 35026393A JP 35026393 A JP35026393 A JP 35026393A JP H07196386 A JPH07196386 A JP H07196386A
Authority
JP
Japan
Prior art keywords
heat
carbon fiber
resistant member
resistant
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35026393A
Other languages
Japanese (ja)
Inventor
Takao Nakagawa
隆夫 中川
Masaharu Tachibana
正晴 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Across Co Ltd
Acros Corp
Original Assignee
Across Co Ltd
Acros Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Across Co Ltd, Acros Corp filed Critical Across Co Ltd
Priority to JP35026393A priority Critical patent/JPH07196386A/en
Priority to DE69410581T priority patent/DE69410581T2/en
Priority to EP94309712A priority patent/EP0661248B1/en
Priority to US08/366,095 priority patent/US5579898A/en
Publication of JPH07196386A publication Critical patent/JPH07196386A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heat-resistant member repeatedly usable in a gaseous atmosphere at a high temperature by laminating a heatresistant metal layer on a carbon fiber-reinforced carbon composite material interposing an intermediate layer. CONSTITUTION:This heat-resistant member is produced by impregnating a thermosetting resin in carbon fiber, forming to a desired form, heat-treating in an inert gas atmosphere to obtain a carbon fiber-reinforced carbon composite material and laminating a heat-resistant metal layer having a thickness of 0.2-3mm to the surface of the composite material interposing an intermediate layer made of ceramic and having a thickness of 2-300mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば自動車、車両、産
業機械等の部品の焼入れ用治具、半導体拡散炉用治具あ
るいは熱処理炉用ローラーなどとして有用な耐熱性部材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant member useful as a jig for hardening parts of automobiles, vehicles, industrial machines, etc., a jig for a semiconductor diffusion furnace, a roller for a heat treatment furnace, etc.

【0002】[0002]

【従来の技術】近年の自動車産業における競争の激化等
に伴い、その数多い部品の製造、処理等において、生産
性向上のために多大の努力が払われ、生産現場で可能な
限りの自動化が実現されている。ただ、未だ自動化が実
現されていない工程もある。例えば、ギヤ、カム等の熱
処理工程においては、治具として耐熱鋼のロッドが使用
されているが、該ロッドは1,000℃程度の高温で繰
り返し使用されると激しく変形し、ロボットの位置決め
が不能なため、自動化されていない。また、ろう付炉用
治具として使用されている耐熱鋼についても同様のこと
が言える。
2. Description of the Related Art With the recent intensification of competition in the automobile industry, great efforts have been made to improve productivity in manufacturing and processing of a large number of parts, and automation as much as possible is realized at the production site. Has been done. However, some processes have not been realized yet. For example, in the heat treatment process of gears, cams, etc., a rod made of heat-resistant steel is used as a jig, but the rod is severely deformed when repeatedly used at a high temperature of about 1,000 ° C. It is not automated because it is impossible. The same can be said for heat-resistant steel used as a jig for a brazing furnace.

【0003】近年、耐熱性、強度、耐摩耗性等の点か
ら、炭素繊維強化複合材料(以下、C−Cコンポジット
と略記することがある)が注目されている。このC−C
コンポジットは、航空機のブレーキ用摺動材、ロケット
ノズル等の航空宇宙材料、高温ホットプレスのダイスそ
の他の機械部品材料あるいは人口歯根などとして用いら
れており、最近では半導体製造装置用材料、原子炉用部
材あるいは生体用材料等として用いることも検討されて
いる。C−Cコンポジットは1,500℃以上の高温で
も繰り返し使用が可能であるが、H2O、CO2、O2
のガスにより損耗されるので、これらのガスを使用する
前記熱処理工程においては、使用できない。
In recent years, carbon fiber reinforced composite materials (hereinafter sometimes abbreviated as C-C composites) have attracted attention from the viewpoint of heat resistance, strength, wear resistance and the like. This CC
Composites are used as sliding materials for aircraft brakes, aerospace materials such as rocket nozzles, high temperature hot press dies and other mechanical parts materials, artificial tooth roots, etc., and recently, materials for semiconductor manufacturing equipment and nuclear reactors. The use as a member or a biomaterial is also under study. The C-C composite can be repeatedly used even at a high temperature of 1,500 ° C. or more, but since it is worn by gases such as H 2 O, CO 2 , O 2 and the like, in the heat treatment step using these gases, ,I can not use it.

【0004】そこで、前記焼入れ工程で治具として使用
するには、C−Cコンポジットを基材とし、その上に耐
熱性金属を被覆することが考えられるが、1,000℃
程度の温度では、金属とC−Cコンポジットとが反応す
るので、やはり長期使用は不能である。また、C−Cコ
ンポジットの表面に80〜2,000μmのSiC膜を
被覆した半導体拡散用カーボン治具(特開平4−443
15号公報)が提案されているが、この場合は繰り返し
1,000℃程度の高温に置くと、セラミックスとC−
Cコンポジットとの熱膨張率の差からピンホール等が生
じ、C−Cコンポジットが雰囲気ガスにより損耗され、
やはり長期使用は不可能である。
Therefore, in order to use it as a jig in the quenching step, it is conceivable to use C--C composite as a base material and coat it with a heat resistant metal.
At a moderate temperature, the metal reacts with the C-C composite, so that long-term use is also impossible. Also, a carbon jig for semiconductor diffusion in which a surface of a C-C composite is covered with a SiC film of 80 to 2,000 μm (Japanese Patent Laid-Open No. 4-443).
No. 15) is proposed, but in this case, when repeatedly placed at a high temperature of about 1,000 ° C., the ceramics and C-
Due to the difference in the coefficient of thermal expansion from the C composite, pinholes and the like are generated, and the C-C composite is worn by the atmospheric gas,
After all, long-term use is impossible.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明は上記
従来技術の実状に鑑みてなされてものであって、H
2O、CO2、O2等のガス雰囲気下、1,000℃程度の
高温で繰り返し使用が可能な耐熱性部材を提供すること
を、その目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention has been made in view of the above-mentioned prior art.
It is an object of the present invention to provide a heat resistant member that can be repeatedly used at a high temperature of about 1,000 ° C. in a gas atmosphere of 2 O, CO 2 , O 2 or the like.

【0006】[0006]

【課題を解決するための手段】本発明によれば、炭素繊
維強化炭素複合材料を基材とし、その上にセラミックス
からなる中間層を介して耐熱性金属層を積層してなるこ
とを特徴とする耐熱性部材が提供される。
According to the present invention, a carbon fiber reinforced carbon composite material is used as a base material, and a heat resistant metal layer is laminated on the base material via an intermediate layer made of ceramics. A heat resistant member is provided.

【0007】本発明の耐熱性部材は、C−Cコンポジッ
ト基材上にセラミックス層と耐熱性金属層とをその順に
積層したものとしたことから、H2O、CO2、O2等の
雰囲気下、1,000℃程度の高温において、繰り返し
使用が可能なものとなる。
Since the heat-resistant member of the present invention is formed by laminating the ceramic layer and the heat-resistant metal layer in this order on the C--C composite substrate, the atmosphere of H 2 O, CO 2 , O 2, etc. It can be used repeatedly at a high temperature of about 1,000 ° C.

【0008】以下、本発明を詳しく説明する。本発明に
おいて基材として使用されるC−Cコンポジットとして
は、従来知られている方法で製造されたものがいずれも
使用できる。即ち、従来、C−Cコンポジットは、炭素
維持を予め簡単に成形し、炉に入れて高温下で加熱し、
次いで炭化水素系ガスを炉内に通して分解炭化させ、炭
素を表面に沈着固化させる方法(所謂CVD法)、ある
いは炭素繊維の束、織布、不織布などをフェノール樹脂
やエポキシ樹脂等の熱硬化性樹脂により所望の形状に成
形した後、不活性ガス雰囲気で熱処理を行なって樹脂を
炭化させる方法等で製造されてきたが、これらのいずれ
も使用することができる。ただ、製造期間やコストの点
から、軟化性を有する石油及び/又は石油系バインダー
ピッチ粉末と軟化性を有していない石油及び/又は石炭
系コークス粉末を包含された複数の強化用繊維を芯材と
し、その周囲に熱可塑性樹脂からなる柔軟なスリーブを
設けた柔軟性中間材(特公平4−72791号公報に記
載されている)を焼成処理して得たものの使用が好まし
い。
The present invention will be described in detail below. As the C-C composite used as the base material in the present invention, any of those manufactured by a conventionally known method can be used. That is, conventionally, the C-C composite is simply formed by preliminarily maintaining the carbon, put it in a furnace and heat it at a high temperature,
Then, a hydrocarbon gas is passed through the furnace for decomposing and carbonizing, and carbon is deposited and solidified on the surface (so-called CVD method), or a bundle of carbon fibers, woven fabric, non-woven fabric, etc. is thermally cured with phenol resin or epoxy resin. It has been manufactured by a method of carbonizing the resin by performing heat treatment in an inert gas atmosphere after molding the resin into a desired shape, but any of these can be used. However, from the viewpoint of manufacturing period and cost, a plurality of reinforcing fibers including petroleum and / or petroleum-based binder pitch powder having softening property and petroleum and / or coal-based coke powder having no softening property are used as cores. It is preferable to use a material obtained by firing a flexible intermediate material (described in Japanese Patent Publication No. 4-72791) in which a flexible sleeve made of a thermoplastic resin is provided around the material.

【0009】本発明においては、C−Cコンポジット基
板の形態は、棒状(ロッド)、管状(パイプ)、板状等
の任意の形態をとることができる。
In the present invention, the C-C composite substrate may have any shape such as a rod shape, a tubular shape, a plate shape, or the like.

【0010】本発明においては、C−Cコンポジット基
板上にまずセラミックスからなる中間層が積層される。
セラミックの種類としては、SiC、TiC、ZrC、
WC、TiN、ZrN、AlN、BN、Si34、Al
23、TiO2、Cr23、SiO2等が用いられる。
In the present invention, the intermediate layer made of ceramics is first laminated on the CC composite substrate.
The types of ceramics are SiC, TiC, ZrC,
WC, TiN, ZrN, AlN, BN, Si 3 N 4 , Al
2 O 3 , TiO 2 , Cr 2 O 3 , SiO 2 or the like is used.

【0011】セラミックス層形成法としては、CVD
法、PVD法、イオンプレーティング、スパッタリン
グ、溶射、水性ガラスコーティング、レーザー蒸着法、
プラズマ溶射、メッキライニング、塗装等の従来の方法
を用いることができる。セラミックス中間層の厚さは、
2〜300μmの範囲のものが好ましい。2μm未満で
は金属と炭素との反応を完全には抑制することがむずか
しく、逆に300μmを超えると剥離し易くなる。
As a ceramic layer forming method, CVD is used.
Method, PVD method, ion plating, sputtering, thermal spraying, aqueous glass coating, laser deposition method,
Conventional methods such as plasma spraying, plating lining, painting, etc. can be used. The thickness of the ceramics intermediate layer is
The range of 2 to 300 μm is preferable. If it is less than 2 μm, it is difficult to completely suppress the reaction between metal and carbon, and if it exceeds 300 μm, peeling tends to occur.

【0012】本発明においては、前記中間層上に更に耐
熱性金属層が積層される。金属層の種類としては、炭素
鋼、ステンレス鋼、モリブデン鋼、ニッケル鋼、その他
耐熱性合金若しくはアルミニウム、銅などの非鉄金属、
及びこれらからなる非鉄合金などがある。耐熱性金属層
を設ける方法としては、CVD法、PVD法、イオンプ
レーティング、スパッタリング、レーザー蒸着法やメッ
キライニングあるいは耐熱性金属のパイプ等の形状物で
覆うことも可能である。但し、この場合その両端を圧着
若しくは溶接等の手段により封印することが必要であ
る。この厚みとしては、0.2〜3mmの範囲が好まし
い。0.2mm未満の場合には、機械的強度が不足して
割れ易くなるし、逆に3mm超過の場合には、使用中の
熱変形により炭素材が曲り易くなる。
In the present invention, a heat resistant metal layer is further laminated on the intermediate layer. As the type of metal layer, carbon steel, stainless steel, molybdenum steel, nickel steel, other heat-resistant alloys or non-ferrous metals such as aluminum and copper,
And non-ferrous alloys made of these. As a method for providing the heat-resistant metal layer, it is also possible to cover with a shape method such as a CVD method, a PVD method, an ion plating method, a sputtering method, a laser deposition method, a plating lining, or a heat-resistant metal pipe. However, in this case, it is necessary to seal both ends by means such as crimping or welding. This thickness is preferably in the range of 0.2 to 3 mm. When it is less than 0.2 mm, the mechanical strength is insufficient and it is easy to crack. On the contrary, when it is more than 3 mm, the carbon material is easily bent due to thermal deformation during use.

【0013】[0013]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明の技術的範囲がこれらにより限定される
ものではない。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the technical scope of the present invention is not limited by these.

【0014】実施例1 径9mm、長さ60cmの炭素繊維強化炭素複合材料を
基材とし、その上に膜厚40μmの炭化珪素を塗布し、
その周囲に0.5mm厚のステンレス(SUS304)
を被覆して、径10φの丸棒を作製した。この丸棒を使
用して60cm×60cm×60cmのバスケットを作
製した。丸棒の接続点は溶接にて固定した。このバスケ
ットを用いて、金属部品のろう付の熱処理を行なった。
温度は1,160℃で、キャリアガスの組成はCO 2
%、CO2 10%、H2 2%、N2 86%であった。こ
の治具の耐久テストを実施したところ、1年以上経過し
ても変形がなく、また熱処理炉の前後の工程においても
この治具の変形がないことから、自動化も可能となっ
た。
Example 1 A carbon fiber reinforced carbon composite material having a diameter of 9 mm and a length of 60 cm was used as a base material, and silicon carbide having a film thickness of 40 μm was applied onto the base material.
0.5mm thick stainless steel (SUS304) around it
Was coated to prepare a round bar having a diameter of 10φ. Using this round bar, a 60 cm × 60 cm × 60 cm basket was prepared. The connection point of the round bar was fixed by welding. Using this basket, heat treatment for brazing metal parts was performed.
The temperature is 1,160 ° C and the composition of the carrier gas is CO 2
%, CO 2 10%, H 2 2%, N 2 86%. When this jig was subjected to a durability test, it did not deform even after one year or more passed, and the jig did not deform in the steps before and after the heat treatment furnace, so automation was also possible.

【0015】比較例1 実施例1の丸棒の代わりに、SUS 304の径10m
m、長さ60cmの丸棒を用いて同様のバスケットを作
製した。熱処理炉及び熱処理条件は実施例1と同様な方
法でテストを行なった結果、この治具は1ヵ月経過した
時点で、熱変形が激しくなり、操作性も悪化した。ま
た、熱処理炉の前後の工程において、自動化も不可能で
あった。
Comparative Example 1 Instead of the round bar of Example 1, the diameter of SUS 304 was 10 m.
A similar basket was produced using a round bar having a length of m and a length of 60 cm. The heat treatment furnace and heat treatment conditions were tested in the same manner as in Example 1, and as a result, this jig was severely thermally deformed after one month and the operability was deteriorated. Further, automation was impossible in the steps before and after the heat treatment furnace.

【0016】比較例2 実施例1の丸棒の代わりに、炭素繊維強化炭素複合材料
の径10mm、長さ60cmの丸棒を用いて同様のバス
ケットを作製した。熱処理条件は比較例1と同様であ
る。その結果、3週間あたり経過した時点で材料の酸化
による損耗がはげしくなり、バスケットを形成すること
が困難となってしまった。
Comparative Example 2 A similar basket was prepared by using a round bar of carbon fiber reinforced carbon composite material having a diameter of 10 mm and a length of 60 cm in place of the round bar of Example 1. The heat treatment conditions are the same as in Comparative Example 1. As a result, after about 3 weeks, the material was abraded due to oxidation, which made it difficult to form a basket.

【0017】比較例3 実施例1の丸棒と同形状で、セラミックスからなる中間
層がない材料によりバスケットを作製し、同様の熱処理
テストを実施した。その結果、4〜5ヵ月でバスケット
が破壊してしまった。その原因は基材の炭素と被覆され
ている金属との反応が進行し、被覆金属が破壊され、そ
の後、基材が雰囲気ガスにより酸化されたものと判明し
た。
Comparative Example 3 A basket having the same shape as the round bar of Example 1 and having no intermediate layer made of ceramics was prepared, and the same heat treatment test was carried out. As a result, the basket broke in 4 to 5 months. It was found that the cause was that the reaction between the carbon of the base material and the coated metal proceeded, the coated metal was destroyed, and then the base material was oxidized by the atmospheric gas.

【0018】[0018]

【発明の効果】本発明の耐熱性部材は、炭素繊維強化炭
素複合材料を基材とし、その上にセラミックスからなる
中間層を介して耐熱性金属層を積層したことから、熱処
理用治具等として用いると、熱変形が殆どないため、自
動化が可能となり、また重量も大巾に軽量化されること
から、熱の蓄熱量も減少し、多大な省エネルギー効果を
もたらす。
The heat-resistant member of the present invention comprises a carbon fiber reinforced carbon composite material as a base material, and a heat-resistant metal layer is laminated on the base material with an intermediate layer made of ceramics interposed therebetween. When used as, since there is almost no thermal deformation, automation is possible and the weight is greatly reduced, so that the amount of heat stored is also reduced, resulting in a great energy saving effect.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維強化炭素複合材料を基材とし、
その上にセラミックスからなる中間層を介して耐熱性金
属層を積層してなることを特徴とする耐熱性部材。
1. A carbon fiber reinforced carbon composite material as a base material,
A heat-resistant member comprising a heat-resistant metal layer laminated on an intermediate layer made of ceramics.
JP35026393A 1993-12-29 1993-12-29 Heat-resistant member Pending JPH07196386A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP35026393A JPH07196386A (en) 1993-12-29 1993-12-29 Heat-resistant member
DE69410581T DE69410581T2 (en) 1993-12-29 1994-12-22 Heat-resistant material and conveyor belt made of this material
EP94309712A EP0661248B1 (en) 1993-12-29 1994-12-22 Heat-resisting material and conveyer belt using same
US08/366,095 US5579898A (en) 1993-12-29 1994-12-29 Heat-resisting material and conveyer belt using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35026393A JPH07196386A (en) 1993-12-29 1993-12-29 Heat-resistant member

Publications (1)

Publication Number Publication Date
JPH07196386A true JPH07196386A (en) 1995-08-01

Family

ID=18409323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35026393A Pending JPH07196386A (en) 1993-12-29 1993-12-29 Heat-resistant member

Country Status (1)

Country Link
JP (1) JPH07196386A (en)

Similar Documents

Publication Publication Date Title
GB2095291A (en) Fabrication of gas turbine nozzles
US8297094B2 (en) Article for improved adhesion of fatigue-prone components
US5579898A (en) Heat-resisting material and conveyer belt using same
US5705283A (en) Tungsten-copper composite material with rhenium protective layer, and its preparation
JPH07196386A (en) Heat-resistant member
US5190598A (en) Steam turbine components having duplex coatings for improved erosion resistance
JPH04120232A (en) Silicon carbide filament-reinforced titanium matrix composite material reduced in tendency toward crack formation
JPH069269A (en) Carbon fiber-reinforced carbon composite material excellent in oxidation resistance
US7090893B1 (en) Rhenium composite
JP3872110B2 (en) Mesh conveyor belt
Dyos et al. The effect of a weak W/SiC interface on the strength of Sigma silicon carbide monofilament
JP2895468B1 (en) Masking method in chemical vapor deposition
Mittnick et al. Continuous silicon carbide fiber reinforced metal matrix composites
JP3522560B2 (en) Method of manufacturing protective tube for measuring instrument
JPS6164833A (en) Manufacture of metallic fiber reinforced type metal base composite material
JPH024950A (en) Manufacture of surface treated steel sheet having excellent corrosion resistance and wear resistance
US6177136B1 (en) Process for coating substrates with a silicium-containing layer
CN113260731A (en) Method of manufacturing a core
JPH04193774A (en) Metallic fiber-reinforced heat resistant ceramic composite body
KR20180033187A (en) Chain member and manufacturing method thereof
KR20200036630A (en) Heater device for transferring molten magnesium and method for manufacturing the same
JPH0229740B2 (en) MITSUCHAKUSEINISUGURETAYOSHASONOKEISEIHOHO
JP2587807B2 (en) Method for forming carbide film and article having the film
JPH04254486A (en) Formation of oxidation resistant coating layer on carbon fiber reinforced composite material
JPH0459978A (en) Oxidation resistant coating method for carbon-based material

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040115

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Effective date: 20041012

Free format text: JAPANESE INTERMEDIATE CODE: A7422