JPH07194950A - Preparation of hollow fiber-type separation membrane - Google Patents

Preparation of hollow fiber-type separation membrane

Info

Publication number
JPH07194950A
JPH07194950A JP53394A JP53394A JPH07194950A JP H07194950 A JPH07194950 A JP H07194950A JP 53394 A JP53394 A JP 53394A JP 53394 A JP53394 A JP 53394A JP H07194950 A JPH07194950 A JP H07194950A
Authority
JP
Japan
Prior art keywords
membrane
separation membrane
air
hollow fiber
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP53394A
Other languages
Japanese (ja)
Inventor
Kazuhide Nitta
和秀 仁田
Hideki Yamada
英樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP53394A priority Critical patent/JPH07194950A/en
Publication of JPH07194950A publication Critical patent/JPH07194950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To provide a method for obtaining conveniently, continuously and stably a hollow fiber-type separation membrane with excellent selective transmitting performance in relation to a method for preparing a separation membrane obtd. from a high polymer such as a gas separation membrane, a reverse osmosis membrane, an ultrafiltration membrane, a precision filtration membrane etc. CONSTITUTION:When a hollow fiber-type separation membrane 5 is obtd. by a dry-wet type film manufacturing method wherein after a high polymer soln. is extruded from a nozzle 1, it is coagulated in a coagulation bath 3 through a carrying part in air, the separation membrane 5 is prepd. by covering the high polmer soln. carried in the carrying part in air with a member 2 prepd. of a glass, a stainless steel etc., with an heat insulation structure so as to intercept the polymer soln. carried in the carrying part in air from the open air. As the film forming soln. carried in the carrying part in air is intercepted substantially from the open air, it is hardly influenced by the atmosphere of the open air and it is possible thereby to control the temp. of the atmosphere of the carrying part in air and the concn. of solvent vapor to be const. without special air conditioning and to obtain continuously and stably a high performance hollow fiber-type separation membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液状混合物からの固体あ
るいは溶質の分離、または気体混合物中の成分を選択的
に透過分離するのに使用される中空糸型分離膜の製造方
法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a hollow fiber type separation membrane used for separating solids or solutes from a liquid mixture, or selectively permeating and separating components in a gas mixture.

【0002】[0002]

【従来の技術】膜法による液状混合物の分離、濃縮は蒸
留などの分離技術に較べ省エネルギー的でありかつ物質
の状態変化を伴わない事から果汁の濃縮、ビール酵素の
分離などの食品分野、海水及びかん水の淡水化による飲
料水、工業用水などの製造、電子工業に於ける超純水の
製造や医薬品工業や医療分野に於ける無菌水の製造など
の水精製分野あるいは工業廃水からの有価物の回収とい
った多分野に於いて幅広く利用され、特に近年急激な発
展を見た。またガス分離法としては従来深冷分離法、吸
着法、吸収法などがあるが、これらの技術に較べ分離膜
法を利用した場合には処理コストが安い、操作が簡単で
ある、装置効率が高い、メインテナンスが容易などの利
点があり研究開発も盛んである。
2. Description of the Related Art Separation and concentration of a liquid mixture by a membrane method are more energy-saving than separation techniques such as distillation and do not change the state of substances, so that the concentration of fruit juice, the separation of beer enzymes, the food field, seawater, etc. Valuable materials from water purification fields or industrial wastewater such as drinking water, industrial water production by desalination, ultrapure water production in electronic industry, and aseptic water production in pharmaceutical industry and medical field. It has been widely used in various fields such as the recovery of lactic acid, and in particular, has seen rapid development in recent years. In addition, there are conventional cryogenic separation methods, adsorption methods, absorption methods, etc. as gas separation methods, but when using the separation membrane method compared to these technologies, the processing cost is low, the operation is simple, and the device efficiency is high. It has advantages such as high cost and easy maintenance, and research and development is also active.

【0003】これら、膜による分離は膜を用いて混合物
から特定の成分だけをより選択的に透過させる事により
成し遂げられる。したがって分離膜の性能は、分離対象
物の透過選択性並びに透過速度により特性付けられる。
透過選択性は、例えば逆浸透膜の場合には塩除去率で定
義付けられ、ガス分離膜の場合には分離係数で定義付け
られる。また透過速度は同様に単位時間当たりの透過水
量やガス透過量により定義付けられる。
These membrane separations can be accomplished by using a membrane to more selectively permeate certain components from the mixture. Therefore, the performance of the separation membrane is characterized by the permeation selectivity of the separation object as well as the permeation rate.
Permeation selectivity is defined by, for example, a salt removal rate in the case of a reverse osmosis membrane and by a separation coefficient in the case of a gas separation membrane. Similarly, the permeation rate is defined by the amount of permeated water and the amount of gas permeation per unit time.

【0004】透過選択性は透過物質と膜との親和性(相
互作用)並びに透過物質の分子サイズと膜の孔径の関係
で決定される。比較的分子サイズの大きな透過物質を分
離する限外ろ過膜、精密ろ過膜では後者の関係、すなわ
ち透過物質の分子サイズと膜の孔径の関係が透過選択性
を左右する。一方逆浸透膜やガス分離膜の場合には透過
物質が分子オーダーのサイズであるため、透過選択性は
低分子透過物質と膜との相互作用によっても左右され
る。
Permeation selectivity is determined by the affinity (interaction) between the permeant and the membrane and the relationship between the molecular size of the permeant and the pore size of the membrane. In an ultrafiltration membrane or a microfiltration membrane that separates a permeate having a relatively large molecular size, the latter relationship, that is, the relationship between the molecular size of the permeate and the pore size of the membrane determines the permeation selectivity. On the other hand, in the case of a reverse osmosis membrane or a gas separation membrane, the permeation material has a molecular order size, so the permeation selectivity is also influenced by the interaction between the low-molecular permeation material and the membrane.

【0005】このような透過選択性を発現する部位は活
性層と呼ばれ一般に、膜の表面に形成される。しかも、
活性層の厚みは透過選択性に影響を及ぼさないためでき
る限り薄く形成される。分離対象物の分子サイズが小さ
くなればなるほど、透過選択性を向上させるためには活
性層の孔径をより小さくする必要があり、分子オーダー
のサイズ迄小さくなると活性層の構造をいっそう緻密に
する必要がある。活性層の孔径が小さくなればなるほ
ど、また緻密になればなるほど透過選択性の向上は期待
できるが、このような活性層は同時に透過物質が透過す
る際の抵抗にもなるため透過速度は低下する。透過速度
は活性層の厚みが薄いほど透過の抵抗が小さくなり、向
上する。活性層の厚みをできる限り薄くするのはこのた
めである。
The site that exhibits such permeation selectivity is called the active layer and is generally formed on the surface of the membrane. Moreover,
The active layer is formed as thin as possible because it does not affect the transmission selectivity. As the molecular size of the separation target becomes smaller, the pore size of the active layer needs to be made smaller in order to improve the permeation selectivity. When the size becomes molecular order, the structure of the active layer needs to be made more compact. There is. The smaller the pore size of the active layer and the denser it is, the higher the permeation selectivity can be expected. However, the permeation rate of such an active layer also decreases because the permeation substance becomes a resistance at the same time. . The permeation rate is improved as the thickness of the active layer becomes smaller, the permeation resistance becomes smaller. This is why the thickness of the active layer is made as thin as possible.

【0006】膜による分離法が工業的に意味を持つため
には、透過選択性に優れしかも透過速度が大きい、ある
いは透過選択性と透過速度のバランスに優れている事が
重要であるが、実使用条件下での機械的強度や耐薬品
性、耐熱性といった耐久性に優れる事も重要である。活
性層の薄膜化により分離特性は向上するが、機械的強度
が低下するためこのままでは実用に供せない。したがっ
て、膜構造としては薄い活性層を機械的に支えるものと
してその下に多孔質の支持層を設けた構造、換言すれば
膜の表面から裏側にいくほど孔径が大きい非対称構造が
利用されている。
In order for the membrane separation method to have industrial significance, it is important that the permeation selectivity is excellent and the permeation rate is high, or that the permeation selectivity and the permeation rate are well balanced. It is also important to have excellent durability such as mechanical strength, chemical resistance, and heat resistance under use conditions. Separation characteristics are improved by thinning the active layer, but the mechanical strength is lowered, so that it cannot be put to practical use as it is. Therefore, as a membrane structure, a structure in which a thin active layer is mechanically supported and a porous support layer is provided under the membrane is used, in other words, an asymmetric structure in which the pore size is larger from the surface to the back of the membrane is used. .

【0007】一般に活性層と支持層が同一素材でできて
いるものは非対称膜と呼ばれ、これらが異なった素材で
できているものは複合膜と呼ばれる。非対称膜は相転換
法により得ることができ、一方複合膜は非対称膜と同様
の操作で支持層となる支持膜を製膜した後、このものの
表面にコート法や界面重合法、プラズマ重合法等により
活性層を形成させることで得ることができる。
In general, an active layer and a support layer made of the same material are called an asymmetric membrane, and those made of different materials are called a composite membrane. The asymmetric membrane can be obtained by the phase inversion method, while the composite membrane is formed by the same operation as the asymmetric membrane to form a supporting film, and then the coating method, the interfacial polymerization method, the plasma polymerization method, etc. on the surface of the film. Can be obtained by forming an active layer.

【0008】上述したように非対称膜や複合膜の支持膜
(主に限外ろ過膜)は相転換法によって製膜されてお
り、溶融したポリマーを冷却することにより分離膜を得
る溶融製膜法、溶媒あるいは場合によっては溶媒には溶
けるがポリマーは溶解しない非溶媒あるいは膨潤剤を適
当量添加した溶媒にポリマーを溶かした溶液を製膜溶液
とし空中走行部で溶媒を蒸発させた後、凝固浴中での溶
媒と非溶媒との交換及び必要に応じ冷却することにより
分離膜を得る乾湿式製膜法、乾湿式製膜法に於ける溶媒
の蒸発工程を含まない湿式製膜法の3つに大別すること
ができる。本発明はこれらのうち乾湿式製膜法に関す
る。
As described above, the supporting membrane (mainly ultrafiltration membrane) of the asymmetric membrane or the composite membrane is formed by the phase inversion method, and the melted membrane forming method for obtaining the separation membrane by cooling the melted polymer. , A solvent or a solvent in some cases, but not a polymer but a non-solvent or a solvent prepared by adding an appropriate amount of a swelling agent to a solution of the polymer is used as a film-forming solution to evaporate the solvent in the air running part, and then the coagulation bath Of dry solvent and non-solvent in the solution, and a wet-type film-forming method that obtains a separation membrane by cooling if necessary, and a wet-type film forming method that does not include a solvent evaporation step in the dry-wet film-forming method Can be roughly divided into The present invention relates to a dry / wet film forming method among them.

【0009】乾湿式製膜法には、溶媒あるいは場合によ
っては溶媒には溶けるがポリマーは溶解しない非溶媒あ
るいは膨潤剤を適当量添加した溶媒にポリマーを溶かし
た溶液が製膜溶液として利用される。非溶媒としては一
般に水溶性の低分子有機物あるいは水溶性ポリマーが利
用され、例えばエチレングリコールやプロピレングリコ
ール、ポリグリコール類あるいはポリビニルピロリドン
類が利用されており、膨潤剤としては無機金属塩が広く
利用されている。これらは製膜溶液中におけるポリマー
の集合状態に影響を与えるばかりでなく、凝固浴中での
製膜溶液のゲル化速度にも影響を与える。換言すれば、
これらの非溶媒及び膨潤剤は製膜時のポリマーの相分離
性に影響を与える重要な成分であり、最終的には分離膜
の選択透過性に影響を及ぼす。
In the dry-wet film-forming method, a solution in which a polymer is dissolved in a solvent or a solvent which may be dissolved in a solvent but does not dissolve a polymer or in which a suitable amount of a swelling agent is added is used as a film-forming solution. . As the non-solvent, a water-soluble low-molecular organic substance or a water-soluble polymer is generally used, for example, ethylene glycol, propylene glycol, polyglycols or polyvinylpyrrolidone is used, and an inorganic metal salt is widely used as a swelling agent. ing. These not only affect the state of polymer aggregation in the film-forming solution, but also affect the gelation rate of the film-forming solution in the coagulation bath. In other words,
These non-solvent and swelling agent are important components that affect the phase separation property of the polymer during membrane formation, and finally affect the selective permeability of the separation membrane.

【0010】また、溶媒の蒸発条件及び凝固条件も分離
膜の選択透過性に多大な影響を及ぼす。具体的には溶媒
の蒸発温度・時間、凝固剤の成分・温度などを変化させ
ると得られる分離膜の物理構造が変化するため分離膜の
選択透過性が変化する。従って優れた選択透過性を持つ
分離膜を得るためには、これらの条件を最適化する必要
があり、また設定した条件が一定に保たれるよう装置上
の工夫も必要である。
Further, the evaporation condition and the coagulation condition of the solvent have a great influence on the selective permeability of the separation membrane. Specifically, when the evaporation temperature / time of the solvent, the component / temperature of the coagulant, etc. are changed, the physical structure of the obtained separation membrane is changed, so that the selective permeability of the separation membrane is changed. Therefore, in order to obtain a separation membrane having excellent selective permeability, it is necessary to optimize these conditions, and it is also necessary to devise a device so that the set conditions are kept constant.

【0011】[0011]

【発明が解決しようとする課題】本発明は、非対称膜や
複合膜の支持膜あるいは孔径による分類で言い換えるな
らばガス分離膜や逆浸透膜、限外ろ過膜、精密ろ過膜な
どの分離膜の製造法に関するものであり、優れた選択透
過性能を持つ中空糸型分離膜を簡便にしかも安定して得
る方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention relates to a support membrane of an asymmetric membrane or a composite membrane, or in other words, a separation membrane such as a gas separation membrane, a reverse osmosis membrane, an ultrafiltration membrane or a microfiltration membrane. The present invention relates to a production method, and provides a method for easily and stably obtaining a hollow fiber type separation membrane having excellent selective permeation performance.

【0012】[0012]

【課題を解決するための手段】即ち本発明は、高分子重
合体を含む溶液を製膜原液とし、該高分子重合体溶液を
口金から押し出した後、空中走行部を経て凝固浴中で凝
固させる乾湿式製膜法により中空糸型分離膜を得る分離
膜の製造方法において、該空中走行部を走行する製膜溶
液を断熱構造を有する部材で覆うことを特徴とする分離
膜の製造方法を提供するものである。
Means for Solving the Problems That is, according to the present invention, a solution containing a polymer is used as a stock solution for film formation, and the polymer solution is extruded from a die and then coagulated in a coagulating bath via an aerial traveling section. In the method for producing a separation membrane that obtains a hollow fiber type separation membrane by a dry-wet membrane production method, a method for producing a separation membrane, characterized in that the membrane-forming solution that travels in the aerial traveling portion is covered with a member having a heat insulating structure. It is provided.

【0013】本発明でいう高分子重合体としては、ポリ
アミド、ポリアミドヒドヒドラジド、ポリスルホンアミ
ド、ポリイミド、ポリスルホン、ポリエーテルスルホ
ン、酢酸セルロース類等をあげる事が出来るがこれらに
限定されるものではない。
Examples of the high molecular weight polymer in the present invention include polyamide, polyamide hydrazide, polysulfonamide, polyimide, polysulfone, polyether sulfone, and cellulose acetate, but are not limited thereto.

【0014】また本発明でいう口金としては、所望の中
空糸型分離膜に成形できるものであれば特に形状に拘る
ことはなく、例えば三分割ノズルや二重管ノズルをはじ
めとする多重管ノズルを挙げることができる。これらの
紡糸口金から高分子重合体溶液を空中走行部に押し出
す。この空中走行部では、高分子重合体溶液表面から溶
媒が蒸発することで糸状の形成が開始され、引き続き凝
固浴中で高分子重合体溶液が冷却されまた溶媒と凝固液
が置換することにより糸状の形成が完了する。
The die used in the present invention is not particularly limited as long as it can be formed into a desired hollow fiber type separation membrane, and for example, a multi-tube nozzle such as a three-split nozzle or a double-tube nozzle. Can be mentioned. The polymer solution is extruded from these spinnerets into the running part in the air. In this aerial running section, the formation of filaments starts when the solvent evaporates from the surface of the polymer polymer solution, and subsequently the polymer polymer solution is cooled in the coagulation bath and the filaments are formed by replacing the solvent with the coagulating liquid. Formation is complete.

【0015】高分子重合体溶液表面から溶媒が蒸発する
ことによりまず分離活性層が形成され、次に凝固浴中で
支持層が形成される。従って空中走行部での溶媒の蒸発
条件が高分子重合体溶液表面の分離活性層の緻密度に影
響することはもちろんであるが、ここで形成された表面
層は凝固浴中で溶媒と凝固液が置換する際のバリアーと
なるため表面層の厚みや緻密度により置換速度が変化
し、表面層より内側の高分子重合体溶液の凝固速度が変
化するため支持層の非対称構造にも影響を及ぼす。この
ように空中走行部での溶媒の蒸発温度や蒸発時間等の条
件により得られる分離膜の分離活性層の厚みや緻密度、
支持層の孔径や多孔度が左右されるため、高性能の分離
膜を得るためには蒸発条件の最適化が必要である。また
このような膜を安定して得るためには、空中走行部での
雰囲気の温度や湿度といった外部要因の影響を受けぬよ
う蒸発条件を一定にコントロールすることが重要であ
る。
By evaporating the solvent from the surface of the polymer solution, the separation active layer is formed first, and then the supporting layer is formed in the coagulation bath. Therefore, it goes without saying that the evaporation conditions of the solvent in the air running portion affect the compactness of the separation active layer on the surface of the polymer solution, but the surface layer formed here is the solvent and the coagulation liquid in the coagulation bath. Acts as a barrier for substitution, and thus the substitution rate changes depending on the thickness and density of the surface layer, and the coagulation rate of the polymer solution inside the surface layer also changes, affecting the asymmetric structure of the support layer. . In this way, the thickness and the density of the separation active layer of the separation membrane obtained by the conditions such as the evaporation temperature and the evaporation time of the solvent in the air running portion,
Since the pore size and porosity of the support layer are affected, it is necessary to optimize the evaporation conditions in order to obtain a high performance separation membrane. Further, in order to obtain such a film stably, it is important to control the evaporation conditions to be constant so as not to be affected by external factors such as the temperature and humidity of the atmosphere in the air running section.

【0016】空中走行部での蒸発条件を積極的にコント
ロールする方法として、乾式紡糸法のように高分子重合
体溶液を加熱ガスが流れる乾燥塔中に吐出し溶媒を蒸発
させる方法(特公昭53−43540)や空中走行部を
外気と遮断できるような筒状物で覆い飽和溶媒蒸気で雰
囲気を一定に保つ方法(特開昭47−4010)等が提
案されている。前者の場合、乾式紡糸法に近い製膜法で
あるため、得られる中空糸分離膜の膜構造が均質になり
易く高透水性の分離膜は得難い。また後者は空中走行部
分が極端に短い場合にはこの部分の雰囲気温度や溶媒濃
度を一定に保つことが可能であるが、空中走行部分が長
くなると外気の温度の影響を無視できなくなるため空中
走行部分の長さの適用範囲に限界がある。
As a method for positively controlling the evaporation conditions in the air running section, a method of discharging a high molecular polymer solution into a drying tower in which a heating gas flows and evaporating the solvent like a dry spinning method (Japanese Patent Publication No. Sho 53). No. 43-40) or a method of covering the air running part with a cylindrical material capable of blocking the outside air to keep the atmosphere constant with saturated solvent vapor (JP-A-47-4010). In the case of the former, since it is a membrane-forming method close to the dry spinning method, the membrane structure of the obtained hollow fiber separation membrane is likely to be homogeneous, and it is difficult to obtain a highly water-permeable separation membrane. In the latter case, the air temperature and solvent concentration in this part can be kept constant when the air running part is extremely short.However, if the air running part becomes long, the influence of the temperature of the outside air cannot be ignored. There is a limit to the applicable range of the length of the part.

【0017】本発明は、これら従来の空中走行部で走行
する製膜溶液中の溶媒の蒸発条件をコントロールするに
あたり、走行する製膜溶液を、ガラスやステンレスなど
から作製した実質的に外気を遮断する断熱構造を有する
部材で覆うことにその特徴があり、このことにより外気
条件の変化に左右されずに優れた非対称性を有する高性
能膜を得ることができるのである。
The present invention controls the evaporation conditions of the solvent in the film forming solution running in these conventional air running parts, and the running film forming solution is made of glass, stainless steel or the like and substantially blocks the outside air. It is characterized in that it is covered with a member having a heat-insulating structure, which makes it possible to obtain a high-performance membrane having excellent asymmetry regardless of changes in outside air conditions.

【0018】[0018]

【作用】乾湿式製膜法により中空糸型分離膜を得る分離
膜の製造方法に於いて、空中走行部を走行する製膜溶液
を実質的に外気と遮断できるよう断熱構造を有する部材
で覆うことにより、外気の雰囲気の影響をほとんど受け
ず、特に空調しなくても空中走行部分の雰囲気の温度や
溶媒蒸気の濃度を一定にコントロールすることが可能で
あるため、高性能の中空糸型分離膜をより安定して得る
ことが可能である。
In a method for producing a separation membrane which obtains a hollow fiber type separation membrane by a dry-wet membrane formation method, a membrane-forming solution traveling in the air is covered with a member having a heat insulating structure so as to be substantially shielded from outside air. As a result, it is possible to control the temperature of the atmosphere and the concentration of solvent vapor in the air running part at a constant level without being affected by the atmosphere of the outside air and without particularly air conditioning. It is possible to obtain the film more stably.

【0019】[0019]

【実施例】以下実施例及び比較例を示して本発明を説明
するが、ここで挙げる実施例は何ら本発明を規制するも
のでない。 実施例 1 テレフタル酸ジクロリド及び70モル%の4,4’−ジ
アミノジフェニルスルホン、30モル%のピペラジンよ
り低温溶液重合法で得た共重合ポリアミドを十分に精製
した後、このもの36重量部をCaCl2 4重量部(ポ
リマーに対して)及びジグリセリン3.6重量部(ポリ
マーに対して)を含むDMAC溶液に80℃で溶解し、
製膜溶液とした。この溶液を減圧下で脱泡した後、3分
割ノズルより空中走行部を経て4℃に冷却した凝固浴中
に吐出させ中空糸膜を得た。この際ノズル表面から凝固
浴表面までの空中走行部には、この部分を走行する中空
糸膜が実質的に外気と遮断されるよう、実質的に真空な
部分を介した二重円筒状のガラス管を取り付けた。紡糸
テストは24時間実施し、1時間毎に逆浸透膜性能評価
用の中空糸膜をサンプリングした。得られた中空糸膜は
十分に水洗した後85℃で30分間熱処理し、有効長が
1mの中空糸膜300本からなるミニモジュールを作成
した。これらのミニモジュールを逆浸透膜性能評価セル
に装着し、供給液中の食塩濃度:0.15%、供給液温
度:25℃、操作圧力:30Kg/cm2 で逆浸透実験
を行い24本の逆浸透膜性能を確認した。得られた結果
を表1に示す。
EXAMPLES The present invention will be described below with reference to examples and comparative examples, but the examples given here do not limit the present invention. Example 1 After sufficiently purifying a copolyamide obtained by a low temperature solution polymerization method from terephthalic acid dichloride, 70 mol% of 4,4'-diaminodiphenyl sulfone and 30 mol% of piperazine, 36 parts by weight of this copolymer was CaCl2. Dissolved in a DMAC solution containing 4 parts by weight (based on polymer) and 3.6 parts by weight diglycerin (based on polymer) at 80 ° C.,
It was used as a film forming solution. After defoaming this solution under reduced pressure, the solution was discharged from a three-division nozzle into a coagulation bath cooled at 4 ° C. through an in-air running portion to obtain a hollow fiber membrane. At this time, in the air running portion from the nozzle surface to the surface of the coagulating bath, a double cylindrical glass through a substantially vacuum portion so that the hollow fiber membrane running in this portion is substantially shielded from the outside air. The tube was attached. The spinning test was carried out for 24 hours, and a hollow fiber membrane for reverse osmosis membrane performance evaluation was sampled every hour. The obtained hollow fiber membrane was thoroughly washed with water and then heat-treated at 85 ° C. for 30 minutes to prepare a mini-module composed of 300 hollow fiber membranes having an effective length of 1 m. Each of these mini-modules was mounted in a reverse osmosis membrane performance evaluation cell, and a reverse osmosis experiment was carried out at a salt concentration in the feed liquid of 0.15%, a feed liquid temperature of 25 ° C., and an operating pressure of 30 Kg / cm 2 , and 24 The reverse osmosis membrane performance was confirmed. The results obtained are shown in Table 1.

【0020】比較例 1 実施例 1の手順により逆浸透中空糸膜を調整し逆浸透
膜性能を評価した。但しノズル表面から凝固浴表面まで
の空中走行部には、単に円筒状のガラス管のみを取り付
けた。得られた結果を表1に示す。
Comparative Example 1 A reverse osmosis membrane performance was evaluated by preparing a reverse osmosis hollow fiber membrane according to the procedure of Example 1. However, only a cylindrical glass tube was attached to the in-air running portion from the nozzle surface to the coagulation bath surface. The results obtained are shown in Table 1.

【0021】実施例 2 イソフタル酸ジクロリド及び4,4’−ジアミノジフェ
ニルスルホンより低温溶液重合法で得たジアミノジフェ
ニルスルホンイソフタルアミドを十分に精製した後、こ
のもの25重量部をLiCl5重量部(ポリマーに対し
て)及びテトラエチレングリコール30重量部(ポリマ
ーに対して)を含むDMAC溶液に100℃で溶解し、
製膜溶液とした。この溶液を減圧下で脱泡した後、チュ
ーブインオリフィスノズルより空中走行部を経て10℃
に冷却した凝固浴中に吐出させ中空糸膜を得た。この際
ノズル表面から凝固浴表面までの空中走行部には、この
部分を走行する中空糸膜が実質的に外気と遮断されるよ
う外側に吸引口を設けた二重円筒状のガラス管を取り付
け、この吸引口より真空ポンプを使い二重のガラス管に
挟まれた部分を実質的に真空にした。紡糸テストは24
時間実施し、1時間毎に逆浸透膜性能評価用の中空糸膜
をサンプリングした。得られた中空糸膜は十分に水洗し
た後85℃で30分間熱処理し、それぞれの中空糸膜よ
りミニモジュールを作成した。これらの中空糸膜を限外
ろ過膜性能評価セルに装着し、供給液中のデキストラン
(分子量:10万)濃度:500ppm、供給液温度:
25℃、操作圧力:2Kg/cm2 で24本の限外ろ過
膜性能を確認した。得られた結果を表2に示す。
Example 2 Diaminodiphenylsulfone isophthalamide obtained by a low temperature solution polymerization method from isophthalic acid dichloride and 4,4'-diaminodiphenylsulfone was sufficiently purified, and then 25 parts by weight of this was added to 5 parts by weight of LiCl (polymer). In a DMAC solution containing 30 parts by weight of tetraethylene glycol (relative to the polymer) and 100 ° C.,
It was used as a film forming solution. After defoaming this solution under reduced pressure, it was passed through a tube-in-orifice nozzle, an air running section, and a temperature of 10 ° C.
A hollow fiber membrane was obtained by discharging into the coagulation bath cooled to above. At this time, a double-cylindrical glass tube provided with a suction port on the outside is attached to the air running part from the nozzle surface to the coagulating bath surface so that the hollow fiber membrane running in this part is substantially shielded from the outside air. From this suction port, a vacuum pump was used to substantially vacuum the portion sandwiched between the double glass tubes. The spinning test is 24
It was carried out for an hour, and a hollow fiber membrane for reverse osmosis membrane performance evaluation was sampled every hour. The hollow fiber membranes thus obtained were thoroughly washed with water and then heat-treated at 85 ° C. for 30 minutes to prepare mini-modules from the respective hollow fiber membranes. These hollow fiber membranes were attached to an ultrafiltration membrane performance evaluation cell, the dextran (molecular weight: 100,000) concentration in the feed liquid: 500 ppm, the feed liquid temperature:
The performance of 24 ultrafiltration membranes was confirmed at 25 ° C. and an operating pressure of 2 kg / cm 2 . The obtained results are shown in Table 2.

【0022】実施例 3 テレフタル酸ジクロリド及び4,4’−ジアミノジフェ
ニルスルホンより低温溶液重合法で得たジアミノジフェ
ニルスルホンテレフタルアミドを十分に精製した後、こ
のもの15重量部をLiCl5重量部(ポリマーに対し
て)及び平均分子量500のポリグリセリン10重量部
(ポリマーに対して)を含むDMAC溶液に100℃で
溶解し、製膜溶液とした。次いでこの製膜溶液を脱泡し
た後、35℃に調整したチューブインオリフィスノズル
より空中走行部を経て同じく35℃に加熱した凝固浴中
に吐出させ中空糸膜を得た。この際ノズル表面から凝固
浴表面までの空中走行部には、この部分を走行する中空
糸膜が実質的に外気と遮断されるよう、実質的に真空な
部分を介し、かつ断熱効果を有する円筒状のステンレス
管を取り付けた。また、凝固浴中の凝固溶媒として30
%のDMAC水溶液を用い、中空部を形成する芯液にも
同じ凝固溶媒を用いた。紡糸テストは24時間実施し、
1時間毎に逆浸透膜性能評価用の中空糸膜をサンプリン
グした。得られた中空糸膜は十分に水洗した後、90℃
の水中で20分間熱処理し外径500μm、内径380
μmの中空糸型限外ろ過膜を得た。これらの中空糸型限
外ろ過膜よりミニモジュールを作成し、限外ろ過膜性能
評価に供した。供給液中のデキストラン(分子量:10
万)濃度:500ppm、供給液温度:25℃、操作圧
力:2Kg/cm2 で限外ろ過実験を行い24本の限外
ろ過膜性能を確認した。得られた結果を表2に示す。
Example 3 Diaminodiphenylsulfone terephthalamide obtained by a low temperature solution polymerization method from terephthalic acid dichloride and 4,4'-diaminodiphenylsulfone was sufficiently purified, and then 15 parts by weight of this was added to 5 parts by weight of LiCl (polymer). And (10) parts by weight of polyglycerin having an average molecular weight of 500 (based on the polymer) at 100 ° C. to obtain a film-forming solution. Next, this membrane-forming solution was defoamed, and then discharged from a tube-in-orifice nozzle adjusted to 35 ° C. to a coagulation bath that was also heated to 35 ° C. through an in-air running portion to obtain a hollow fiber membrane. At this time, in the air running portion from the nozzle surface to the coagulation bath surface, a cylinder having a heat insulating effect is provided through a substantially vacuum portion so that the hollow fiber membrane running in this portion is substantially shielded from the outside air. Attached stainless steel tube. Also, as a coagulation solvent in the coagulation bath, 30
% DMAC aqueous solution was used, and the same coagulating solvent was used for the core liquid forming the hollow portion. The spinning test is carried out for 24 hours,
Hollow fiber membranes for reverse osmosis membrane performance evaluation were sampled every hour. The resulting hollow fiber membrane is thoroughly washed with water and then at 90 ° C.
Heat treated for 20 minutes in water, outer diameter 500 μm, inner diameter 380
A hollow fiber type ultrafiltration membrane of μm was obtained. Mini-modules were prepared from these hollow fiber ultrafiltration membranes and subjected to ultrafiltration membrane performance evaluation. Dextran (molecular weight: 10
10,000) Concentration: 500 ppm, feed liquid temperature: 25 ° C., operating pressure: 2 Kg / cm 2 An ultrafiltration experiment was conducted to confirm the performance of 24 ultrafiltration membranes. The obtained results are shown in Table 2.

【0023】比較例 2 実施例 2の手順により中空糸型限外ろ過膜を調整し限
外ろ過膜性能を評価した。但し中空糸型限外ろ過膜調整
時、空中走行部にはこの部分を走行する中空糸膜が実質
的に外気と遮断されるような部材を何ら取り付けなかっ
た。得られた結果を表2に示す。
Comparative Example 2 A hollow fiber type ultrafiltration membrane was prepared according to the procedure of Example 2 and the ultrafiltration membrane performance was evaluated. However, at the time of adjusting the hollow fiber type ultrafiltration membrane, no member was attached to the aerial traveling portion so that the hollow fiber membrane traveling in this portion was substantially shielded from the outside air. The obtained results are shown in Table 2.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表1及び表2より、実施例に於いては比較
例に較べ膜性能の平均値並びに24時間での性能のバラ
ツキが小さいことが解る。
From Tables 1 and 2, it can be seen that the average value of the membrane performance and the variation in the performance at 24 hours are smaller in the Examples than in the Comparative Examples.

【0027】[0027]

【発明の効果】本発明は、高分子重合体を含む溶液を製
膜原液とし、該高分子重合体溶液を口金から押し出した
後、空中走行部を経て凝固浴中で凝固させる乾湿式製膜
法により中空糸型分離膜を得る分離膜の製造方法におい
て、該空中走行部を走行する製膜溶液を断熱構造を有す
る部材で覆うことを特徴とする分離膜の製造方法に関す
るものであり、より高性能な分離膜を簡便にしかも安定
して得ることができる。
INDUSTRIAL APPLICABILITY According to the present invention, a solution containing a polymer is used as a stock solution for film formation, and the polymer solution is extruded from a die and then coagulated in a coagulating bath through an air running part to form a dry and wet film. In the method for producing a separation membrane to obtain a hollow fiber type separation membrane by a method, the method relates to a method for producing a separation membrane, characterized in that the membrane-forming solution traveling in the air running portion is covered with a member having a heat insulating structure, A high-performance separation membrane can be obtained easily and stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の中空糸型分離膜の製造方法の
一例である。
FIG. 1 is an example of a method for producing a hollow fiber type separation membrane of the present invention.

【符号の説明】[Explanation of symbols]

1.紡糸口金 2.断熱構造を有する部材 3.凝固浴 4.凝固液 5.中空糸型分離膜 1. Spinneret 2. A member having a heat insulating structure 3. Coagulation bath 4. Coagulation liquid 5. Hollow fiber type separation membrane

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高分子重合体を含む溶液を製膜原液と
し、該高分子重合体溶液を口金から押し出した後、空中
走行部を経て凝固浴中で凝固させる乾湿式製膜法により
中空糸型分離膜を得る分離膜の製造方法において、該空
中走行部を走行する製膜溶液を断熱構造を有する部材で
覆うことを特徴とする分離膜の製造方法。
1. A hollow fiber produced by a dry-wet film-forming method in which a solution containing a polymer is used as a stock solution for film formation, and the polymer solution is extruded from a die and then coagulated in a coagulating bath through an in-air running part. A method for producing a separation membrane, which comprises obtaining a mold separation membrane, wherein the membrane-forming solution running in the air running portion is covered with a member having a heat insulating structure.
【請求項2】 断熱構造を有する部材が実質的に真空な
部分を介した二重円筒状のガラス管である事を特徴とす
る請求項1記載の分離膜の製造方法
2. The method for producing a separation membrane according to claim 1, wherein the member having the heat insulating structure is a double-cylindrical glass tube with a substantially vacuumed portion interposed therebetween.
JP53394A 1994-01-07 1994-01-07 Preparation of hollow fiber-type separation membrane Pending JPH07194950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53394A JPH07194950A (en) 1994-01-07 1994-01-07 Preparation of hollow fiber-type separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53394A JPH07194950A (en) 1994-01-07 1994-01-07 Preparation of hollow fiber-type separation membrane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003322533A Division JP2004034031A (en) 2003-09-16 2003-09-16 Hollow fiber type separation membrane

Publications (1)

Publication Number Publication Date
JPH07194950A true JPH07194950A (en) 1995-08-01

Family

ID=11476408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53394A Pending JPH07194950A (en) 1994-01-07 1994-01-07 Preparation of hollow fiber-type separation membrane

Country Status (1)

Country Link
JP (1) JPH07194950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142747A (en) * 2008-12-19 2010-07-01 Toyobo Co Ltd Method for spinning fiber of hollow-fiber membrane, and hollow-fiber membrane
CN109173745A (en) * 2018-08-07 2019-01-11 中国科学院城市环境研究所 A kind of hollow fiber ultrafiltration membrane and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142747A (en) * 2008-12-19 2010-07-01 Toyobo Co Ltd Method for spinning fiber of hollow-fiber membrane, and hollow-fiber membrane
CN109173745A (en) * 2018-08-07 2019-01-11 中国科学院城市环境研究所 A kind of hollow fiber ultrafiltration membrane and preparation method thereof

Similar Documents

Publication Publication Date Title
Tsai et al. Heat-treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes
US8915378B2 (en) Hollow fiber type reverse osmosis membrane and method for manufacturing the same
JP2000325765A (en) Solvent-resistant microporous polybenzoimidazole thin film
JPH05177111A (en) Dehydration of water-organic matter solution
JPH07194950A (en) Preparation of hollow fiber-type separation membrane
JPH08108053A (en) Cellulose acetate hollow-fiber separation membrane and its production
JP2004034031A (en) Hollow fiber type separation membrane
JP7403524B2 (en) Composite hollow fiber membrane and method for manufacturing composite hollow fiber membrane
KR102041657B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
JP2015198999A (en) Hollow fiber membrane, method for manufacturing the same, and module using hollow fiber membrane
JP2000202256A (en) Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane
JP3242185B2 (en) Method for producing polyamide-based composite hollow fiber type reverse osmosis membrane
Khulbe et al. Synthetic membranes for membrane processes
CN114570213B (en) Modified hollow fiber nanofiltration membrane and preparation method thereof
KR100426183B1 (en) A composition for producing microporous polyethersulfone membrane and a method for preparing microporous membrane using the same
CN111013411B (en) Nanofiltration membrane for purifying water and preparation method and application thereof
KR102357400B1 (en) Hollow fiber type nano-composite membrane and manufacturing method thereof
CN114749035B (en) Low-pressure large-flux hollow fiber nanofiltration membrane, and preparation method and application thereof
KR20190048996A (en) Method for manufacturing water treatment module and water treatment module prepared by thereof
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module
KR20180080425A (en) Composite porous membrane of acetylated alkyl cellulose and polyolefinketone
JPH0910566A (en) Semipermeable composite membrane
JPH06170192A (en) Production of separation membrane
JPH06170194A (en) Production of separation membrane
KR20220013744A (en) Method for manufacturing water treatment membrane, water treatment membrane, and water treatment module