JPH07194730A - Decomposition method of halogenated compound and decomposition reactor therefor - Google Patents

Decomposition method of halogenated compound and decomposition reactor therefor

Info

Publication number
JPH07194730A
JPH07194730A JP35249893A JP35249893A JPH07194730A JP H07194730 A JPH07194730 A JP H07194730A JP 35249893 A JP35249893 A JP 35249893A JP 35249893 A JP35249893 A JP 35249893A JP H07194730 A JPH07194730 A JP H07194730A
Authority
JP
Japan
Prior art keywords
halogenated compound
decomposition
solution
electrode
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35249893A
Other languages
Japanese (ja)
Other versions
JP2714601B2 (en
Inventor
Makoto Ogose
誠 生越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP35249893A priority Critical patent/JP2714601B2/en
Publication of JPH07194730A publication Critical patent/JPH07194730A/en
Application granted granted Critical
Publication of JP2714601B2 publication Critical patent/JP2714601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To provide a decomposition method of a halogenated compd. capable of efficiently decomposing the halogenated compd. in a short period of time with an extremely high decomposition rate with simple equipment. CONSTITUTION:This decomposition method of the halogenated compd. has constitution to decompose the halogenated compd. by executing arc discharge under a condition of ordinary temp. to 200 deg.C in the halogenated compd. or a soln. mixture composed of a halogenated compd.-contg. soln. and a basic soln.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はハロゲン化化合物特にP
CB等のポリハロゲン化化合物の分解にも好適なハロゲ
ン化化合物の分解方法及びその分解反応器に関するもの
である。
The present invention relates to halogenated compounds, especially P
The present invention relates to a method for decomposing a halogenated compound, which is also suitable for decomposing a polyhalogenated compound such as CB, and a decomposition reactor therefor.

【0002】[0002]

【従来の技術】従来、ポリハロゲン化ビフェニル(以
下、PCBという)は耐熱、耐薬品性、電気絶縁性に優
れているため熱処理用の加熱媒体やペンキやインクの添
加剤、コンデンサーやトランスの絶縁剤として広範囲に
使用されていた。しかしPCBが人体に有害で、かつ自
然界での分解が困難な環境汚染物質であることが判明し
て以来、無害化処理が望まれていた。しかしながら、そ
の物理的・化学的安定性のため一般的な無害化処理が困
難でその無害化のため種々の研究や開発がなされてい
る。 例えば、特開昭49−82570号公報や特公昭56
−39290号公報、特開平2−241586号公報に
はPCBをアルカリ金属や水素ガス等と混合して、又は
混合しないで1200℃〜1500℃の高温下で熱分解
する方法が開示されている。 特開昭50−87471号公報には熱分解炉を用いた
PCBの分解処理装置が、特公平2−5100号公報に
は熱分解炉とDC電弧を用いたPCB等の有害材料の分
解装置が開示されている。 特開昭50−63005号公報や特公昭61−597
79号公報にはPCBと塩基性物質の混合物に紫外線を
照射して光分解する方法が開示されている。 特開平1−205510号公報にはPCBにKOHペ
レットとポリエチレングリコールを加えN2ガス雰囲気
下で化学分解する方法が開示されている。
2. Description of the Related Art Conventionally, polyhalogenated biphenyl (hereinafter referred to as PCB) is excellent in heat resistance, chemical resistance, and electrical insulation, so that it is a heating medium for heat treatment, an additive of paint or ink, insulation of capacitors and transformers. It was widely used as an agent. However, since it was found that PCB is an environmental pollutant that is harmful to the human body and difficult to decompose in the natural world, detoxification treatment has been desired. However, due to its physical and chemical stability, general detoxification treatment is difficult, and various studies and developments have been made for detoxification. For example, JP-A-49-82570 and JP-B-56
39-290 and JP-A-2-241586 disclose a method of thermally decomposing PCB with or without mixing with an alkali metal, hydrogen gas or the like at a high temperature of 1200 ° C to 1500 ° C. Japanese Unexamined Patent Publication No. 50-84771 discloses a device for decomposing a PCB using a thermal decomposition furnace, and Japanese Patent Publication No. 2-5100 discloses a device for decomposing harmful materials such as a PCB using a thermal decomposition furnace and a DC arc. It is disclosed. Japanese Laid-Open Patent Publication No. 50-63005 and Japanese Patent Publication No. 61-597.
Japanese Patent Publication No. 79 discloses a method of irradiating a mixture of PCB and a basic substance with ultraviolet rays to perform photolysis. Japanese Patent Application Laid-Open No. 1-205510 discloses a method in which KOH pellets and polyethylene glycol are added to PCB and chemically decomposed in an N 2 gas atmosphere.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の熱分解方法では非常な高温を必要とし、多量のエネル
ギーを要するとともに焼却温度の低下によるPCBより
もはるかに毒性の高いポリ塩化ジベンゾフラン(PCD
F)やダイオキシンの発生が懸念されるという問題点を
有している。また、紫外線による光分解方法は、紫外線
単独、又は紫外線とオゾンを用いるだけでは分解率が低
く効率が悪いという問題点があった。更に、化学的分解
方法は各種薬品を使用するので、原価が上がり、かつ、
薬品の取扱いで作業性に劣り扱いづらいという問題点を
有している。またDC電弧を用いる方法はPCBを熱分
解炉で分解する際に発生したハロゲン化化合物の蒸気を
分解するものであり、熱分解炉中でDC電弧を発生させ
るため電極に耐熱性が要求されるとともに装置が大掛か
りで使用しづらいという問題点を有していた。
However, the above-mentioned conventional thermal decomposition method requires extremely high temperature, requires a large amount of energy, and is much more toxic than PCB due to the lowering of the incineration temperature, and thus polychlorinated dibenzofuran (PCD).
It has a problem that the generation of F) and dioxin is concerned. In addition, the photodecomposition method using ultraviolet rays has a problem that the decomposition rate is low and the efficiency is low only by using ultraviolet rays alone or by using ultraviolet rays and ozone. Furthermore, the chemical decomposition method uses various chemicals, which increases the cost and
There is a problem that the handling of chemicals is inferior in workability and difficult to handle. Further, the method using a DC arc is to decompose the vapor of a halogenated compound generated when the PCB is decomposed in a pyrolysis furnace, and the electrodes are required to have heat resistance in order to generate a DC arc in the pyrolysis furnace. In addition, there is a problem that the device is large-scale and difficult to use.

【0004】本発明は上記従来の問題点を解決するもの
で簡単な設備で短時間でハロゲン化化合物を極めて高い
分解率で効率よく分解することのできるハロゲン化化合
物の分解方法を提供すること、及び省エネルギーでかつ
簡単な構造で極めて高い分解率で効率よくポリハロゲン
化化合物をも分解することのできるハロゲン化化合物の
分解装置を提供することを目的とする。
The present invention solves the above conventional problems and provides a method for decomposing a halogenated compound, which is capable of efficiently decomposing the halogenated compound with a very high decomposition rate in a short time with a simple facility, It is another object of the present invention to provide a halogenated compound decomposing apparatus that is energy-saving and has a simple structure and can decompose even a polyhalogenated compound efficiently with an extremely high decomposition rate.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明は以下の構成からなる。請求項1に記載のハロ
ゲン化化合物の分解方法は、ハロゲン化化合物又はハロ
ゲン化化合物含有溶液と、塩基性溶液と、の混合溶液中
で、常温乃至200℃の条件下でアーク放電を行いハロ
ゲン化化合物を分解する構成を有している。請求項2に
記載のハロゲン化化合物の分解方法は、請求項1におい
て、前記ハロゲン化化合物又はハロゲン化化合物含有溶
液にオゾンを添加する構成を有している。請求項3に記
載のハロゲン化化合物の分解方法は、請求項2におい
て、前記オゾンがオゾン水又はオゾンガスである構成を
有している。請求項4に記載のハロゲン化化合物の分解
方法は、請求項1乃至3の内いずれか1において、前記
アーク放電が容器状電極と棒状電極との間に充填された
塊状又は粒状の導電体の間隙部で行われる構成を有して
いる。請求項5に記載のハロゲン化化合物の分解方法
は、請求項1乃至3の内いずれか1において、前記アー
ク放電が、ドラム状又は棒状に形成された回転電極と、
固定された棒状電極の間で行われる構成を有している。
請求項6に記載のハロゲン化化合物の分解方法は、ハロ
ゲン化化合物又はハロゲン化化合物含有溶液と塩基性溶
液及び必要に応じて添加されたオゾンの混合溶液をアー
ク放電により分解処理する工程と、前記アーク放電処理
された未分解物を含む分解反応液を油状物とスラリー溶
液に分離する工程と、前記分解反応液又は前記油状物を
冷却する工程と、前記油状物とハロゲン化化合物もしく
はハロゲン化化合物含有溶液との混合物に塩基性溶液及
び必要に応じてオゾンを添加混合し前記アーク放電によ
る分解処理工程へ循環する工程と、を有する構成を有し
ている。請求項7に記載のハロゲン化化合物の分解方法
は、請求項1乃至6の内いずれか1において、前記混合
溶液が分散状態又は乳化状態である構成を有している。
請求項8に記載のハロゲン化化合物の分解反応器は、ハ
ロゲン化化合物等からなる被分解溶液流入部と分解処理
液の流出部とを備え冷却ジャケットを有する容器電極
と、前記容器電極の容器内に装着された1乃至複数の固
定電極と、前記容器電極の内部に充填された導電体と、
を備えた構成を有している。請求項9に記載のハロゲン
化化合物の分解反応器は、ハロゲン化化合物等からなる
被分解溶液流入部と分解処理液の流出部とを備え冷却ジ
ャケットを有する反応容器と、前記反応容器に装着され
たドラム状等の中空状又は棒状の回転電極と、前記回転
電極を回転させる回転機と、先端部が前記回転電極と
0.1〜5mm,好ましくは0.5〜3mmの間隙をあけて
前記反応器に前後動自在に装着された棒状電極と、を備
えた構成を有している。
To achieve this object, the present invention has the following constitution. The method for decomposing a halogenated compound according to claim 1, wherein a halogenated compound is mixed with a halogenated compound or a solution containing the halogenated compound and a basic solution, and arc discharge is performed under normal temperature to 200 ° C. It has a constitution for decomposing a compound. The method for decomposing a halogenated compound according to a second aspect has a configuration according to the first aspect, in which ozone is added to the halogenated compound or the halogenated compound-containing solution. The halogenated compound decomposing method according to a third aspect has the configuration according to the second aspect, wherein the ozone is ozone water or ozone gas. The method for decomposing a halogenated compound according to claim 4 is the method for decomposing a halogenated compound according to any one of claims 1 to 3, wherein the arc discharge fills a space between the container-shaped electrode and the rod-shaped electrode. The structure is performed in the gap. A method for decomposing a halogenated compound according to claim 5 is the method according to any one of claims 1 to 3, wherein the arc discharge is a rotating electrode formed in a drum shape or a rod shape.
It has a configuration that is performed between fixed rod-shaped electrodes.
The method for decomposing a halogenated compound according to claim 6, wherein a step of decomposing a halogenated compound or a mixed solution of a halogenated compound-containing solution, a basic solution, and optionally ozone, by arc discharge, A step of separating a decomposition reaction solution containing undecomposed matter subjected to arc discharge into an oil and a slurry solution; a step of cooling the decomposition reaction solution or the oil; and the oil and a halogenated compound or a halogenated compound. A step of adding a basic solution and, if necessary, ozone to a mixture with the containing solution and circulating the mixture to the decomposition treatment step by arc discharge. A decomposition method of a halogenated compound according to a seventh aspect is the method according to any one of the first to sixth aspects, wherein the mixed solution is in a dispersed state or an emulsified state.
9. A decomposition reactor for a halogenated compound according to claim 8, wherein a container electrode having a solution to be decomposed made of a halogenated compound and the like and an outlet for the decomposition treatment liquid and having a cooling jacket, and a container electrode inside the container electrode One or a plurality of fixed electrodes mounted on the container, and a conductor filled inside the container electrode,
It has a configuration including. The decomposition reactor for a halogenated compound according to claim 9, wherein the reaction container has a cooling jacket and is provided with an inflow part for a solution to be decomposed composed of a halogenated compound or the like and an outflow part for a decomposition treatment liquid, and is mounted on the reaction container. A hollow or rod-shaped rotating electrode such as a drum, a rotating machine for rotating the rotating electrode, and a tip portion spaced apart from the rotating electrode by 0.1 to 5 mm, preferably 0.5 to 3 mm. And a rod-shaped electrode attached to the reactor so as to be movable back and forth.

【0006】ここで、ハロゲン化化合物としてはハロゲ
ン化アルキルやハロゲン化アリール,ハロゲン化アシル
その他の塩素化物や臭化物、フッ化物やこれらの混合
物,農薬,PCB,ダイオキシン等をさし、低分子量で
ハロゲン化率の低い液体状のものからポリハロゲン化物
等ハロゲン化率が55%以上の固体状のものでもよい
が、粘度の高いものや固体は溶剤に溶解して行うのが好
ましい。溶媒としては沸点が高いトランス油やコンデン
サー油,ケーブル油等の潤滑油や高級炭化水素化合物が
用いられる。オゾンはオゾンガスやオゾン水が用いられ
る。オゾンガスの場合高濃度のものが高分解率を示すの
で好ましいが、低濃度のものでも多段混入することによ
り用いることができる。オゾンガスの濃度としては10
0ppm〜50000ppm,好ましくは500ppm
〜10000ppmのものが用いられる。低濃度では分
解速度を速めることができず、高濃度になると未分解オ
ゾンガスが生成し易く、無害化処理工程等を必要とし装
置が大型化するので好ましくない。オゾン水の場合も高
濃度のものが好ましいが、反応系を加熱状態で行うとき
はオゾンガスの方が好適に用いられる。塩基性溶液とし
ては塩基性物質としてKOH,NaOH等の単独又は混
合物、更にこれらに他のハロゲン補足剤を加えた水溶液
が経済上等の理由から好適に用いられ、これらを水溶液
状又はこれをメタノール等のアルコール類に溶解させた
ものを用いてもよい。塩基性溶液の塩基の濃度として
は、ハロゲンの濃度にもよるが5〜90wt%,好ましく
は10〜50wt%で用いられる。塩基の濃度が濃い程分
解率を向上させることができる。10wt%未満になるに
つれ分解に長時間を要するようになる傾向が認められる
ので好ましくない。尚、ハロゲン捕捉剤を用いてもよ
い。ハロゲン化化合物の溶液と塩基性溶液及びオゾンは
分散状態又は乳化状態でアーク放電処理を行うのが好ま
しい。分散又は乳化させることにより分解速度を速める
ことができる。分散や乳化は機械的混合又は超音波処理
機等やホモジナイザー等で混合して行われる。尚、系内
に分散剤や乳化剤を加えて行ってもよい。乳化状態を長
く維持できるためである。分解反応器は略円筒状のもの
や略偏平状の形式のものでよいが、底部は漏斗状に形成
されるのが望ましい。電極の粉化物等による分解反応器
が閉塞するのを防止するためである。棒状電極として
は、炭素電極やタングステン電極,白金電極等が用いら
れる。導電体としては、活性炭やコークス,焼成カーボ
ン破砕品等その他アーク放電性を有するものが用いられ
る。但し、陽光柱の弱いものは分解率が低いので好まし
くない。導電体の平均粒径は1〜50mm,好ましくは2
〜30mm,更に好ましくは5〜10mmのものが好適に用
いられる。平均粒径が5mmよりも小さくなるに従い導電
体の充填密度が高くなるため導電体間の間隙が狭すぎて
陽光柱が短くなる傾向が現れ、また10mmを超えるに従
い接触点が少なくなり過ぎアーク放電回数が減少する傾
向が現れるのでいずれも好ましくない。また導電体の表
面は平滑化したものよりも粗くしたものの方が放電箇所
が増加する傾向が認められる。回転電極としては、アー
ク放電を行うことができるものであればよいが、銅等の
金属製やカーボン製のものが好適に用いられる。回転電
極の回転はサーボモータ等によりアーク電流に応じて可
変できるものが好適に用いられる。回転電極は電極が回
転するので回転電極面に対面して複数本の棒状電極が設
置でき、棒状電極の設置数が多い程処理能力を大きくす
ることができる。アーク放電は連続的にではなくパルス
信号等で断続的に行うこともできる。断続的に行う場
合、放電サイクル,放電時間は分解反応器の容量や電極
の種類に合わせて任意に設定できるとともに分解反応器
の温度制御を容易にすることができ分解装置の運転性や
安全性を向上させることができる。
Here, the halogenated compounds include alkyl halides, aryl halides, acyl halides and other chlorinated compounds, bromides, fluorides and mixtures thereof, pesticides, PCBs, dioxins, etc., and halogen with a low molecular weight. The liquid having a low conversion rate to a solid state having a halogenation rate of 55% or more such as a polyhalide may be used, but it is preferable to dissolve the solid or the solid having a high viscosity in a solvent. As the solvent, lubricating oil such as transformer oil, condenser oil, cable oil or the like having a high boiling point and higher hydrocarbon compounds are used. Ozone gas or ozone water is used as ozone. In the case of ozone gas, a high concentration one is preferable because it shows a high decomposition rate, but a low concentration one can be used by mixing in multiple stages. The concentration of ozone gas is 10
0ppm-50000ppm, preferably 500ppm
A substance having a concentration of 10000 ppm is used. When the concentration is low, the decomposition rate cannot be increased, and when the concentration is high, undecomposed ozone gas is likely to be generated, and a detoxification treatment step or the like is required and the apparatus becomes large in size, which is not preferable. High concentration ozone water is also preferable, but ozone gas is more preferably used when the reaction system is heated. As the basic solution, KOH, NaOH or the like as a basic substance, or a mixture thereof, and an aqueous solution obtained by adding another halogen scavenger to these are preferably used for economic reasons. These are used in the form of an aqueous solution or methanol. You may use what was melt | dissolved in alcohols, such as. The concentration of the base in the basic solution depends on the concentration of halogen, but is 5 to 90 wt%, preferably 10 to 50 wt%. The higher the base concentration, the higher the decomposition rate. When it is less than 10 wt%, it tends to take a long time to decompose, which is not preferable. A halogen scavenger may be used. The solution of the halogenated compound, the basic solution and ozone are preferably subjected to arc discharge treatment in a dispersed state or an emulsified state. The rate of decomposition can be increased by dispersing or emulsifying. Dispersion and emulsification are carried out by mechanical mixing or mixing with an ultrasonic processor or a homogenizer. Incidentally, a dispersant or an emulsifier may be added to the system. This is because the emulsified state can be maintained for a long time. The decomposition reactor may be of a substantially cylindrical shape or a substantially flat shape, but the bottom is preferably formed in a funnel shape. This is to prevent the decomposition reactor from being clogged with the powdered material of the electrodes. A carbon electrode, a tungsten electrode, a platinum electrode, or the like is used as the rod-shaped electrode. As the conductor, activated carbon, coke, crushed product of fired carbon, or other substances having arc discharge properties are used. However, those having a weak positive column are not preferable because the decomposition rate is low. The average particle size of the conductor is 1 to 50 mm, preferably 2
Those having a thickness of -30 mm, more preferably 5-10 mm are preferably used. As the average particle size becomes smaller than 5 mm, the packing density of the conductors becomes higher, so the gap between the conductors becomes too narrow and the positive column tends to become shorter. All of them are not preferable because the number of times tends to decrease. In addition, it is recognized that the number of discharge points tends to increase when the surface of the conductor is roughened rather than smoothed. The rotating electrode may be any as long as it can perform arc discharge, but one made of a metal such as copper or carbon is preferably used. Rotation of the rotating electrode is preferably changed by a servomotor or the like, which can be changed according to the arc current. Since the rotating electrode rotates, the plurality of rod-shaped electrodes can be installed so as to face the surface of the rotating electrode, and the processing performance can be increased as the number of the rod-shaped electrodes installed increases. The arc discharge can be performed intermittently by a pulse signal or the like instead of continuously. In the case of intermittent operation, the discharge cycle and discharge time can be set arbitrarily according to the capacity of the decomposition reactor and the type of electrode, and the temperature control of the decomposition reactor can be facilitated, and the operability and safety of the decomposition device can be improved. Can be improved.

【0007】[0007]

【作用】この構成によって、溶液中でアーク放電を行う
ことにより、局部的に超高温を得ることができるので、
超高温域下でハロゲン化化合物の脱ハロゲン化を容易に
行うことができる。塩基性溶液によりオゾニゾを分解す
ることができるので、安全に分解を行うことができる。
塩基性溶液により脱ハロゲン化されたハロゲンイオンを
容易に捕捉することができ、反応速度を早めることがで
きる。溶媒や水分が吸熱体となりアーク放電の陽光柱の
高熱を吸収し断熱体の役割を果たすことができる。容器
状電極と棒状電極との空間に塊状又は粒状の導電体が充
填されているので、それぞれのギャップ間でアーク放電
を行うことができ、このギャップ間に存在するハロゲン
化化合物のC−Cl結合を分断することができる。ま
た、オゾンが介在しているため励起したC−Cl結合に
オゾンが作用しオゾニゾを形成するため分解速度を速め
ることができる。塊状又は粒状の導電体は、接触点の位
置がランダムであると同時に接触間に絶縁剤が介在して
いるので、アークの発生と同時に導電体がその衝撃によ
って絶えず変動するので、分解により発生した炭化物や
導電体の粉化物による汚染を防ぐことができ、安定した
アーク放電を得ることができる。導電体の大きさに比例
して、接触点が減少し、間隙が大きくなるので、陽光柱
を大きくすることができ、その分局部温度を高くするこ
とができる。また、導電体の大きさを変えることにより
容易に分解反応条件を変えることができる。対面する電
極が双方とも棒状炭素電極である場合はアークが飛び難
く、また電極間に炭化物が生成し付着し易いが、回転電
極を用いることにより電極が回転するので、電極間での
炭化物の生成や付着を防止することができ、アークが飛
び易くすることができる。また、ドラム電極と棒状炭素
電極を使用すると、炭化物が付着せず、長時間安定した
運転ができる。
With this configuration, it is possible to locally obtain an ultrahigh temperature by performing arc discharge in a solution.
It is possible to easily dehalogenate a halogenated compound in an ultrahigh temperature range. Ozoniso can be decomposed with a basic solution, and thus can be safely decomposed.
The halogen ion dehalogenated by the basic solution can be easily captured, and the reaction rate can be accelerated. The solvent and water become a heat absorber and can absorb the high heat of the positive column of the arc discharge and play a role of a heat insulator. Since the space between the container-shaped electrode and the rod-shaped electrode is filled with the lump or granular conductor, arc discharge can be performed between the gaps, and the C—Cl bond of the halogenated compound existing in the gap can be generated. Can be divided. Further, since ozone is present, ozone acts on the excited C—Cl bond to form ozoniso, so that the decomposition rate can be increased. Bulk or granular conductors were generated by decomposition because the contact points were random and at the same time there was an insulating agent between the contacts, so the conductors constantly fluctuated due to the impact at the same time as the arc was generated. It is possible to prevent contamination by carbides and powders of conductors, and to obtain stable arc discharge. Since the number of contact points decreases and the gap increases in proportion to the size of the conductor, the positive column can be made larger, and the local temperature can be increased accordingly. Further, the decomposition reaction conditions can be easily changed by changing the size of the conductor. If both facing electrodes are rod-shaped carbon electrodes, the arc is difficult to fly, and carbide is easily generated and adheres between the electrodes, but since the electrodes rotate by using a rotating electrode, the formation of carbide between the electrodes And adhesion can be prevented, and the arc can easily fly. In addition, when the drum electrode and the rod-shaped carbon electrode are used, carbide does not adhere and stable operation can be performed for a long time.

【0008】[0008]

【実施例】以下本発明の第1実施例について、図面を参
照しながら説明する。 (実施例1)図1は第1実施例のハロゲン化化合物の分
解反応器の外観斜視図であり、図2はその要部縦断面図
である。1は第1実施例の分解反応器、2は分解反応器
1の分解槽、3は分解槽2の温度を調整する冷却水が流
れるジャケット部、4は金網や多孔板等からなるトレ
イ、4aはトレイ4を支持するトレイ支持体、5は電極
用端子、5′はアース用端子、6は電極用端子5の導電
部に連接して分解槽2の直径方向の中心部に吊設された
炭素電極、7は炭素電極6の上部まで充填された平均粒
径が5〜10mmの活性炭や焼成カーボンの破砕物からな
る導電体、8はPCB等の被分解物の流入部、9は分解
された被分解物の流出部、10はオゾンガスとともに混
入された空気やCO,CO2 等の反応生成ガス等のガス
出口、11はジャケット部3内に流入される冷却水の冷
却水流入部、12はジャケット部3に供給された冷却水
の冷却水流出部である。尚、本実施例では固定電極を吊
設したものについて説明したが、分解槽の側壁に固定電
極を1乃至複数配設するようにしてもよい。以上のよう
に構成された分解反応器を用いた本実施例の分解方法に
ついて、以下ハロゲン化化合物の分解工程図を用いて説
明する。図3は第1実施例のハロゲン化化合物の分解反
応器を用いたハロゲン化化合物の分解工程図である。1
a,1b,1cは直列に3基連結された第1実施例のハ
ロゲン化化合物の第1,第2,第3の分解反応器、13
はハロゲン化化合物の溶液を貯溜するとともに第3分解
反応器1cからの分解反応液を気液分離した後、未分解
物を含む油状物を第1分解反応器1aに循環させる原料
貯溜槽、13aは原料貯溜槽13からハロゲン化化合物
含有溶液を所定量流す定量供給機、14は空気圧縮機、
15は空気圧縮機14の空気からオゾンを製造するオゾ
ン製造機、16はオゾンを所定量流出するオゾン整流
機、17は所定濃度に調整されたNaOHやKOH溶液
等の塩基性溶液貯溜槽、18は塩基性溶液を供給する定
量供給機、19はPCB等のハロゲン化化合物とオゾン
と塩基性溶液を乳化状態に混合する混合機、20は第3
分解反応器1cの分解反応液を液体サイクロンへ供給す
る供給ポンプ、21は分解反応液をNaCl等を溶存す
るスラリー溶液と油状物に分離する液体サイクロン、2
2は油状物貯溜部、23はスラリー溶液貯溜部、24は
冷却水で分解反応液を冷却する冷却器、25は分解反応
液中に混入した未分解のオゾンガスや空気,CO,CO
2 等の反応生成ガスを分離する凝縮器、26はオゾンガ
ス等の有毒ガスを無害化した後大気へ放出するガス放出
部、27は各分解反応器1a,1b,1cからの空気や
CO,CO2等の反応生成ガスをガス放出部26に導入
するガス管、28は各分解反応器1a,1b,1cの未
分解物を含む分解反応液とカーボン等を含有するスラリ
ー溶液の流出管である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. (Example 1) FIG. 1 is an external perspective view of a decomposition reactor for a halogenated compound of Example 1, and FIG. 2 is a longitudinal sectional view of an essential part thereof. Reference numeral 1 is a decomposition reactor of the first embodiment, 2 is a decomposition tank of the decomposition reactor 1, 3 is a jacket portion through which cooling water for adjusting the temperature of the decomposition tank 2 flows, 4 is a tray made of a wire mesh, a perforated plate, or the like, 4a Is a tray support for supporting the tray 4, 5 is an electrode terminal, 5'is a ground terminal, and 6 is connected to the conductive portion of the electrode terminal 5 and is suspended in the central portion of the decomposition tank 2 in the diameter direction. A carbon electrode, 7 is a conductor made of crushed material of activated carbon having an average particle size of 5 to 10 mm filled up to the upper part of the carbon electrode 6 or calcined carbon, 8 is an inflow portion of a material to be decomposed such as PCB, and 9 is decomposed. And 10 are gas outlets of air mixed with ozone gas and reaction product gases such as CO and CO 2 , 11 is a cooling water inflow portion of cooling water that flows into the jacket portion 3, 12 Is a cooling water outflow portion of the cooling water supplied to the jacket portion 3. Although the fixed electrode is suspended in the present embodiment, one or a plurality of fixed electrodes may be provided on the side wall of the decomposition tank. The decomposition method of this example using the decomposition reactor configured as described above will be described below with reference to the decomposition process chart of the halogenated compound. FIG. 3 is a decomposition process diagram of the halogenated compound using the decomposition reactor of the halogenated compound of the first embodiment. 1
a, 1b, and 1c are first, second, and third decomposition reactors for the halogenated compound of the first embodiment, which are connected in series in three groups, 13
Is a raw material storage tank for storing a solution of a halogenated compound and separating the decomposition reaction liquid from the third decomposition reactor 1c by gas-liquid separation, and then circulating an oily substance containing undecomposed material to the first decomposition reactor 1a, 13a Is a constant quantity feeder for flowing a predetermined amount of the halogenated compound-containing solution from the raw material storage tank 13, 14 is an air compressor,
Reference numeral 15 is an ozone producing machine for producing ozone from the air of the air compressor 14, 16 is an ozone rectifier for outflowing a predetermined amount of ozone, 17 is a basic solution storage tank such as NaOH or KOH solution adjusted to a predetermined concentration, 18 Is a constant quantity feeder for supplying a basic solution, 19 is a mixer for mixing halogenated compounds such as PCB, ozone and a basic solution into an emulsified state, and 20 is a third
A supply pump for supplying the decomposition reaction liquid of the decomposition reactor 1c to the liquid cyclone, 21 is a liquid cyclone for separating the decomposition reaction liquid into a slurry solution in which NaCl or the like is dissolved, and an oily material, 2
Reference numeral 2 is an oil storage portion, 23 is a slurry solution storage portion, 24 is a cooler for cooling the decomposition reaction liquid with cooling water, and 25 is undecomposed ozone gas, air, CO, CO mixed in the decomposition reaction liquid.
A condenser for separating reaction product gases such as 2 and the like, a gas releasing portion 26 for detoxifying toxic gas such as ozone gas and then releasing it to the atmosphere, and 27 for air and CO, CO from each decomposition reactor 1a, 1b, 1c. A gas pipe for introducing a reaction product gas such as 2 into the gas discharge part 26, and 28 is an outflow pipe for a decomposition reaction liquid containing undecomposed substances of each decomposition reactor 1a, 1b, 1c and a slurry solution containing carbon and the like. .

【0009】(実験例1)実施例1の分解反応器を用い
て、図3に示す分解装置を用いた分解方法でPCBの分
解実験を行った。 <原料の調整> a.試料として、1,2,4−トリクロロベンゼン入り
トランス油10.7wt%と2号トランス油65.5wt%
と、水16.7wt%,NaOH7.1wt%の混合溶液を
17.3リットル(16.7kg)準備した。そのPCB
の含有量は10 4g/lに調整した。PCBは市販の
ものを用いた。 b.導電体として、活性炭(キントール−WA)の4〜
8メッシュのものを各分解槽に充填させて用いた。 c.分解反応槽として、図2に示す円筒状の分解反応器
を図3に示すように3基直列に配設したものを用いた。 <アーク放電条件> 次の条件に設定した。 a.アーク放電圧:50V b.アーク放電電流:200−220A c.アーク放電サイクル(1基当り):36sec d.アーク放電時間(1基当り):10sec e.アーク電極として径が10mm、長さが300mmの炭
素電極を用いた。 <試験条件> a.分解装置での試料の循環流速450リットル/hr
に調整して行った。 b.オゾンの供給は濃度3000ppmのオゾン含有空
気を540リットル/hrで行った。尚、オゾンガスは
試験中図3中のバルブV2を開にし常時供給して行っ
た。 c.各分解槽中での液の平均流速を32.4m/hrに
なるように行った。 d.塩基性溶液は試料中に予め混入して行ったので、図
3中のバルブV1は閉にして行った。 e.分解装置の試料の循環時間は6時間に設定した。 f.各分解槽の槽内温度は100℃〜120℃に設定し
た。 g.混合機はワイヤブラシ状のものが密植された2本の
回転体が互いに反対方向に回転し乳化物を形成する機械
式混合機を用いた。 h.試料とオゾンを混合機19で乳化状態に混合し乳化
液を生成させ、乳化液を分解反応器1aに供給し図3を
閉ループとして循環して行った。 <試験結果> 油状物中のPCBの濃度をガスクロマトグラフ法で測定
した。その結果を(表1)に示した。スラリー溶液中に
は排カーボンやタール状の物が含まれていたので水分を
分離した液はAgNO3法で測定したところ分解された
PCBと化学量論的に略合致するCl- 濃度が測定され
た。タール分について昇湿式ガスクロマトグラフ法で測
定したころPCBは認められなかった。
(Experimental Example 1) Using the decomposition reactor of Example 1, a decomposition experiment of PCB was carried out by a decomposition method using the decomposition apparatus shown in FIG. <Preparation of raw materials> a. As a sample, 1,2,4-trichlorobenzene-containing trans oil 10.7 wt% and No. 2 trans oil 65.5 wt%
And 17.3 liter (16.7 kg) of a mixed solution of 16.7 wt% of water and 7.1 wt% of NaOH was prepared. The PCB
Was adjusted to 10 4 g / l. A commercially available PCB was used. b. As a conductor, activated carbon (Quintol-WA) 4 ~
An 8-mesh one was used by filling each decomposition tank. c. As the decomposition reaction tank, a cylindrical decomposition reactor shown in FIG. 2 having three groups arranged in series as shown in FIG. 3 was used. <Arc discharge conditions> The following conditions were set. a. Arc discharge voltage: 50 V b. Arc discharge current: 200-220A c. Arc discharge cycle (per unit): 36 sec d. Arc discharge time (per unit): 10 sec e. A carbon electrode having a diameter of 10 mm and a length of 300 mm was used as the arc electrode. <Test conditions> a. Circulation flow rate of sample in decomposition device 450 liter / hr
I adjusted it to. b. Ozone was supplied by supplying ozone-containing air having a concentration of 3000 ppm at 540 l / hr. During the test, ozone gas was constantly supplied by opening the valve V 2 in FIG. c. It was performed so that the average flow velocity of the liquid in each decomposition tank was 32.4 m / hr. d. Since the basic solution was mixed in the sample in advance, the valve V 1 in FIG. 3 was closed. e. The circulation time of the sample in the decomposer was set to 6 hours. f. The temperature inside each decomposition tank was set to 100 ° C to 120 ° C. g. The mixer used was a mechanical mixer in which two rotating bodies, in which wire-brush-like ones were densely packed, were rotated in opposite directions to form an emulsion. h. The sample and ozone were mixed in an emulsified state by the mixer 19 to generate an emulsion, which was supplied to the decomposition reactor 1a and circulated as a closed loop in FIG. <Test Results> The concentration of PCB in the oily substance was measured by gas chromatography. The results are shown in (Table 1). Exhaust carbon and tar-like substances were contained in the slurry solution, so the liquid from which the water was separated was measured by the AgNO 3 method, and a Cl - concentration that was approximately stoichiometrically matched with the decomposed PCB was measured. It was No PCB was observed when the tar content was measured by the sublimation gas chromatography method.

【表1】 [Table 1]

【0010】(実験例2)導電体として、活性炭の代わ
りに焼成カーボンの破砕品を用いた他は実験例1と同様
にして行った。その結果を(表1)に示した。
(Experimental Example 2) The experiment was conducted in the same manner as in Experimental Example 1 except that a crushed product of fired carbon was used as the conductor instead of the activated carbon. The results are shown in (Table 1).

【0011】(実験例3)オゾンを混入しなかった他は
実験例1と同一の条件でPCBの分解実験を行った。そ
の結果を(表1)に示した。
(Experimental Example 3) A PCB decomposition experiment was conducted under the same conditions as in Experimental Example 1 except that ozone was not mixed. The results are shown in (Table 1).

【0012】この(表1)から明らかなように、本実施
例によれば、 a.高濃度でかつ難分解性のPCBを97%以上分解で
きることがわかった。実験例3で更に5時間実験を続行
したところ99%以上まで分解できた。このことから分
解時間を更に長くすれば略100%分解できることがわ
かった。 b.容器状電極と棒状電極との空間に充填された塊状ま
たは粒子状の導電体はランダムな間隙を持ちそれぞれの
間隙で強い陽光柱が得られることがわかった。また、導
電体の表面は粗の方がアーク放電に好適な間隙が得られ
ることがわかった。更に、電圧を上げることにより粒径
が大きくても強い陽光柱が得られることがわかった。 c.導電体の位置は、アーク放電の発生衝撃によって振
動が起こり、絶えず変動することがわかった。その結
果、接触面は絶えず更新され、反応生成物や粉化した電
極による炭化物の汚染もなく、安定したアーク放電が行
われることがわかった。 d.そのことから、分解反応器のスケールアップが容易
で大電圧、大電流をかけることができ、簡単な装置で大
能力の分解反応装置を造ることができることもわかっ
た。 e.電極の間隙調整の必要がなく、運転操作が極めて簡
単で省力化できることがわかった。 f.分解反応器が同一容積、同一電圧のもとでは、導電
体の大きさによって接触点の数が変わり、陽光柱の大き
さを変えることができ局部温度を変化させることができ
ることがわかった。また、導電体の大きさに比例して、
接触点は減少し、陽光柱を大きくし局部温度は高くする
ことができることもわかった。従って、導電体の大きさ
を変えることにより容易に分解反応条件を最適条件に選
択できることがわかった。 g.導電体として各種金属、焼成カーボン、コークス、
活性炭などを用いて実験をしたが略同一の結果が得られ
た。また、NaOH溶液を試料に混入しないで塩基性溶
液貯溜槽に入れて行うようにしても、略同一の結果が得
られることがわかった。但し、乳化状態を維持するよう
に供給を行う必要があることがわかった。 尚、本実施例では分解反応器を3基直列に設置したもの
について説明したが、1基の分解反応器にハロゲン化化
合物と所定量の塩基性溶液との混合液にオゾン水やオゾ
ンガスを混入し乳化させたものを仕込みバッチ式で分解
を行うこともできる。
As is clear from this (Table 1), according to this embodiment, a. It was found that high-concentration and hardly decomposable PCB can be decomposed by 97% or more. When the experiment was further continued for 5 hours in Experimental Example 3, the decomposition was 99% or more. From this, it was found that if the decomposition time is further lengthened, the decomposition can be carried out to about 100%. b. It was found that the lump-shaped or particle-shaped conductors filled in the space between the container-shaped electrode and the rod-shaped electrode have random gaps, and a strong positive column can be obtained in each gap. It was also found that the rougher the surface of the conductor, the more suitable the gap for arc discharge can be obtained. Furthermore, it was found that by increasing the voltage, a strong positive column can be obtained even if the particle size is large. c. It was found that the position of the conductor fluctuates due to the shock generated by the arc discharge and constantly fluctuates. As a result, it was found that the contact surface was constantly renewed, and there was no contamination of reaction products or carbides by powdered electrodes, and stable arc discharge was performed. d. From this, it was also found that the decomposition reactor can be easily scaled up, a large voltage and a large current can be applied, and a large capacity decomposition reactor can be constructed with a simple device. e. It was found that there is no need to adjust the gap between the electrodes and the operation is extremely simple and labor can be saved. f. It was found that the number of contact points changes depending on the size of the conductor, the size of the positive column can be changed, and the local temperature can be changed under the same volume and the same voltage in the decomposition reactor. Also, in proportion to the size of the conductor,
It was also found that the contact points could be reduced, the positive column could be increased and the local temperature could be increased. Therefore, it was found that the decomposition reaction condition can be easily selected as the optimum condition by changing the size of the conductor. g. Various metals as conductors, baked carbon, coke,
Experiments were carried out using activated carbon and the like, but almost the same results were obtained. It was also found that the same result can be obtained even if the NaOH solution is not mixed with the sample and is put in the basic solution storage tank. However, it was found that it was necessary to supply so as to maintain the emulsified state. In addition, in the present embodiment, the case where three decomposition reactors are installed in series has been described, but ozone water or ozone gas is mixed in a mixed solution of a halogenated compound and a predetermined amount of basic solution in one decomposition reactor. Then, the emulsified product can be charged and decomposed in a batch system.

【0013】(実施例2)図4は本発明の第2実施例の
ポリハロゲン化化合物の分解反応器の要部平面図であ
り、図5はその分解反応器の要部縦断面図であり、図6
は分解反応器の電極挿着部の要部断面図である。31は
本発明の第2実施例におけるポリハロゲン化化合物の分
解反応器、32は分解反応器31の分解槽、33は分解
槽32の外周に分解槽32の中心を点対称として対称位
置で高さを同一又は変えて複数前後動自在に挿着された
炭素等からなる炭素電極、34は内部にシーリング機構
や絶縁機構を備えた電極挿着部、35は耐圧性のガラス
を備えて形成された覗窓、36は銅等からなるドラム電
極を回転させるサーボモータ等からなる回転機、37は
圧力計等の検知機器配設部であり、図5において、38
は検知機器配設部37に設置された圧力計、39は冷却
水で分解槽32を冷却するジャケット部、40は冷却水
流入部、41は冷却水流出部、42はハロゲン化化合物
等の被分解液の流入部、43は分解反応液の流出部、4
4は回転機36の回転部に吊設された銅等からなるドラ
ム電極である。図6において、45は炭素電極等からな
る棒状の炭素電極33が摺動自在に挿着され、電極挿着
部34に密着状態で嵌着されたセラミック製の電極支持
部、46は棒状電極33と電極支持部45との間隙から
分解反応液が漏洩を防止するパッキン、47はセラミッ
クス等の絶縁性を有する材料で作製されたフランジ、4
8,49はフランジ47を電極挿着部34に固定するボ
ルトとナットである。以上のように構成された分解反応
器を用いた本実施例のハロゲン化化合物の分解方法につ
いて、以下その分解方法を分解工程図を用いて説明す
る。図7は本発明の第2実施例の分解反応器を用いたポ
リハロゲン化化合物の分解工程図であり、図8は分解反
応器の電極を前後動させる電極間間隙調整部の要部側面
図である。図3の第1実施例の分解工程図と異なる点
は、第2実施例の分解反応器31が第1実施例の分解反
応器1a,1b,1cの代わりに設置されている点であ
り、第1実施例の分解工程と同一の機器等は図3の符号
と同一の符号を付し説明を省略する。50は炭素電極3
3と係合して炭素電極33を前後に摺動させ炭素電極3
3と回転するドラム電極44との間の間隙を調整するサ
ーボモータ等からなる電極間間隙調整部である。図7に
おいて、51は炭素電極33を軸着等するとともに電力
を供給する電極保持部、52は炭素電極33に電力を供
給する電源、53は炭素電極33を前後動させるギヤド
モータ等からなる駆動部、54は駆動部53の回動部に
連設されたスクリュー軸、55は電極保持部51と絶縁
部56を介して一体に連設され、スクリュー軸54に軸
着された軸着部である。
(Embodiment 2) FIG. 4 is a plan view of an essential part of a decomposition reactor for polyhalogenated compounds according to a second embodiment of the present invention, and FIG. 5 is a longitudinal sectional view of an essential part of the decomposition reactor. , Fig. 6
FIG. 4 is a cross-sectional view of a main part of an electrode insertion part of a decomposition reactor. Reference numeral 31 is a decomposition reactor for the polyhalogenated compound in the second embodiment of the present invention, 32 is a decomposition tank of the decomposition reactor 31, 33 is an outer periphery of the decomposition tank 32, and the center of the decomposition tank 32 is point-symmetrical at a symmetrical position. Carbon electrodes made of carbon or the like, which are inserted in the same or different manner so as to be movable back and forth, 34 is an electrode insertion portion having a sealing mechanism or an insulating mechanism inside, and 35 is a pressure-resistant glass. 5, a reference numeral 36 is a rotating machine including a servomotor for rotating a drum electrode made of copper or the like, and 37 is a detecting device arranging portion such as a pressure gauge, and in FIG.
Is a pressure gauge installed in the detection device installation section 37, 39 is a jacket section for cooling the decomposition tank 32 with cooling water, 40 is a cooling water inflow section, 41 is a cooling water outflow section, and 42 is a cover such as a halogenated compound. Decomposition liquid inflow portion, 43 is decomposition reaction liquid outflow portion, 4
Reference numeral 4 denotes a drum electrode made of copper or the like suspended from the rotating portion of the rotating machine 36. In FIG. 6, reference numeral 45 denotes a ceramic electrode support portion 45 in which a rod-shaped carbon electrode 33 made of a carbon electrode or the like is slidably inserted and fitted in an electrode insertion portion 34 in a close contact state, and 46 indicates a rod-shaped electrode 33. And packing 47 for preventing the decomposition reaction liquid from leaking from the gap between the electrode supporting portion 45 and 47, a flange 4 made of an insulating material such as ceramics, 4
Reference numerals 8 and 49 are bolts and nuts for fixing the flange 47 to the electrode insertion portion 34. The decomposition method of the halogenated compound of this example using the decomposition reactor configured as described above will be described below with reference to the decomposition step diagrams. FIG. 7 is a decomposition process diagram of a polyhalogenated compound using the decomposition reactor of the second embodiment of the present invention, and FIG. 8 is a side view of a main part of an interelectrode gap adjusting unit that moves the electrodes of the decomposition reactor back and forth. Is. The difference from the decomposition process diagram of the first embodiment of FIG. 3 is that the decomposition reactor 31 of the second embodiment is installed in place of the decomposition reactors 1a, 1b, 1c of the first embodiment, The same devices and the like as those in the disassembling process of the first embodiment are designated by the same reference numerals as those in FIG. 3, and the description thereof will be omitted. 50 is a carbon electrode 3
3 and slide the carbon electrode 33 back and forth to engage the carbon electrode 3
3 is an inter-electrode gap adjusting unit including a servo motor and the like for adjusting the gap between the rotating drum electrode 44 and the rotating drum electrode 44. In FIG. 7, reference numeral 51 is an electrode holding portion for axially attaching the carbon electrode 33 and supplying electric power, 52 is a power source for supplying electric power to the carbon electrode 33, and 53 is a drive portion including a geared motor for moving the carbon electrode 33 back and forth. , 54 is a screw shaft connected to the rotating part of the drive part 53, and 55 is a shaft attachment part that is integrally connected to the electrode holding part 51 via an insulating part 56 and is axially attached to the screw shaft 54. .

【0014】(実験例4)実施例2に示す分解反応器を
用いて、図7に示すハロゲン化化合物の分解装置を用い
てPCBを含有したトランス油の分解実験を行った。 <試料の調整> a.試験サンプル:PC入り廃トランス油 b.PCB濃度:6.48mg/リットル c.トランス油の投入量:20リットル d.トランス油の流量:300リットル/hr <アーク放電条件> ・反応器内の液流速:0.3cm/sec ・アーク放電電極の間隙:2〜3mm ・アーク放電圧:50V ・アーク放電電流:100〜150A ・アーク放電サイクル:10sec ・アーク放電時間:3sec ・炭素電極の本数:4本(対称位置に配置) <試験条件> a.KOH水溶液濃度:10wt% b.KOH流量:0.5リットル/hr c.オゾン流量:540リットル/hr d.オゾン濃度:3000ppm e.アーク反応器内の温度:90℃に調節 f.循環時間:6時間(計算上の循環回数:8.3回/
hr、合計50回) g.混合機:実験例1と同一のものを用い乳化状態で供
給した。 <試験結果>油状物中のPCBの濃度をガスクロマトグ
ラフ法で測定した。その結果を(表2)に示した。スラ
リー溶液中の水溶液はAgNO3法で測定したところ分
解されたPCBと化学量論的に略合致するCl- 濃度が
測定された。タール分について昇湿式ガスクロマトグラ
フ法で測定したところPCBは認められなかった。
(Experimental Example 4) Using the cracking reactor shown in Example 2, a cracking experiment of trans oil containing PCB was carried out using the cracking apparatus for halogenated compounds shown in FIG. <Preparation of sample> a. Test sample: Waste transformer oil containing PC b. PCB concentration: 6.48 mg / liter c. Input amount of transformer oil: 20 liters d. Flow rate of transformer oil: 300 liters / hr <Arc discharge condition> -Liquid flow rate in reactor: 0.3 cm / sec-Gap between arc discharge electrodes: 2-3 mm-Arc discharge voltage: 50 V-Arc discharge current: 100- 150 A ・ Arc discharge cycle: 10 sec ・ Arc discharge time: 3 sec ・ Number of carbon electrodes: 4 (arranged at symmetrical positions) <Test conditions> a. KOH aqueous solution concentration: 10 wt% b. KOH flow rate: 0.5 liter / hr c. Ozone flow rate: 540 l / hr d. Ozone concentration: 3000 ppm e. Temperature in arc reactor: adjusted to 90 ° C f. Circulation time: 6 hours (calculated circulation number: 8.3 times /
hr, 50 times in total) g. Mixer: The same mixer as in Experimental Example 1 was used and was supplied in an emulsified state. <Test Results> The concentration of PCB in the oily matter was measured by gas chromatography. The results are shown in (Table 2). When the aqueous solution in the slurry solution was measured by the AgNO 3 method, a Cl concentration which was approximately stoichiometrically matched with the decomposed PCB was measured. When the tar content was measured by the sublimation gas chromatograph method, PCB was not recognized.

【0015】(実験例5)炭素電極の本数を2本とした
他は実験例1と同一の条件で分解実験を行った。その結
果を(表2)に示した。
Experimental Example 5 A decomposition experiment was conducted under the same conditions as in Experimental Example 1 except that the number of carbon electrodes was two. The results are shown in (Table 2).

【表2】 [Table 2]

【0016】(比較例1)ドラム電極44の代わりに、
炭素電極33だけを分解反応器31の中心線の対称位置
に炭素電極33の先端部の電極間距離を2mmにした他は
実験例3と同一の条件で分解実験を行った。アーク放電
中に電極間がPCB等を含有したトランス油で覆われて
いるためアークが飛んだり飛ばなかったりして安定した
アーク放電が得られず、また、電極の表面に生成した炭
化物が付着し、長時間運転できないことがわかった。以
上のように本実施例によれば、 a.PCBを99.9%以上も分解できることがわかっ
た。 b.対面する電極が双方とも棒状炭素電極である場合は
アークが飛び難く、また電極間に炭化物が生成し付着し
やすいことがわかった。ロータリー電極方式の本実施例
の場合は電極が動くためにアークが飛び易く、また銅製
ドラム電極と棒状炭素電極を使用しているため炭化物が
付着せず、長時間、安定した運転ができることがわかっ
た。 c.アーク放電はパルス信号で断続的に行うこともでき
ることがわかった。その結果放電サイクル、放電時間は
任意に設定できることもわかった。 d.電極間の間隙はサーボ機構で最適のアーク電流が得
られるように調節すると、高分解率で分解時間を更に短
縮できることもわかった。 e.固定棒状電極は回転ドラム電極に対面して何本でも
セットでき、本数が多いほど処理能力も大きくなること
がわかった。但し、反応液が高温になるので冷却水とし
てブライン等を考慮する必要があることがわかった。
(Comparative Example 1) Instead of the drum electrode 44,
A decomposition experiment was conducted under the same conditions as in Experimental Example 3 except that only the carbon electrode 33 was placed symmetrically with respect to the center line of the decomposition reactor 31 and the distance between the electrodes at the tip of the carbon electrode 33 was 2 mm. During the arc discharge, because the space between the electrodes is covered with transformer oil containing PCB etc., the arc is blown or not blown, and stable arc discharge cannot be obtained. Also, the generated carbide adheres to the surface of the electrode. , I found that I couldn't drive for a long time. As described above, according to this embodiment, a. It was found that the PCB can be decomposed by 99.9% or more. b. It was found that when both facing electrodes were rod-shaped carbon electrodes, the arc was difficult to fly, and carbides were easily formed between the electrodes and adhered. In the case of this embodiment of the rotary electrode system, the arc moves easily because the electrode moves, and since the copper drum electrode and the rod-shaped carbon electrode are used, it is found that the carbide does not adhere and the stable operation can be performed for a long time. It was c. It has been found that the arc discharge can also be performed intermittently with a pulse signal. As a result, it was found that the discharge cycle and discharge time can be set arbitrarily. d. It was also found that if the gap between the electrodes is adjusted by a servo mechanism to obtain the optimum arc current, the decomposition time can be further shortened with a high decomposition rate. e. It was found that any number of fixed rod electrodes can be set facing the rotating drum electrode, and the greater the number, the greater the processing capacity. However, it was found that brine or the like must be taken into consideration as cooling water because the reaction liquid becomes hot.

【0017】[0017]

【発明の効果】以上のように本発明のハロゲン化化合物
の分解方法は、ハロゲン化化合物と塩基性溶液及び必要
に応じてオゾンを添加したエマルジョン溶液中でアーク
放電を行う簡単な構成で、以下の優れた効果を有するハ
ロゲン化化合物の分解方法を実現できるものである。 a.PCB等のハロゲン化化合物を極めて短時間で、か
つ極めて高い分解率で分解できる。 b.バッチ式のみならず連続式でハロゲン化化合物を分
解できるので高い処理能力を発揮できる。 c.設備が簡単なため省力化が可能で、かつエネルギー
消費量も従来に比べ極めて低いので、ランニングコスト
を著しく低減化できる。 d.設備が簡単なので小型化・コンパクト化ができるの
で、トラクター等の運搬車に積載でき、どこでも場所を
とらずにハロゲン化化合物を分解できる。 次に、本発明のハロゲン化化合物の分解反応器は、固定
電極と塊状又は粒状の導電体、若しくは固定電極と回転
電極を組合わせた簡単な構成で、以下の優れた効果を有
するPCB等のハロゲン化化合物の分解反応器を実現で
きるものである。 a.塊状又は粒状の導電体がアーク放電の衝撃で自由に
動くことができるので、放電部位を常に更新でき強い陽
光柱を連続して得ることができるとともに、高い分解率
を得ることができる。 b.回転式なので反応生成物が電極間に付着することが
ないので、高い分解率でかつ同じ分解率を維持できる。
c.回転式の場合、電極間間隙調整部で電極間の間隙を
分解条件に合った間隙 に調整できるので、分解時間が計算でき分解装置の設計
を容易に行うことができる。 d.固定電極や回転電極の形状や設置数、又は導電体の
形状を自由に選択できるので、分解装置の大型化や小型
化に自由に対応でき設計自在性に優れている。 e.高分解率の装置を小型化できるので、分解装置全体
をコンパクト化することが可能でトラクター等の運搬車
両に積載でき、移動可能な分解装置とすることもでき、
PCBの貯溜場所毎に直接分解装置を移動させて分解で
きる。 f.分解反応器の構造が簡単なので低原価で量産性に優
れている。
As described above, the method for decomposing a halogenated compound of the present invention has a simple structure in which arc discharge is carried out in an emulsion solution containing a halogenated compound, a basic solution and, if necessary, ozone. It is possible to realize a method for decomposing a halogenated compound having the excellent effect of. a. A halogenated compound such as PCB can be decomposed in an extremely short time and at an extremely high decomposition rate. b. Since the halogenated compound can be decomposed not only in the batch system but also in the continuous system, high processing capacity can be exhibited. c. Since the equipment is simple, labor can be saved, and the energy consumption is much lower than before, so the running cost can be significantly reduced. d. Since the equipment is simple, it can be made compact and compact, so it can be loaded on a transport vehicle such as a tractor and can decompose halogenated compounds without taking up any space. Next, the halogenated compound decomposition reactor of the present invention has a simple structure in which a fixed electrode and a lumped or granular electric conductor, or a fixed electrode and a rotating electrode are combined, and has the following excellent effects such as PCB. It is possible to realize a decomposition reactor for halogenated compounds. a. Since the lump-shaped or granular conductor can move freely by the impact of arc discharge, the discharge site can be constantly renewed, a strong positive column can be continuously obtained, and a high decomposition rate can be obtained. b. Since it is a rotary type, reaction products do not adhere between the electrodes, so that a high decomposition rate and the same decomposition rate can be maintained.
c. In the case of the rotary type, the interelectrode gap adjusting unit can adjust the interelectrode gap to a gap that meets the decomposition conditions, so that the decomposition time can be calculated and the disassembly device can be easily designed. d. Since the shape and the number of fixed electrodes or rotating electrodes, or the shape of the conductor can be freely selected, the disassembling apparatus can be made larger or smaller, and the design flexibility is excellent. e. Since the device with a high decomposition rate can be downsized, the entire disassembling device can be made compact and can be loaded on a transport vehicle such as a tractor, and can also be a movable disassembling device.
It is possible to disassemble by directly moving the disassembling device for each PCB storage location. f. Since the decomposition reactor has a simple structure, it is low in cost and excellent in mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例のハロゲン化化合物の分解
反応器の外観斜視図
FIG. 1 is an external perspective view of a decomposition reactor for halogenated compounds according to a first embodiment of the present invention.

【図2】本発明の第1実施例のハロゲン化化合物の分解
反応器の要部縦断面図
FIG. 2 is a vertical cross-sectional view of a main part of a halogenated compound decomposition reactor according to the first embodiment of the present invention.

【図3】本発明の第1実施例のハロゲン化化合物の分解
反応器を用いたハロゲン化化合物の分解工程図
FIG. 3 is a decomposition process diagram of a halogenated compound using the decomposition reactor for a halogenated compound according to the first embodiment of the present invention.

【図4】本発明の第2実施例のポリハロゲン化化合物の
分解反応器の要部平面図
FIG. 4 is a plan view of an essential part of a decomposition reactor for polyhalogenated compounds according to a second embodiment of the present invention.

【図5】本発明の第2実施例のポリハロゲン化化合物の
分解反応器の要部縦断面図
FIG. 5 is a vertical cross-sectional view of a main part of a decomposition reactor for polyhalogenated compounds according to a second embodiment of the present invention.

【図6】本発明の第2実施例のポリハロゲン化化合物の
分解反応器の電極挿着部の要部断面図
FIG. 6 is a cross-sectional view of an essential part of an electrode insertion portion of the decomposition reactor for polyhalogenated compounds according to the second embodiment of the present invention.

【図7】本発明の第2実施例の分解反応器を用いたポリ
ハロゲン化化合物の分解工程図
FIG. 7 is a decomposition process diagram of a polyhalogenated compound using the decomposition reactor of the second embodiment of the present invention.

【図8】本発明の第2実施例の分解反応器の電極を前後
動させる電極間間隙調整部の要部側面図
FIG. 8 is a side view of an essential part of an interelectrode gap adjusting section that moves the electrodes of the decomposition reactor of the second embodiment of the present invention back and forth.

【符号の説明】[Explanation of symbols]

1第1実施例の分解反応器 1a 第1分解反応器 1b 第2分解反応器 1c 第3分解反応器 2 分解槽 3 ジャケット部 4 トレイ 4a トレイ支持体 5 電極用端子 5′ アース用端子 6 炭素電極 7 導電体 8 流入部 9 流出部 10 ガス出口 11 冷却水流入部 12 冷却水流出部 13 原料貯溜槽 13a 定量供給機 14 空気圧縮機 15 オゾン製造機 16 オゾン整流機 17 塩基性溶液貯溜槽 18 定量供給機 19 混合機 20 供給ポンプ 21 液体サイクロン 22 油状物貯溜部 23 スラリー溶液貯溜部 24 冷却器 25 凝縮器 26 ガス放出部 27 ガス管 28 流出管 31 第2実施例の分解反応器 32 分解槽 33 炭素電極 34 電極挿着部 35 覗窓 36 回転機 37 検知機器配設部 38 圧力計 39 ジャケット部 40 冷却水流入部 41 冷却水流出部 42 被分解液の流入部 43 流出部 44 ドラム電極 45 電極支持部 46 パッキン 47 フランジ 48 ボルト 49 ナット 50 電極間間隙調整部 51 電極保持部 52 電源 53 駆動部 54 スクリュー軸 55 軸着部 56 絶縁部 1 Decomposition reactor of 1st Example 1a 1st decomposition reactor 1b 2nd decomposition reactor 1c 3rd decomposition reactor 2 decomposition tank 3 jacket part 4 tray 4a tray support 5 electrode terminal 5'ground terminal 6 carbon Electrode 7 Conductor 8 Inflow part 9 Outflow part 10 Gas outlet 11 Cooling water inflow part 12 Cooling water outflow part 13 Raw material storage tank 13a Fixed amount feeder 14 Air compressor 15 Ozone maker 16 Ozone rectifier 17 Basic solution storage tank 18 Quantitative feeder 19 Mixer 20 Feed pump 21 Hydrocyclone 22 Oily substance reservoir 23 Slurry solution reservoir 24 Cooler 25 Condenser 26 Gas release 27 Gas pipe 28 Outflow pipe 31 Decomposition reactor 32 of the second embodiment Decomposition tank 33 Carbon Electrode 34 Electrode Insertion Part 35 Viewing Window 36 Rotating Machine 37 Detecting Device Arrangement Section 38 Pressure Gauge 39 Jacket Section 40 Cooling Water Input part 41 Cooling water outflow part 42 Inflow part of liquid to be decomposed 43 Outflow part 44 Drum electrode 45 Electrode support part 46 Packing 47 Flange 48 Bolt 49 Nut 50 Electrode gap adjusting part 51 Electrode holding part 52 Power supply 53 Drive part 54 Screw shaft 55 Shaft mounting part 56 Insulation part

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ハロゲン化化合物又はハロゲン化化合物
含有溶液と、塩基性溶液と、の混合溶液中で、常温乃至
200℃の条件下でアーク放電を行いハロゲン化化合物
を分解することを特徴とするハロゲン化化合物の分解方
法。
1. A halogenated compound or a solution containing a halogenated compound and a basic solution are mixed in a mixed solution to decompose the halogenated compound by performing arc discharge at room temperature to 200 ° C. Method for decomposing halogenated compound.
【請求項2】 前記ハロゲン化化合物又はハロゲン化化
合物含有溶液にオゾンを添加することを特徴とする請求
項1に記載のハロゲン化化合物の分解方法。
2. The method for decomposing a halogenated compound according to claim 1, wherein ozone is added to the halogenated compound or a solution containing the halogenated compound.
【請求項3】 前記オゾンがオゾン水又はオゾンガスで
あることを特徴とする請求項2に記載のハロゲン化化合
物の分解方法。
3. The method for decomposing a halogenated compound according to claim 2, wherein the ozone is ozone water or ozone gas.
【請求項4】 前記アーク放電が容器状電極と棒状電極
との間に充填された塊状又は粒状の導電体の間隙部で行
われることを特徴とする請求項1乃至3の内いずれか1
に記載のハロゲン化化合物の分解方法。
4. The arc discharge is generated in a gap portion of a lump-shaped or granular electric conductor filled between a container-shaped electrode and a rod-shaped electrode.
The method for decomposing a halogenated compound according to 1.
【請求項5】 前記アーク放電が、ドラム状又は棒状に
形成された回転電極と、固定された棒状電極の間で行わ
れることを特徴とする請求項1乃至3の内いずれか1に
記載のハロゲン化化合物の分解方法。
5. The arc discharge is performed between a rotating electrode formed in a drum shape or a rod shape and a fixed rod electrode, according to any one of claims 1 to 3. Method for decomposing halogenated compound.
【請求項6】 ハロゲン化化合物又はハロゲン化化合物
含有溶液と塩基性溶液及び必要に応じて添加されたオゾ
ンの混合溶液をアーク放電により分解処理する工程と、
前記アーク放電処理された未分解物を含む分解反応液を
油状物とスラリー溶液に分離する工程と、前記分解反応
液又は前記油状物を冷却する工程と、前記油状物とハロ
ゲン化化合物もしくはハロゲン化化合物含有溶液との混
合溶液に塩基性溶液及び必要に応じてオゾンを添加混合
し前記アーク放電による分解処理工程に循環する工程
と、を有することを特徴とするハロゲン化化合物の分解
方法。
6. A step of decomposing a mixed solution of a halogenated compound or a solution containing a halogenated compound, a basic solution and ozone optionally added, by arc discharge,
A step of separating the decomposition reaction solution containing the undecomposed material subjected to the arc discharge into an oil and a slurry solution; a step of cooling the decomposition reaction solution or the oil; and the oil and a halogenated compound or a halogenated compound. A method for decomposing a halogenated compound, comprising the step of adding a basic solution and, if necessary, ozone to a mixed solution with a compound-containing solution and circulating the mixture in the decomposition treatment step by arc discharge.
【請求項7】 前記混合溶液が分散状態又は乳化状態で
あることを特徴とする請求項1乃至6の内いずれか1に
記載のハロゲン化化合物の分解方法。
7. The method for decomposing a halogenated compound according to any one of claims 1 to 6, wherein the mixed solution is in a dispersed state or an emulsified state.
【請求項8】 ハロゲン化化合物等からなる被分解溶液
流入部と分解処理液の流出部とを備え冷却ジャケットを
有する容器電極と、前記容器電極の容器内に装着された
1乃至複数の固定電極と、前記容器電極の内部に充填さ
れた導電体と、を備えたことを特徴とするハロゲン化化
合物の分解反応器。
8. A container electrode having a cooling solution jacket having an inflow part of a solution to be decomposed composed of a halogenated compound and the like and an outflow part of a decomposition treatment solution, and one or a plurality of fixed electrodes mounted in the container of the container electrode. And a conductor filled inside the container electrode, wherein the halogenated compound decomposition reactor is provided.
【請求項9】 ハロゲン化化合物等からなる被分解溶液
流入部と分解処理液の流出部とを備え冷却ジャケットを
有する反応容器と、前記反応容器に装着されたドラム状
等の中空状又は棒状の回転電極と、前記回転電極を回転
させる回転機と、先端部が前記回転電極と0.1〜5m
m,好ましくは0.5〜3mmの間隙をあけて前記反応容
器に前後動自在に装着された棒状電極と、を備えたこと
を特徴とするハロゲン化化合物の分解反応器。
9. A reaction vessel having a cooling jacket, which comprises an inflow part for a solution to be decomposed composed of a halogenated compound and the like, and an outflow part for a decomposition treatment solution, and a hollow or rod-like shape such as a drum attached to the reaction container. A rotating electrode, a rotating machine that rotates the rotating electrode, and a tip portion of the rotating electrode is 0.1 to 5 m.
A decomposition reactor for halogenated compounds, comprising a rod-shaped electrode mounted in the reaction vessel so as to be movable back and forth with a gap of m, preferably 0.5 to 3 mm.
JP35249893A 1993-12-31 1993-12-31 Decomposition method of halogenated compound and decomposition reactor thereof Expired - Lifetime JP2714601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35249893A JP2714601B2 (en) 1993-12-31 1993-12-31 Decomposition method of halogenated compound and decomposition reactor thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35249893A JP2714601B2 (en) 1993-12-31 1993-12-31 Decomposition method of halogenated compound and decomposition reactor thereof

Publications (2)

Publication Number Publication Date
JPH07194730A true JPH07194730A (en) 1995-08-01
JP2714601B2 JP2714601B2 (en) 1998-02-16

Family

ID=18424488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35249893A Expired - Lifetime JP2714601B2 (en) 1993-12-31 1993-12-31 Decomposition method of halogenated compound and decomposition reactor thereof

Country Status (1)

Country Link
JP (1) JP2714601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128724A (en) * 1997-10-28 1999-05-18 Rikiya Handa Method for treating pcb-including oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128724A (en) * 1997-10-28 1999-05-18 Rikiya Handa Method for treating pcb-including oil

Also Published As

Publication number Publication date
JP2714601B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
Grymonpre et al. Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison
JP2971073B2 (en) Decomposition method of chemically stable waste
AU726855B2 (en) Chemical separation and reaction apparatus
JP3273118B2 (en) High pressure processing equipment
EP0240536B1 (en) Method and apparatus for thermal treatment
US8236150B2 (en) Plasma-arc-through apparatus and process for submerged electric arcs
GB2182426A (en) Hazardous waste reactor system
WO1996027412A1 (en) Feed processing employing dispersed molten droplets
JP3928018B2 (en) CFC plasma arc decomposition method and apparatus
JPH03178981A (en) Plasma reactor
US20030051992A1 (en) Synthetic combustible gas generation apparatus and method
Sahni et al. Degradation of aqueous phase polychlorinated biphenyls (PCB) using pulsed corona discharges
CN104812710B (en) The hydrothermal oxidization processing method of organohalogen compound and its catalyst
JP2714601B2 (en) Decomposition method of halogenated compound and decomposition reactor thereof
JP2010259496A (en) Decomposition treatment method for organic halogen compound and decomposition treatment device
JP2006142278A (en) Method for detoxifying instrument containing organic halogen compound
US10100416B2 (en) Plasma-arc-through apparatus and process for submerged electric arcs with venting
JP2004501752A (en) Plasma chemical reactor
JP2007105061A (en) Microwave simultaneous use type decomposing method and decomposing system of organic halogen compound
JP2008194063A (en) Method of degrading highly-concentrated organic chlorine compound
JP2003210607A (en) Decomposition treatment method for halogenated organic compound
JP4002358B2 (en) Hydrothermal electrolysis method and apparatus
JP4166469B2 (en) Plasma processing method and apparatus
JP2007061594A (en) Method for decomposing organohalogen compound and mobile decomposition system
Becker The use of nonthermal plasmas in environmental applications

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970902