JPH0719413A - Apparatus and method for monitoring deterioration of fluid material of fluidized-bed furnace - Google Patents

Apparatus and method for monitoring deterioration of fluid material of fluidized-bed furnace

Info

Publication number
JPH0719413A
JPH0719413A JP16542093A JP16542093A JPH0719413A JP H0719413 A JPH0719413 A JP H0719413A JP 16542093 A JP16542093 A JP 16542093A JP 16542093 A JP16542093 A JP 16542093A JP H0719413 A JPH0719413 A JP H0719413A
Authority
JP
Japan
Prior art keywords
fluidized bed
fluidized
heat transfer
fluid material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16542093A
Other languages
Japanese (ja)
Inventor
Yuichi Hino
裕一 日野
Yukihisa Fujima
幸久 藤間
Hiroshi Akiyama
寛 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16542093A priority Critical patent/JPH0719413A/en
Publication of JPH0719413A publication Critical patent/JPH0719413A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To previously sense deterioration of a fluid material by injecting cooling gas to an upper surface of a horizontal heat resisting glass plate provided on a lower part in a fluidized bed, continuously replacing the material on a periphery of an upper part of the plate, and continuously displaying a shape change of a particle size of the material at a present time by a condensing lens and an image detector. CONSTITUTION:A fluid material shape detector having an inner tube 41 and an outer tube 42 is inserted into a fluid material 12, and connected to a controller for processing an image and calculating via a cable. A sapphirine heat resisting glass plate 43 having a small spectral polarization is inserted into an upper part of the tube 41 and condensing lenses 44a, 44b are inserted under the plate 43 by sealing it to an inner surface of the tube 41. Further, An image detector is provided thereunder. Cooling gas 45 is fed in a direction of an arrow, injected from nozzle ports 46a-46c to the plate 43, the lenses 44a, 44b to cool them, the material on the plate 43 is scattered to a periphery, and images of particle shapes are obtained via the lenses 44a, 44b and displayed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流動床燃焼装置、特に
流動床形態を利用した加熱炉,燃焼炉などにおいて、流
動材の劣化を監視する装置および方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed combustion apparatus, and more particularly to an apparatus and method for monitoring deterioration of fluidized materials in a heating furnace, a combustion furnace and the like using a fluidized bed form.

【0002】[0002]

【従来の技術】流動床による燃焼に当っては、一定の粒
子(流動材と呼ぶ)を流動床燃焼装置(垂直塔)内に定
量投入して蓄え、その下方から気体を通気してその流量
を増加してゆく。そうすると粒子が吹き上げられ、粒子
間の空間が大きくなり、再び落下するようになる。更に
通気量を増加させると、粒子の上下運動が激しくなり、
多数の気泡の周りは粒子が気泡の跡を埋めるように流下
して流動床を形成する。このような流動床形態を用いた
流動床燃焼法は、流動床内温度が均一でかつ熱伝達率が
大きいので、流動床内に各種反応管など加熱体を挿入す
ることにより、局所的な熱損失のない均一加熱法として
有用である。
2. Description of the Related Art In combustion in a fluidized bed, a certain amount of particles (referred to as fluidized material) are put into a fluidized bed combustor (vertical tower) in a fixed amount and stored, and gas is aerated from below to store the flow rate. Increase. Then, the particles are blown up, the space between the particles becomes large, and they fall again. When the air volume is further increased, the vertical movement of the particles becomes more intense,
Around the many bubbles, particles flow down to fill the traces of the bubbles to form a fluidized bed. The fluidized bed combustion method using such a fluidized bed configuration has a uniform temperature in the fluidized bed and a large heat transfer coefficient. Therefore, by inserting a heating element such as various reaction tubes into the fluidized bed, local heat It is useful as a lossless uniform heating method.

【0003】図6は従来の流動床炉の一例を示す図であ
る。この図において燃焼炉(11)内には一定粒子径の
流動材(12)が予め投入されている。また送風機(1
4)からは、燃焼用空気が送風管(15),プレナムチ
ャンバ(16),多孔板(17)を経て、燃焼炉(1
1)に送気され流動床を形成する。そして、加熱媒体が
流れている伝熱管(13)などがこの流動床内に挿入装
着されている。
FIG. 6 is a diagram showing an example of a conventional fluidized bed furnace. In this figure, a fluid material (12) having a constant particle diameter is previously charged into the combustion furnace (11). Also blower (1
From 4), combustion air passes through the blower pipe (15), the plenum chamber (16), the perforated plate (17), and then the combustion furnace (1
It is sent to 1) to form a fluidized bed. A heat transfer tube (13) in which the heating medium is flowing is inserted and mounted in the fluidized bed.

【0004】一方図示されていない供給設備から送られ
た油燃料等と空気を、高温ガス発生炉(18)で燃焼さ
せ、発生した高温ガスを前記同様プレナムチャンバ(1
6)へ送る。これによって流動材(12)を石炭等燃料
の発火温度以上に加熱した後、石炭等の固体燃料を燃料
貯蔵ホッパ(19a)から供給機(19b)および供給管(19c)
を経て流動材(12)内に供給すると、自燃が始まる。
そうすると流動材(12)が更に高温に加熱されるの
で、高温ガス発生炉(18)から高温ガスを送給するの
を止める。この状態で燃料からの発熱量と伝熱管(1
3)の吸熱量を調整することにより、流動材は常に一定
な適正温度に維持される。また燃焼排ガスは排ガスダク
ト(20)およびダスト捕集器(21)をへて系外へ排
出される。
On the other hand, oil fuel or the like and air sent from a supply facility (not shown) are combusted in a high temperature gas generating furnace (18), and the generated high temperature gas is used as in the plenum chamber (1).
Send to 6). As a result, the fluidized material (12) is heated above the ignition temperature of the fuel such as coal, and then the solid fuel such as coal is supplied from the fuel storage hopper (19a) to the feeder (19b) and the supply pipe (19c).
When the fluid is supplied into the fluid material (12) via, the self-combustion starts.
Then, the fluid material (12) is further heated to a higher temperature, so that the feeding of the high temperature gas from the high temperature gas generating furnace (18) is stopped. In this state, the calorific value from the fuel and the heat transfer tube (1
By adjusting the heat absorption amount of 3), the fluid material is always maintained at a constant appropriate temperature. Further, the combustion exhaust gas is discharged out of the system through the exhaust gas duct (20) and the dust collector (21).

【0005】[0005]

【発明が解決しようとする課題】前記従来の流動床炉に
は次のような解決すべき課題があった。
The above conventional fluidized bed furnace has the following problems to be solved.

【0006】炉内に投入された石炭粒子は揮発分が放出
された後に粒子表面の燃焼に移る。初期の揮発分放出時
には、石炭粒子表面は酸素が遮断され燃焼が起らないの
で、表面温度は流動床温度よりも低いが、それに続く表
面燃焼時には、粒子表面で発生した熱は輻射と流動材粒
子間の接触と周囲のガスへの対流とによって放熱され、
発熱速度が放熱速度よりもまさると、表面燃焼中の粒子
温度は流動床温度よりも高くなる。
The coal particles charged into the furnace move to the combustion of the particle surface after the volatile matter is released. During the initial release of volatile matter, the surface of the coal particles is blocked from oxygen and does not burn, so the surface temperature is lower than the fluidized bed temperature.However, during the subsequent surface combustion, the heat generated on the particle surface is radiated and fluidized. Heat is released by contact between particles and convection to the surrounding gas,
When the heat generation rate is higher than the heat release rate, the particle temperature during surface combustion becomes higher than the fluidized bed temperature.

【0007】一方流動床形態が悪く流動材粒子の流動が
活発でない場合や灰融点の低い石炭を燃料とした場合、
あるいは燃焼炉内を加圧した場合には、石炭灰中に含ま
れるCa,Fe,S,Na,K等で構成される低融点化
合物の軟化温度よりも石炭粒子表面温度の方が高くな
る。そうすると粒子表面に局所的に溶融した部分が生
じ、その部分がバインダとなって粒子同士の付着が始ま
り、いわゆるアグロメ(粒子凝集)現象が発生する。こ
のような粒子の凝集により、見掛けの粒子径が増大した
ことになって流動形態がさらに劣化し、最終的には流動
床燃焼の維持ができなくなって緊急運転停止に至る。
On the other hand, when the fluidized bed morphology is bad and the fluidized material particles are not fluidized, or when coal having a low ash melting point is used as a fuel,
Alternatively, when the inside of the combustion furnace is pressurized, the surface temperature of the coal particles becomes higher than the softening temperature of the low melting point compound composed of Ca, Fe, S, Na, K contained in the coal ash. Then, a locally melted portion is generated on the surface of the particle, and that portion becomes a binder to start adhesion of particles to each other, so-called agglomeration (particle aggregation) phenomenon occurs. Due to such agglomeration of particles, the apparent particle size is increased, and the fluidized form is further deteriorated, and eventually fluidized bed combustion cannot be maintained and an emergency operation is stopped.

【0008】[0008]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、流動床内下部に設置され、上端部
に水平に設けられた耐熱ガラス板と、同耐熱ガラス板の
下方に設けられた集光レンズおよび画像検出器と、上記
耐熱ガラス板の上面に冷却ガスを噴射する手段とを備え
たことを特徴とする流動床炉の流動材劣化監視装置;流
動床内に配された伝熱管の中を流れる流体の出入口温度
と流量を測定して流動床から上記流体への伝熱量を求
め、更に流体床の温度を測定して流動床側の熱伝達率を
求めて、同熱伝達率の時間的変化に基づいて流動材の劣
化を検知することを特徴とする流動床炉の流動材劣化監
視方法;ならびに流動床内で高さの異なる2点の圧力の
差を測定し、その圧力差の時間的変化に基づいて流動材
の劣化を検知することを特徴とする流動床炉の流動材劣
化監視方法を提案するものである。
In order to solve the above-mentioned conventional problems, the present invention provides a heat-resistant glass plate installed in the lower part of the fluidized bed and horizontally provided at the upper end, and a lower part of the heat-resistant glass plate. A fluidized-bed deterioration monitoring device for a fluidized-bed furnace, comprising: a condenser lens and an image detector provided on the upper surface of the heat-resistant glass plate; and means for injecting a cooling gas onto the upper surface of the heat-resistant glass plate; Determine the heat transfer amount from the fluidized bed to the fluid by measuring the inlet and outlet temperature and the flow rate of the fluid flowing through the heat transfer tube, further determine the heat transfer coefficient on the fluidized bed side by measuring the temperature of the fluidized bed, A method for monitoring deterioration of fluidized material in a fluidized bed furnace characterized by detecting deterioration of fluidized material based on the temporal change of the heat transfer coefficient; and measuring a pressure difference between two different heights in the fluidized bed However, the deterioration of the fluid material can be detected based on the time change of the pressure difference. Flowing material deterioration monitoring method of the fluidized bed furnace, characterized in proposes a.

【0009】[0009]

【作用】前記第1の解決手段においては、流動床内下部
に配された水平な耐熱ガラス板の上面に冷却ガスを噴射
するので、耐熱ガラス板上部周辺の流動材は冷却ガスの
噴出流の力によって常に連続的に入れ替るようになる。
そして集光レンズおよび画像検出器を介して現時点の流
動材粒子径の形状変化を連続的に系外画像処理装置等で
表示することができる。したがってアグロメ現象の発生
・進行や運転トラブルを予測でき、事前に流動床燃焼装
置の安全運転制御,運転停止をオペレータに判断させ
て、流動床形態の劣化,低融点石炭の使用による異常燃
焼に至る運転状況情報を速かに連続的に与えることがで
きる。
In the first solution, the cooling gas is injected onto the upper surface of the horizontal heat-resistant glass plate arranged in the lower part of the fluidized bed, so that the fluid material around the upper part of the heat-resistant glass plate is It will always be continuously replaced by force.
Then, the current shape change of the particle size of the fluid material can be continuously displayed on the outside image processing device or the like via the condenser lens and the image detector. Therefore, the occurrence / progress of agglomeration phenomenon and operation troubles can be predicted, and the operator determines in advance the safe operation control and operation stop of the fluidized bed combustion device, which leads to deterioration of the fluidized bed form and abnormal combustion due to the use of low melting point coal. Driving status information can be given quickly and continuously.

【0010】前述のアグロメ現象が発生すると、流動床
内の流動材は投入初期の適正粒子径のものに比べて粒子
径の粗大なものが発生し、次第に粒子径あるいは粗大粒
子個数が増大する。これに伴ない、粗大粒子は自らの重
量が増すため流動化現象が低下し、更に流動床下部に沈
降集合する。したがって粗大粒子の多い個所では、流動
床内の熱伝達率が減少するとともに流動床高さ方向の圧
力損失が変化する。
When the agglomeration phenomenon described above occurs, the fluid material in the fluidized bed has a coarser particle diameter than that of an appropriate particle diameter at the initial stage of charging, and the particle diameter or the number of coarse particles gradually increases. Along with this, the weight of the coarse particles increases, and the fluidization phenomenon decreases, and the particles settle down and aggregate in the lower part of the fluidized bed. Therefore, in a place where there are many coarse particles, the heat transfer coefficient in the fluidized bed decreases and the pressure loss in the heightwise direction of the fluidized bed changes.

【0011】前記第2および第3の解決手段において
は、流動床下部の熱伝達率または高さの異なる2点の圧
力差を連続的または間欠的に測定し、その数値の変化状
況からアグロメ現象(流動材劣化)の発生とその速度を
関接的に運転員に予測させる。これによって、下部から
粗大粒子の一部を系外への抜出して運転トラブルを回避
したり、あるいは運転条件を変更する等の処置対策をと
って、流動床燃焼装置の緊急停止を回避させることがで
きる。
In the second and third means for solving the problems, the pressure difference between two points having different heat transfer rates or heights in the lower part of the fluidized bed is continuously or intermittently measured, and the agglomeration phenomenon is observed from the changing state of the numerical values. Occurrence of (degradation of fluid material) and its speed are jointly predicted by the operator. As a result, some of the coarse particles can be extracted from the lower part to the outside of the system to avoid operating troubles, or preventive measures such as changing operating conditions can be taken to avoid an emergency stop of the fluidized bed combustion device. it can.

【0012】[0012]

【実施例】図1は本発明の一実施例を適用した流動床炉
を示す図、図2は同実施例の流動材劣化監視装置の要部
を示す縦断面図、図3は図2の III−III 水平断面図、
図4は図2のIV−IV水平断面図である。これらの図にお
いて、前記図5により説明した従来のものと同様の部分
については、冗長になるのを避けるため、同一の符号を
付け詳しい説明を省く。
1 is a view showing a fluidized bed furnace to which an embodiment of the present invention is applied, FIG. 2 is a longitudinal sectional view showing a main part of a fluidized material deterioration monitoring device of the embodiment, and FIG. III-III horizontal sectional view,
FIG. 4 is a horizontal sectional view taken along the line IV-IV in FIG. In these figures, the same parts as those of the conventional one described with reference to FIG. 5 are given the same reference numerals to avoid redundancy, and detailed description thereof is omitted.

【0013】本実施例においては、流動材(12)内に
流動材形状検出器(22)が挿設されており、これから
得られた信号はケーブル(23)により画像処理と演算
を行なう制御装置(24)に送られ、図示されていない
画像表示装置や流動床燃焼装置の運転制御系に接続され
る。そしてアグロメによる流動床形態の劣化が予測され
る際には、図示されていない加熱媒体流量の制御機器あ
るいは燃料供給の制御機器へ制御信号を送り、伝熱管
(13)内を流れる加熱媒体の流量を増加したり、ある
いは供給管(19c)から供給される燃料の量を減少したり
して、流動床温度を下げることにより、流動床燃焼装置
の緊急停止の回避と安定な運転の継続、さらには燃料の
性状変更の必要可否等を運転員に事前に認知させること
ができる。
In this embodiment, a fluid material shape detector (22) is inserted in the fluid material (12), and a signal obtained from the fluid material shape detector (22) is subjected to image processing and calculation by a cable (23). (24) and is connected to an operation control system of an image display device or a fluidized bed combustion device (not shown). When deterioration of the fluidized bed configuration due to agglomeration is predicted, a control signal is sent to a heating medium flow rate control device (not shown) or a fuel supply control device, and the flow rate of the heating medium flowing in the heat transfer tube (13) is increased. , Or by reducing the amount of fuel supplied from the supply pipe (19c) to lower the temperature of the fluidized bed, avoiding an emergency stop of the fluidized bed combustor and continuing stable operation. Can let the operator know in advance whether or not it is necessary to change the property of fuel.

【0014】次に図2ないし図4において、流動材形状
検出器は内管(41)および外管(42)を具え、内管
(41)の上部にはスペクトル偏光の少ないサファイヤ
質耐熱ガラス板(43)、その下方には集光レンズ(44
a),(44b)が内管(41)内面間をシールして挿着され
ている。またその更に下方には、図示しない画像検出器
が設けられている。更に、内管(41)下部の矢印方向
から送気される冷却ガス(45)が内管(41)側壁の
ノズル口(46a),(46b),(46c)を通過する際に内管(4
1),外管(42),耐熱ガラス板(43)および集光
レンズ(44a),(44b)を冷却する。またこの冷却ガス(4
5)はノズル口(46c)から流動床(12)内へ噴出する
際に耐熱ガラス板(43)上面の流動材を周辺へ飛散さ
せる。これにより耐熱ガラス板(43)上の流動材は常
に入れ替るようになっている。集光レンズ(44a),(44b)
で得られた粒子形状の画像は図示されていないサーモス
コープ,フォトセンサ等の画像検出器を介して単位時間
当りの粒子数と粒子径を信号として系外へ取出し、画像
表示により運転員へ情報提供するとともに、更には流動
床燃焼装置の制御装置に接続して、単位時間当りの変化
量から流動材の劣化を判定する運転制御信号として利用
される。
2 to 4, the fluid material shape detector comprises an inner tube (41) and an outer tube (42), and the upper tube of the inner tube (41) is made of a sapphire heat-resistant glass plate having a small spectral polarization. (43) and a condenser lens (44
A) and (44b) are inserted and sealed between the inner surfaces of the inner pipe (41). An image detector (not shown) is provided further below. Further, when the cooling gas (45) supplied from the direction of the arrow below the inner pipe (41) passes through the nozzle openings (46a), (46b), (46c) on the side wall of the inner pipe (41), Four
1), the outer tube (42), the heat-resistant glass plate (43) and the condenser lenses (44a), (44b) are cooled. This cooling gas (4
5) scatters the fluid material on the upper surface of the heat-resistant glass plate (43) to the surroundings when ejecting from the nozzle port (46c) into the fluidized bed (12). As a result, the fluid material on the heat-resistant glass plate (43) is always replaced. Condensing lens (44a), (44b)
The image of the particle shape obtained in 1. is taken out of the system as a signal of the number of particles per unit time and the particle diameter through an image detector such as a thermoscope or photo sensor (not shown), and information is displayed to the operator by an image display. It is provided as well as further connected to the control device of the fluidized bed combustion device and used as an operation control signal for judging deterioration of the fluid material from the amount of change per unit time.

【0015】次に図5は本発明の第2実施例を実施した
流動床炉を示す図である。この図においても前記と同様
の部分については同一の符号を付け詳しい説明を省く。
Next, FIG. 5 is a view showing a fluidized bed furnace in which a second embodiment of the present invention is carried out. Also in this figure, the same parts as those described above are designated by the same reference numerals, and detailed description thereof will be omitted.

【0016】本実施例においては、流動床(12)内に
熱利用のための伝熱管(13)とは別の伝熱管(31)
が設置されており、この伝熱管(31)内を流れる加熱
媒体の流量W,入口温度TA および加熱後の出口温度T
B が測定される。また流動床内(12)に接している伝
熱面積A,伝熱管肉厚d,熱伝導率λおよび加熱媒体側
の熱伝達率αA が測定または机上計算から容易に求まる
ので、伝熱管(31)周囲の平均的な流動床内の熱伝達
率αB が次のようにして計算できる。
In the present embodiment, a heat transfer tube (31) separate from the heat transfer tube (13) for utilizing heat in the fluidized bed (12).
Is installed, the flow rate W of the heating medium flowing in the heat transfer tube (31), the inlet temperature T A, and the outlet temperature T after heating.
B is measured. Further, since the heat transfer area A in contact with the fluidized bed (12), the heat transfer tube wall thickness d, the heat conductivity λ and the heat transfer coefficient α A on the heating medium side can be easily obtained by measurement or desktop calculation, the heat transfer tube ( 31) The average heat transfer coefficient α B in the surrounding fluidized bed can be calculated as follows.

【0017】流動床内へ挿着された伝熱管内の加熱媒体
には[数1]式によって流動床から熱が伝えられる。
Heat is transferred from the fluidized bed to the heating medium in the heat transfer tube inserted into the fluidized bed by the formula [1].

【0018】[0018]

【数1】 [Equation 1]

【0019】そこで、W,Cp ,TA ,TB を与えて上
記式(1)から伝熱量Qを求め、次にtA ,tB ,Aを
与えて式(2)からKを求める。更にαA ,d,λを式
(3)に与えることにより、流動床側の熱伝達率αB
計算される。
Therefore, W, C p , T A and T B are given to obtain the heat transfer amount Q from the above equation (1), and then t A , t B and A are given to obtain K from the equation (2). . Further, by giving α A , d, and λ to the equation (3), the heat transfer coefficient α B on the fluidized bed side is calculated.

【0020】一方本実施例ではまた、流動床内で高さが
Hだけ異なる2点に圧力取出し管(32a),(32b)を設け、
それら圧力取出し管(32a),(32b)から導かれる圧力の差
ΔPを差圧計(32)で測定する。この差圧ΔPは[数
2]式で与えられる。
On the other hand, in this embodiment, pressure take-out pipes (32a), (32b) are provided at two points in the fluidized bed whose heights differ by H.
A pressure difference ΔP introduced from the pressure take-out pipes (32a) and (32b) is measured by a differential pressure gauge (32). This differential pressure ΔP is given by the equation [2].

【0021】[0021]

【数2】 [Equation 2]

【0022】高さの差Hは予め測定されているので、差
圧計(32)で得られた流動床内差圧ΔPに基づいて、
[数2]式により流動床内流動材のかさ密度ρB が計算
される。 前述のように流動床内で流動材のアグロメ現
象が発生すると、上記計算で求められる流動床側熱伝達
率αB および流動床内流動材かさ密度ρB がいずれも減
少する。したがって、これらの経時変化量からアグロメ
現象の発生の有無および進行速度の判断情報を運転員に
知らせることができる。そして、流動床下部から粗大粒
子を系外へ抜出して運転トラブルを回避したり、あるい
は運転条件を変更する処置対策を講じたりして、流動床
燃焼装置の緊急停止を回避することができる。
Since the height difference H is measured in advance, based on the differential pressure ΔP in the fluidized bed obtained by the differential pressure gauge (32),
The bulk density ρ B of the fluidized material in the fluidized bed is calculated by the formula [2]. When the agglomeration phenomenon of the fluidized material occurs in the fluidized bed as described above, both the fluidized bed side heat transfer coefficient α B and the fluidized material bulk density ρ B in the fluidized bed, which are obtained by the above calculation, decrease. Therefore, it is possible to inform the operator of the presence / absence of the agglomeration phenomenon and the judgment information of the traveling speed from these changes with time. Then, coarse particles can be extracted from the lower part of the fluidized bed to the outside of the system to avoid operating troubles, or countermeasures for changing operating conditions can be taken to avoid an emergency stop of the fluidized bed combustor.

【0023】[0023]

【発明の効果】本発明によれば、流動床燃焼炉中の流動
材の粒子径やかさ密度、または流動床内の熱伝達率の経
時変化を求め、それに基づいて、流動材の粒子凝集(ア
グロメ)現象の発生・進展や粗大粒子が増加しているこ
とを的確に知ることができる。そして流動床形態が悪
く、流動材粒子の流動が不活発になるのを事前に検知す
ることができるので、トラブル回避の運転操作処置対策
を施すことにより緊急停止等のトラブルを回避し、安定
燃焼運転を維持することができる。
According to the present invention, the particle size and bulk density of a fluid material in a fluidized bed combustion furnace or the change over time in the heat transfer coefficient in the fluidized bed are obtained, and based on this, particle agglomeration (agglomeration) of the fluid material is obtained. ) It is possible to accurately know the occurrence and progress of phenomena and the increase in coarse particles. In addition, it is possible to detect in advance that the fluidized bed form is poor and the fluidization of the fluid material particles becomes inactive, so troubles such as emergency stop can be avoided by taking measures for driving operation measures to avoid troubles, and stable combustion You can keep driving.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第1実施例を適用した流動床炉
を示す図である。
FIG. 1 is a diagram showing a fluidized bed furnace to which a first embodiment of the present invention is applied.

【図2】図2は上記実施例の流動材劣化監視装置の要部
を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing a main part of the fluid material deterioration monitoring device of the above embodiment.

【図3】図3は図2の III−III 水平断面図である。FIG. 3 is a horizontal sectional view taken along the line III-III in FIG.

【図4】図4は図2のIV−IV水平断面図である。FIG. 4 is a horizontal sectional view taken along the line IV-IV of FIG.

【図5】図5は本発明の第2実施例を実施した流動床炉
を示す図である。
FIG. 5 is a diagram showing a fluidized bed furnace in which a second embodiment of the present invention is implemented.

【図6】図6は従来の流動床炉の一例を示す図である。FIG. 6 is a diagram showing an example of a conventional fluidized bed furnace.

【符号の説明】[Explanation of symbols]

(11) 燃焼炉 (12) 流動材 (13) 伝熱管 (14) 送風機 (15) 送気管 (16) プレナムチャンバ (17) 多孔板 (18) 高温ガス発生炉 (19a) 貯蔵ホッパ (19b) 供給器 (19c) 供給管 (20) 排ガスダクト (21) ダスト捕集器 (22) 流動材形状検出器 (23) ケーブル (24) 制御装置 (31) 伝熱管 (32a),(32b) 圧力取出し管 (32) 差圧計 (41) 内管 (42) 外管 (43) 耐熱ガラス板 (44a),(44b) 集光レンズ (45) 冷却ガス (46a),(46b),(46c) ノズル口 (11) Combustion furnace (12) Fluid material (13) Heat transfer tube (14) Blower (15) Air supply tube (16) Plenum chamber (17) Perforated plate (18) High temperature gas generation furnace (19a) Storage hopper (19b) Supply Container (19c) Supply pipe (20) Exhaust gas duct (21) Dust collector (22) Fluid material shape detector (23) Cable (24) Controller (31) Heat transfer pipe (32a), (32b) Pressure extraction pipe (32) Differential pressure gauge (41) Inner tube (42) Outer tube (43) Heat-resistant glass plate (44a), (44b) Condensing lens (45) Cooling gas (46a), (46b), (46c) Nozzle mouth

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流動床内下部に設置され、上端部に水平
に設けられた耐熱ガラス板と、同耐熱ガラス板の下方に
設けられた集光レンズおよび画像検出器と、上記耐熱ガ
ラス板の上面に冷却ガスを噴射する手段とを備えたこと
を特徴とする流動床炉の流動材劣化監視装置。
1. A heat-resistant glass plate installed in the lower part of the fluidized bed and horizontally provided at the upper end, a condenser lens and an image detector provided below the heat-resistant glass plate, and the heat-resistant glass plate. A fluidized material deterioration monitoring device for a fluidized bed furnace, comprising: a means for injecting a cooling gas on the upper surface.
【請求項2】 流動床内に配された伝熱管の中を流れる
流体の出入口温度と流量を測定して流動床から上記流体
への伝熱量を求め、更に流体床の温度を測定して流動床
側の熱伝達率を求めて、同熱伝達率の時間的変化に基づ
いて流動材の劣化を検知することを特徴とする流動床炉
の流動材劣化監視方法。
2. The heat transfer amount from the fluidized bed to the fluid is obtained by measuring the inlet / outlet temperature and the flow rate of the fluid flowing in the heat transfer tube arranged in the fluidized bed, and the temperature of the fluidized bed is further measured to cause the fluidization. A method for monitoring deterioration of a fluidized material of a fluidized bed furnace, which comprises: determining a heat transfer coefficient on the floor side and detecting deterioration of the fluidized material based on a temporal change of the heat transfer coefficient.
【請求項3】 流動床内で高さの異なる2点の圧力の差
を測定し、その圧力差の時間的変化に基づいて流動材の
劣化を検知することを特徴とする流動床炉の流動材劣化
監視方法。
3. A fluidized bed furnace flow characterized by measuring a pressure difference between two points having different heights in the fluidized bed and detecting deterioration of the fluidized material based on a temporal change of the pressure difference. Material deterioration monitoring method.
JP16542093A 1993-07-05 1993-07-05 Apparatus and method for monitoring deterioration of fluid material of fluidized-bed furnace Withdrawn JPH0719413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16542093A JPH0719413A (en) 1993-07-05 1993-07-05 Apparatus and method for monitoring deterioration of fluid material of fluidized-bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16542093A JPH0719413A (en) 1993-07-05 1993-07-05 Apparatus and method for monitoring deterioration of fluid material of fluidized-bed furnace

Publications (1)

Publication Number Publication Date
JPH0719413A true JPH0719413A (en) 1995-01-20

Family

ID=15812090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16542093A Withdrawn JPH0719413A (en) 1993-07-05 1993-07-05 Apparatus and method for monitoring deterioration of fluid material of fluidized-bed furnace

Country Status (1)

Country Link
JP (1) JPH0719413A (en)

Similar Documents

Publication Publication Date Title
JP5462214B2 (en) Fluidized bed furnace
JP3501631B2 (en) Method and apparatus for producing inorganic spherical particles
US9709270B2 (en) Fluidized bed gasification furnace
US4614167A (en) Combustion chamber having beds located one above the other and a method of controlling it
JP2003322308A (en) Circulation fluidized-bed furnace
EP1304525A1 (en) Waste incinerator and method of operating the incinerator
JP2805337B2 (en) Heat exchange device and method for monitoring pressure conditions in the device
JP3309657B2 (en) Waste gasification and melting furnace
JPH0719413A (en) Apparatus and method for monitoring deterioration of fluid material of fluidized-bed furnace
US3185457A (en) Method of and apparatus for heating fluids
JP2518838B2 (en) Method and apparatus for controlling fluidized medium of fluidized bed combustion furnace
EP2933557B1 (en) Swirling type fluidized bed furnace
JPH0680448A (en) Cooler for massive material
JPS5952105A (en) Operation of fluidized bed type combustion furnace
JP5583786B2 (en) Molten salt detection device, fluidized bed boiler and stoker furnace, molten salt detection method
JPH10160601A (en) Pressure detection method
JP2000257810A (en) Fluidized bed reaction device
JP3507015B2 (en) Method and apparatus for producing artificial sand
JP2901752B2 (en) Fluidized bed combustion device
JP2000042513A (en) Refuse gasifying device and method
JP3430870B2 (en) Combustible waste treatment equipment
JPS59225209A (en) Control method for height of fluidized bed and device thereof
JP3468906B2 (en) Fluidized material particle size control device for circulating fluidized bed furnace
JPH10132212A (en) Circulating particle size monitor for circulating fluidized-bed apparatus
US4421063A (en) Fluidized bed combustion apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905