JPH07192913A - Superconducting coil system and operating method thereof - Google Patents

Superconducting coil system and operating method thereof

Info

Publication number
JPH07192913A
JPH07192913A JP6286534A JP28653494A JPH07192913A JP H07192913 A JPH07192913 A JP H07192913A JP 6286534 A JP6286534 A JP 6286534A JP 28653494 A JP28653494 A JP 28653494A JP H07192913 A JPH07192913 A JP H07192913A
Authority
JP
Japan
Prior art keywords
superconducting coil
energy
circuit breaker
switch
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6286534A
Other languages
Japanese (ja)
Other versions
JP2724321B2 (en
Inventor
Morihiro Kubo
守弘 久保
Yukio Ishigaki
幸雄 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP6286534A priority Critical patent/JP2724321B2/en
Publication of JPH07192913A publication Critical patent/JPH07192913A/en
Application granted granted Critical
Publication of JP2724321B2 publication Critical patent/JP2724321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Particle Accelerators (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To provide a superconducting coil system with a superconducting-coil protective device, which can interrupt DC large currents positively at the time of quenching and has simple constitution and cost of which is reduced. CONSTITUTION:At least one switch 6 is connected in parallel with a DC breaker 4. A control circuit 8 controls the opening and closing of the DC breaker 4 and the switches 6 on the basis of the detecting signal of a quenching detector 7 detecting the quenching of a superconducting coil 1. When quenching is generated, one DC breaker 4 is turned on once, these switches 6 are opened when currents on the switch 6 side reach approximately zero, one DC breaker 4 is opened, and currents are interrupted. Since only one expensive DC breaker 4 is used and the switches 6 at low cost are installed in parallel, the cost of the whole superconducting coil system is reduced largely. The DC breaker 4 and switch 6 themselves are hardly damaged by the relative displacement of opening and closing timing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、励磁電源から直流遮断
器を介して超電導コイルにエネルギーを供給し励磁する
超電導コイルシステムに係り、特に、クエンチ時に、そ
れまで蓄積されていたエネルギーを超電導コイルに並列
接続された保護抵抗に消費させて、クエンチに起因する
損傷から超電導コイルを保護する超電導コイル保護装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil system in which energy is supplied from a magnetic excitation power source to a superconducting coil via a DC circuit breaker to excite the superconducting coil. The present invention relates to a superconducting coil protection device that consumes a protective resistance connected in parallel to a superconducting coil to protect the superconducting coil from damage caused by a quench.

【0002】[0002]

【従来の技術】最近では、核融合装置,加速器,電力エ
ネルギー貯蔵設備,リニアモータ等の分野において、超
電導コイルの応用が急速に広まりつつある。超電導コイ
ルは、通常はその電気抵抗が零であるが、磁場の急変や
温度の異常等により、超電導状態から常電導状態に転移
することがある。この超電導が破壊する現象は、クエン
チと呼ばれている。クエンチが発生すると、液体ヘリウ
ム等の異常蒸発による圧力増大等に拡大するおそれがあ
る。
2. Description of the Related Art Recently, the application of superconducting coils is rapidly spreading in the fields of nuclear fusion devices, accelerators, electric energy storage facilities, linear motors and the like. The electric resistance of the superconducting coil is normally zero, but the superconducting coil may change from the superconducting state to the normal conducting state due to a sudden change in the magnetic field or an abnormal temperature. This phenomenon of destruction of superconductivity is called quench. When quenching occurs, there is a risk that the pressure will increase due to abnormal evaporation of liquid helium or the like.

【0003】図2は、従来の基本的な超電導コイルシス
テムの系統構成を示す図である。図2に示すように、励
磁電源3からエネルギーを供給されている超電導コイル
1でクエンチが発生した場合、超電導コイル1に蓄積さ
れていたエネルギーを保護抵抗2において消費し、クエ
ンチの拡大を抑制し、超電導コイル1を保護する方式が
採用されている。すなわち、クエンチが発生すると、励
磁電源3と超電導コイル1とで構成されるループ回路に
流れる電流を、超電導コイル1と並列に接続された保護
抵抗2にシフトさせる。この時に、直流の大電流を遮断
する直流遮断器4が必要となる。
FIG. 2 is a diagram showing a system configuration of a conventional basic superconducting coil system. As shown in FIG. 2, when quenching occurs in the superconducting coil 1 to which energy is being supplied from the excitation power source 3, the energy stored in the superconducting coil 1 is consumed in the protective resistance 2 to suppress the expansion of the quench. A method of protecting the superconducting coil 1 is adopted. That is, when the quench occurs, the current flowing in the loop circuit composed of the excitation power supply 3 and the superconducting coil 1 is shifted to the protection resistor 2 connected in parallel with the superconducting coil 1. At this time, the DC circuit breaker 4 that blocks a large DC current is required.

【0004】最近は、超電導コイル応用装置すなわち超
電導コイルシステムの大型化が進み、超電導コイル1に
流す電流も大電流化する傾向にあり、連続運転をめざし
ている超電導コイルシステムが増えている。そのため
に、クエンチ保護に使用される直流遮断器4も、直流大
電流の遮断が可能で、しかも、連続運転できる直流遮断
器であることが条件となる。
Recently, the size of the superconducting coil application device, that is, the superconducting coil system has been increasing, and the current flowing through the superconducting coil 1 has tended to increase, and the number of superconducting coil systems aiming for continuous operation is increasing. Therefore, the DC breaker 4 used for quench protection must be a DC breaker capable of interrupting a large DC current and capable of continuous operation.

【0005】図3は、並列接続した直流遮断器を用いる
従来の超電導コイルシステムの系統構成を示す図であ
る。一般に、高圧型の直流遮断器は小電流しか扱えず、
逆に大電流を扱える直流遮断器は低圧型であった。1台
の高圧型直流遮断器では、大電流の連続通電には耐えら
れないので、図3に示すように、数台の高圧型直流遮断
器を並列運転していた。なお、この種の従来装置を示す
例としては、特開昭57−198613号等がある。
FIG. 3 is a diagram showing a system configuration of a conventional superconducting coil system using DC breakers connected in parallel. Generally, a high-voltage DC circuit breaker can handle only a small current,
Conversely, the DC circuit breaker that can handle a large current was a low voltage type. Since one high-voltage DC circuit breaker cannot withstand continuous energization of a large current, several high-voltage DC circuit breakers were operated in parallel as shown in FIG. As an example of this type of conventional device, there is JP-A-57-198613.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術において
は、クエンチ保護として直流を遮断する場合、数台の高
圧型直流遮断器が必要であり、保護装置としては非常に
高価であった。
In the above-mentioned prior art, when the direct current is cut off for quench protection, several high-voltage type DC circuit breakers are required, and the protection device is very expensive.

【0007】また、並列接続された数台の直流遮断器を
同時に遮断させることは困難であって、タイミングのず
れに起因する遮断動作のばらつきにより、直流遮断器自
体および他の回路構成機器を損傷するおそれがあった。
Further, it is difficult to break several DC breakers connected in parallel at the same time, and the DC breaker itself and other circuit components are damaged due to variations in breaking operation due to timing deviation. There was a risk of

【0008】本発明の目的は、直流大電流で連続運転し
つつ、クエンチ等の緊急時にはその直流大電流を確実に
遮断でき、単純な構成で安価な超電導コイル保護装置を
備えた超電導コイルシステム提供することである。
An object of the present invention is to provide a superconducting coil system having a simple structure and an inexpensive superconducting coil protection device capable of reliably interrupting the DC large current in an emergency such as a quench while continuously operating with the DC large current. It is to be.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するため、第1発明として、励磁電源と、通常運転時
に励磁電源からエネルギーの供給を受けるとともに、ク
エンチが生じた際にはエネルギーの供給を遮断される超
電導コイルと、超電導コイルと並列に接続され、超電導
コイルへのエネルギーの供給が遮断された状態で超電導
コイルに蓄積されていたエネルギーを消費し、クエンチ
に起因する損傷から超電導コイルを保護する保護抵抗と
を備えた超電導コイルシステムにおいて、励磁電源と超
電導コイルとの間に、通常運転時に開放され、クエンチ
が生じた際には一旦投入され、所定条件が成立した時に
再度開放され、励磁電源から超電導コイルへのエネルギ
ーの供給を遮断する直流遮断器を直列に配置するととも
に、直流遮断器と並列に、通常運転時に投入され励磁電
源からのエネルギーを超電導コイルに供給し、クエンチ
が生じた際には自らを流れている励磁電源からのエネル
ギーを直流遮断器にシフトさせ、自らを流れているエネ
ルギーが所定値以下に減少したら開放される少なくとも
1つの開閉器を設けた超電導コイルシステムを提案する
ものである。
In order to achieve the above object, the present invention provides, as a first invention, an excitation power source and energy from the excitation power source during normal operation, and when a quench occurs, the energy is supplied. Is connected in parallel with the superconducting coil, and the energy stored in the superconducting coil is consumed while the supply of energy to the superconducting coil is cut off. In a superconducting coil system equipped with a protective resistance for protecting the coil, it is opened between the excitation power source and the superconducting coil during normal operation, once when a quench occurs, it is once opened, and when the predetermined condition is satisfied, it is opened again. The DC circuit breaker, which blocks the energy supply from the excitation power supply to the superconducting coil, is arranged in series, and The superconducting coil is supplied with energy from the excitation power supply that is input to the train during normal operation, and when quench occurs, the energy from the excitation power supply is shifted to the DC circuit breaker and flows through itself. The present invention proposes a superconducting coil system provided with at least one switch that is opened when energy decreases below a predetermined value.

【0010】本発明は、上記目的を達成するため、第2
発明として、励磁電源と、通常運転時に励磁電源からエ
ネルギーの供給を受けるとともに、クエンチが生じた際
にはエネルギーの供給を遮断される超電導コイルと、超
電導コイルと並列に接続され、超電導コイルへのエネル
ギーの供給が遮断された状態で超電導コイルに蓄積され
ていたエネルギーを消費し、クエンチに起因する損傷か
ら超電導コイルを保護する保護抵抗とを備えた超電導コ
イルシステムにおいて、励磁電源と超電導コイルとの間
に、通常運転時に投入され励磁電源からのエネルギーを
超電導コイルに供給し、クエンチが生じた際には所定条
件が成立した時に開放され、励磁電源から超電導コイル
へのエネルギーの供給を遮断する直流遮断器を直列に配
置するとともに、直流遮断器と並列に、通常運転時に投
入され励磁電源からのエネルギーを超電導コイルに供給
し、クエンチが生じた際には直流遮断器に先立って開放
され自らを流れている励磁電源からのエネルギーを直流
遮断器にシフトさせる少なくとも1つの開閉器を設けた
超電導コイルシステムを提案するものである。
The present invention has a second object to achieve the above object.
As an invention, an exciting power source, a superconducting coil that receives energy supply from the exciting power source during normal operation, and is cut off from the supply of energy when a quench occurs, and is connected in parallel with the superconducting coil to connect to the superconducting coil. In a superconducting coil system having a protective resistance that consumes the energy stored in the superconducting coil in a state where the energy supply is cut off and that protects the superconducting coil from damage caused by quenching, In the meantime, the DC that is turned on during normal operation supplies energy from the excitation power supply to the superconducting coil, and is opened when a predetermined condition is met when a quench occurs and shuts off the energy supply from the excitation power supply to the superconducting coil. Arrange the circuit breakers in series, and in parallel with the DC circuit breaker, turn on the excitation power supply during normal operation. Energy is supplied to the superconducting coil, and when a quench occurs, it is opened prior to the DC circuit breaker, and the energy from the exciting power supply flowing through itself is shifted to the DC circuit breaker. It proposes a coil system.

【0011】本発明は、上記目的を達成するため、第3
発明として、通常運転時は励磁電源から超電導コイルに
エネルギーを供給し超電導コイルを励磁する一方、クエ
ンチが生じた際にはエネルギーの供給を遮断し、超電導
コイルに蓄積されていたエネルギーを超電導コイルに並
列接続された保護抵抗に消費させ、クエンチに起因する
損傷から超電導コイルを保護する超電導コイルシステム
の運転方法において、通常運転時には、励磁電源と超電
導コイルとの間に配置された直流遮断器を開放し、直流
遮断器に並列に接続された少なくとも1つの開閉器を介
して励磁電源からのエネルギーを超電導コイルに供給
し、クエンチが生じた際には、直流遮断器を一旦投入し
て開閉器を流れているエネルギーを直流遮断器にシフト
させ、開閉器を開放し、直流遮断器を流れていたエネル
ギーが所定値に減少したら直流遮断器を開放して超電導
コイルへのエネルギーの供給を遮断し、その後、超電導
コイルに蓄積されていたエネルギーを保護抵抗に消費さ
せる超電導コイルシステムの運転方法を提案するもので
ある。
The present invention has a third object to achieve the above object.
As an invention, during normal operation, while supplying energy to the superconducting coil from the excitation power source to excite the superconducting coil, when the quench occurs, the energy supply is cut off and the energy stored in the superconducting coil is transferred to the superconducting coil. In the operation method of the superconducting coil system, which consumes the protection resistance connected in parallel and protects the superconducting coil from damage caused by quenching, during normal operation, open the DC circuit breaker placed between the excitation power supply and the superconducting coil. Then, the energy from the excitation power supply is supplied to the superconducting coil through at least one switch connected in parallel with the DC circuit breaker, and when a quench occurs, the DC circuit breaker is once closed to open the switch. The flowing energy is shifted to the DC circuit breaker, the switch is opened, and the energy flowing through the DC circuit breaker is reduced to the specified value. Once opened the DC breaker to shut off the supply of energy to the superconducting coil, then proposes a method of operating a superconducting coil system to consume the protective resistance energy stored in the superconducting coil.

【0012】本発明は、上記目的を達成するため、第4
発明として、通常運転時は励磁電源から超電導コイルに
エネルギーを供給し超電導コイルを励磁する一方、クエ
ンチが生じた際にはエネルギーの供給を遮断し、超電導
コイルに蓄積されていたエネルギーを超電導コイルに並
列接続された保護抵抗に消費させ、クエンチに起因する
損傷から超電導コイルを保護する超電導コイルシステム
の運転方法において、通常運転時には、励磁電源と超電
導コイルとの間に配置された直流遮断器および当該直流
遮断器と並列に接続されている少なくとも1つの開閉器
を介して励磁電源からのエネルギーを超電導コイルに供
給し、クエンチが生じた際には、開閉器を開放し、励磁
電源からのエネルギーを直流遮断器にシフトさせ、直流
遮断器を流れていたエネルギーが所定値に減少したら直
流遮断器を開放して超電導コイルへのエネルギーの供給
を遮断し、その後、超電導コイルに蓄積されていたエネ
ルギーを保護抵抗に消費させる超電導コイルシステムの
運転方法を提案するものである。
In order to achieve the above object, the present invention provides a fourth aspect of the invention.
As an invention, during normal operation, while supplying energy to the superconducting coil from the excitation power source to excite the superconducting coil, when the quench occurs, the energy supply is cut off and the energy stored in the superconducting coil is transferred to the superconducting coil. In a method of operating a superconducting coil system, which consumes a protective resistance connected in parallel and protects the superconducting coil from damage caused by quenching, in a normal operation, a DC circuit breaker arranged between an exciting power source and the superconducting coil, and Energy from the excitation power supply is supplied to the superconducting coil through at least one switch connected in parallel with the DC breaker, and when a quench occurs, the switch is opened to transfer the energy from the excitation power supply. Shift to a DC circuit breaker, and open the DC circuit breaker when the energy flowing through the DC circuit breaker decreases to a specified value. Cut off the supply of energy to the superconducting coil, then proposes a method of operating a superconducting coil system to consume the protective resistance energy stored in the superconducting coil.

【0013】[0013]

【作用】第1発明の超電導コイルシステムおよびその運
転方法である第3発明においては、通常運転時に、直流
遮断器は開放しておき、この直流遮断器と並列に接続し
た開閉器に直流大電流を連続的に流しておく。クエンチ
が発生した時は、直流遮断器を投入させ、直流遮断器に
大電流をシフトさせ、開閉器を開放し、その後に、直流
遮断器により遮断動作を実行する。遮断動作が完了すれ
ば、保護抵抗に超電導コイルのエネルギーを消費させる
ことができる。
In the third aspect of the present invention, which is the superconducting coil system and the operating method thereof, the DC circuit breaker is opened during normal operation, and a large DC current is applied to the switch connected in parallel with the DC circuit breaker. Is continuously flushed. When a quench occurs, the DC circuit breaker is closed, a large current is shifted to the DC circuit breaker, the switch is opened, and then the DC circuit breaker performs the breaking operation. When the breaking operation is completed, the protective resistance can consume the energy of the superconducting coil.

【0014】このように、直流遮断器に大電流を流す期
間を実質的にクエンチ発生時のみに限定することによ
り、通電容量が小さく経済性の高い直流遮断器を選定で
き、直流大電流で連続運転される超電導コイルのクエン
チ時の電流を確実に遮断可能である。すなわち、高価な
直流遮断器は1台のみで、安価な開閉器を併設してある
ので、超電導コイルシステム全体としては、大幅なコス
トダウンが可能である。
As described above, by limiting the period during which a large current flows through the DC circuit breaker substantially only when the quench occurs, a DC circuit breaker with a small current-carrying capacity and high economic efficiency can be selected, and continuous DC high current It is possible to reliably cut off the current when the superconducting coil to be operated is quenched. That is, since there is only one expensive DC circuit breaker and an inexpensive switch is installed side by side, the cost of the superconducting coil system as a whole can be significantly reduced.

【0015】また、クエンチ発生時には、1台の直流遮
断器を一旦投入し、開閉器側の電流がほぼ0になったと
ころでこれらの開閉器を開き、それから1台の直流遮断
器を開くことから、それらの開閉のタイミングはそれほ
ど厳密でなくてもよく、開閉タイミングの相対的ずれに
よる直流遮断器や開閉器自体の損傷のおそれがほとんど
ない。
Further, when a quench occurs, one DC breaker is turned on once, and when the current on the switch side becomes almost 0, these switches are opened, and then one DC breaker is opened. However, the timing of opening and closing them does not have to be so strict, and there is almost no risk of damage to the DC circuit breaker or the switch itself due to the relative deviation of the opening and closing timing.

【0016】第2発明の超電導コイルシステムおよびそ
の運転方法である第4発明においては、通常運転時に、
直流遮断器と並列に接続した開閉器に直流大電流を連続
的に流しておくことは、第1発明等と同じであるが、直
流遮断器も投入し、直流遮断器にもその定格内の電流を
分流させておく。開閉器と直流遮断器との直流の分流の
比率は、それぞれ適切な内部抵抗の機種を選択すると設
定できる。クエンチが発生した時は、開閉器を開放し、
そのアーク抵抗により、開閉器側の大電流を直流遮断器
にシフトさせ、その後に、直流遮断器により遮断動作を
実行する。遮断動作が完了すれば、保護抵抗に超電導コ
イルのエネルギーを消費させることが可能となる。
In the fourth aspect of the superconducting coil system and the operating method thereof according to the second aspect of the present invention, during normal operation,
It is the same as in the first aspect of the invention that a large DC current is continuously passed through a switch connected in parallel with a DC circuit breaker, but the DC circuit breaker is also turned on and the DC circuit breaker is within its rating. Divide the current. The ratio of the DC shunt between the switch and the DC breaker can be set by selecting a model with an appropriate internal resistance. When a quench occurs, open the switch,
Due to the arc resistance, a large current on the switch side is shifted to the DC breaker, and then the breaking operation is executed by the DC breaker. When the breaking operation is completed, it becomes possible for the protective resistance to consume the energy of the superconducting coil.

【0017】このように、通常運転時にも、直流遮断器
に電流を分流させておくこともできるので、クエンチ発
生時に、直流遮断器の投入操作を行なわずに済む。した
がって、クエンチ発生から直流遮断までの時間を大幅に
短縮し、超電導コイルをより確実に保護できる。
As described above, the current can be shunted to the DC circuit breaker even during the normal operation, so that it is not necessary to turn on the DC circuit breaker when a quench occurs. Therefore, the time from the occurrence of the quench to the interruption of the direct current can be greatly reduced, and the superconducting coil can be protected more reliably.

【0018】この場合も、直流遮断器に大電流を流す期
間を実質的にクエンチ発生時のみに限定することによ
り、通電容量が小さく経済性の高い直流遮断器を選定で
き、直流大電流で連続運転される超電導コイルのクエン
チ時の電流を確実に遮断可能である。すなわち、高価な
直流遮断器は1台のみで、安価な開閉器を併設してある
ので、超電導コイルシステム全体としては、大幅なコス
トダウンが可能である。
In this case as well, by limiting the period during which a large current flows through the DC circuit breaker substantially only when a quench occurs, a DC circuit breaker with a small current-carrying capacity and high economic efficiency can be selected. It is possible to reliably cut off the current when the superconducting coil to be operated is quenched. That is, since there is only one expensive DC circuit breaker and an inexpensive switch is installed side by side, the cost of the superconducting coil system as a whole can be significantly reduced.

【0019】また、クエンチ発生時には、開閉器を開
き、そのアーク抵抗により直流遮断器に大電流をシフト
させ、それから1台の直流遮断器を開くことから、それ
らの開閉のタイミングはそれほど厳密でなくてもよく、
相対的開閉タイミングのずれによる直流遮断器や開閉器
自体の損傷のおそれがほとんどない。
Also, when a quench occurs, the switch is opened, a large current is shifted to the DC circuit breaker by its arc resistance, and then one DC circuit breaker is opened, so the timing of opening and closing them is not so strict. Maybe,
There is almost no risk of damage to the DC circuit breaker or the switch itself due to the relative timing difference.

【0020】[0020]

【実施例】次に、図1を参照して、本発明による超電導
コイルシステムの一実施例およびその運転方法を説明す
る。図1は、本発明による超電導コイル保護装置を備え
た超電導コイルシステムの実施例の系統構成を示す図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the superconducting coil system according to the present invention and its operating method will be described with reference to FIG. FIG. 1 is a diagram showing a system configuration of an embodiment of a superconducting coil system including a superconducting coil protection device according to the present invention.

【0021】《第1実施例》保護対象の超電導コイル1
には、保護抵抗2が並列接続されており、励磁電源3か
らは、直流遮断器4を介して、エネルギーすなわち直流
電力が供給されている。本発明では、このような超電導
コイルシステムの基本回路に対して、少なくとも1つの
開閉器6を、直流遮断器4と並列に接続してある。制御
回路8は、超電導コイル1のクエンチを検出するクエン
チ検出器7の検出信号に基づき、直流遮断器4および開
閉器6の開閉を制御する。
<< First Embodiment >> Superconducting coil 1 to be protected
A protection resistor 2 is connected in parallel to the power supply circuit 2, and energy, that is, DC power is supplied from an excitation power supply 3 via a DC circuit breaker 4. In the present invention, at least one switch 6 is connected in parallel with the DC circuit breaker 4 to the basic circuit of such a superconducting coil system. The control circuit 8 controls the opening and closing of the DC breaker 4 and the switch 6 based on the detection signal of the quench detector 7 that detects the quench of the superconducting coil 1.

【0022】なお、ここでは図示していないが、開閉器
6全体を流れる電流を検出する電流検出器を設置し、そ
の検出電流を制御回路8に取り込み、開閉器6の開閉の
タイミングを決定するために用いることもできる。
Although not shown here, a current detector for detecting a current flowing through the switch 6 as a whole is installed, and the detected current is taken into the control circuit 8 to determine the opening / closing timing of the switch 6. Can also be used for

【0023】このように構成された第1実施例におい
て、通常運転時には、直流遮断器4は開放し、開閉器6
に直流大電流I0を連続通電しておく。
In the first embodiment thus constructed, the DC breaker 4 is opened and the switch 6 is opened during normal operation.
A large DC current I 0 is continuously applied to the.

【0024】さて、超電導コイル1にクエンチが発生す
ると、クエンチ検出器7がそれを検出し、制御回路8に
検出信号を送る。制御回路8は、クエンチ検出信号の入
力に応じて、直流遮断器4に投入指令を与え、直流遮断
器4を投入させる。直流遮断器4が投入されると、今ま
で開閉器6を流れていた直流電流I0は、直流遮断器4
にシフトすることになる。開閉器6に流れる電流I
1と、直流遮断器4に流れる電流I2との比は、開閉器6
の内部抵抗をr1とし、直流遮断器4の内部抵抗をr2
すると、 I1:I2=r2:r1………(1) となる。ここで、r1〉〉r2である、すなわち、開閉器
6の抵抗値が直流遮断器4の抵抗値よりもかなり大きい
とすれば、直流電流I0は、大部分直流遮断器4に流れ
る。
When a quench occurs in the superconducting coil 1, the quench detector 7 detects it and sends a detection signal to the control circuit 8. The control circuit 8 gives a closing instruction to the DC circuit breaker 4 in response to the input of the quench detection signal, and causes the DC circuit breaker 4 to be closed. When the DC breaker 4 is turned on, the DC current I 0 flowing through the switch 6 until now is changed to the DC breaker 4
Will be shifted to. Current I flowing through switch 6
The ratio of 1 to the current I 2 flowing through the DC circuit breaker 4 is
Let r 1 be the internal resistance of r and r 2 be the internal resistance of the DC circuit breaker 4, then I 1 : I 2 = r 2 : r 1 (1) Here, if r 1 >>> r 2, that is, if the resistance value of the switch 6 is considerably larger than the resistance value of the DC circuit breaker 4, the DC current I 0 mostly flows to the DC circuit breaker 4. .

【0025】次に、開閉器6に流れる設計上の電流が0
に近くなった時点で、または、開閉器6に実際に流れる
電流が0に近くなったことを図示していない電流検出器
により検出した時点で、制御回路8は開閉器6に開放指
令信号を与え、開閉器6を開かせる。開閉器6が開放さ
れると、通常時には開放器6を流れていた直流大電流I
0は、完全に直流遮断器4に移ったことになる。
Next, the designed current flowing through the switch 6 is zero.
The control circuit 8 sends an opening command signal to the switch 6 when the current detector (not shown) detects that the current actually flowing in the switch 6 is close to 0. Then, the switch 6 is opened. When the switch 6 is opened, the large DC current I flowing through the opener 6 at normal times
0 means that the DC circuit breaker 4 has been completely transferred.

【0026】以上の一連の動作の後、制御回路8からの
遮断指令により、直流遮断器4は、直流電流を遮断す
る。したがって、超電導コイル1に蓄積されていたエネ
ルギーは、保護抵抗2により適切に消費され、超電導コ
イル1のクエンチ時の保護が可能となる。
After the above series of operations, the DC breaker 4 cuts off the DC current in response to a breaking command from the control circuit 8. Therefore, the energy stored in the superconducting coil 1 is appropriately consumed by the protection resistor 2, and the superconducting coil 1 can be protected during quenching.

【0027】第1実施例においては、超電導コイル保護
装置を安価な少なくとも1つの開閉器6と1台の直流遮
断器4とで構成してあり、通常運転時には、開閉器6側
に連続大電流を流し、直流遮断器4には連続通電するこ
となく、クエンチ発生時のみ直流遮断器4に通電し、そ
の後は直ぐに遮断動作に入るようにしている。
In the first embodiment, the superconducting coil protection device is composed of at least one inexpensive switch 6 and one DC breaker 4, and at the time of normal operation, a continuous large current flows to the switch 6 side. The DC circuit breaker 4 is not energized continuously, but the DC circuit breaker 4 is energized only when a quench occurs, and immediately after that, the breaking operation is started.

【0028】ここでは、高価な直流遮断器4は1台のみ
で、安価な開閉器6を併設してあるので、超電導コイル
システム全体としては、大幅なコストダウンが可能であ
る。
Here, since only one expensive DC circuit breaker 4 is provided and the inexpensive switch 6 is installed, the cost of the superconducting coil system as a whole can be significantly reduced.

【0029】また、クエンチ発生時には、1台の直流遮
断器4を一旦投入し、開閉器6側の電流がほぼ0になっ
たところでこれらの開閉器6を開き、それから1台の直
流遮断器4を開くことから、それらの開閉のタイミング
は、複数の直流遮断器を同期させて開閉する必要があっ
た従来例と比較して、それほど厳密でなくてもよく、相
対的開閉タイミングのずれによる直流遮断器4や開閉器
6自体の損傷のおそれがほとんどない。
Further, when a quench occurs, one DC breaker 4 is once turned on, and when the current on the side of the switch 6 becomes almost 0, these switches 6 are opened, and then one DC breaker 4 is opened. As compared with the conventional example in which it is necessary to synchronize a plurality of DC circuit breakers to open and close, the opening and closing timings of them are not so strict, and the DC There is almost no risk of damage to the circuit breaker 4 or the switch 6 itself.

【0030】《第2実施例》第2実施例の基本的系統構
成は、第1実施例と変わらない。通常運転時にも、直流
遮断器4を投入しておく点が異なるだけである。
<< Second Embodiment >> The basic system configuration of the second embodiment is the same as that of the first embodiment. The only difference is that the DC breaker 4 is closed even during normal operation.

【0031】保護対象の超電導コイル1には、保護抵抗
2が並列接続されており、励磁電源3からは、直流遮断
器4を介して、エネルギーすなわち直流電力が供給され
ている。このような超電導コイルシステムの基本回路に
対して、少なくとも1つの開閉器6を、直流遮断器4と
並列に接続してある。制御回路8は、超電導コイル1の
クエンチを検出するクエンチ検出器7の検出信号に基づ
き、直流遮断器4および開閉器6の開閉を制御する。
A protection resistor 2 is connected in parallel to the superconducting coil 1 to be protected, and energy, that is, DC power is supplied from an exciting power source 3 via a DC breaker 4. At least one switch 6 is connected in parallel with the DC circuit breaker 4 to the basic circuit of such a superconducting coil system. The control circuit 8 controls the opening and closing of the DC breaker 4 and the switch 6 based on the detection signal of the quench detector 7 that detects the quench of the superconducting coil 1.

【0032】なお、ここでは図示していないが、開閉器
6全体を流れる電流を検出する電流検出器を設置し、そ
の検出電流を制御回路8に取り込み、直流遮断器4への
電流のシフト完了を判定するために用いることもでき
る。
Although not shown here, a current detector for detecting the current flowing through the switch 6 as a whole is installed, and the detected current is taken into the control circuit 8 to complete the shift of the current to the DC circuit breaker 4. Can also be used to determine

【0033】このように構成された第2実施例におい
て、通常運転時には、直流遮断器4も投入し、開閉器6
に大電流を流すことはもちろんであるが、直流遮断器4
にもその定格内の電流を分流させておく。開閉器6と直
流遮断器4との分流の比率は、それぞれ適切な内部抵抗
の機種を選択すると、設定できる。すなわち、通常運転
時に、開閉器6に流れる電流I3と、直流遮断器4に流
れる電流I4との比は、開閉器6の内部抵抗をr3とし、
直流遮断器4の内部抵抗をr4とすると、 I3:I4=r4:r3………(2) となる。開閉器6と直流遮断器4との直流の分流の比率
は、それぞれ適切な内部抵抗r3,内部抵抗r4の機種を
選択すると、正確に設定可能である。
In the second embodiment thus constructed, the DC circuit breaker 4 is also turned on during normal operation, and the switch 6
Of course, a large current is applied to the DC circuit breaker 4.
Also, divide the current within that rating. The shunt ratio of the switch 6 and the DC breaker 4 can be set by selecting a model having an appropriate internal resistance. That is, during normal operation, the current I 3 flowing through the switch 6, the ratio of the current I 4 flowing through the DC circuit breaker 4, the internal resistance of the switch 6 and r 3,
If the internal resistance of the DC breaker 4 is r 4 , then I 3 : I 4 = r 4 : r 3 (2) The ratio of the DC shunt between the switch 6 and the DC circuit breaker 4 can be accurately set by selecting appropriate models of the internal resistance r 3 and the internal resistance r 4 .

【0034】さて、超電導コイル1にクエンチが発生す
ると、クエンチ検出器7がそれを検出し、制御回路8に
検出信号を送る。制御回路8は、クエンチ検出信号の入
力に応じて、開閉器6に開放指令を与え、開閉器6を開
放させる。開閉器6のアーク抵抗により、今まで開閉器
6を流れていた直流電流は、直流遮断器4にシフトす
る。クエンチ時に開かれる開閉器6のアークの抵抗値r
aが直流遮断器4の抵抗値r4よりもかなり大きい、すな
わち、ra〉〉r4であるから、直流電流I0は、直流遮
断器4にシフトすることになる。
When a quench occurs in the superconducting coil 1, the quench detector 7 detects it and sends a detection signal to the control circuit 8. The control circuit 8 gives an opening command to the switch 6 in response to the input of the quench detection signal to open the switch 6. Due to the arc resistance of the switch 6, the DC current flowing through the switch 6 until now shifts to the DC breaker 4. The resistance value r of the arc of the switch 6 opened at the time of quench
a is considerably larger than the resistance value r 4 of the DC circuit breaker 4, i.e., because it is ra >> r 4, the DC current I 0 will be shifted to the DC circuit breaker 4.

【0035】開閉器6に流れる設計上の電流が0に近く
なり、または、開閉器6に実際に流れる電流が0に近く
なったことを図示していない電流検出器により検出した
ら、制御回路8からの遮断指令により、直流遮断器4に
より遮断動作を実行する。したがって、超電導コイル1
に蓄積されていたエネルギーは、保護抵抗2により適切
に消費され、超電導コイル1のクエンチ時の保護が可能
となる。
When it is detected by a current detector (not shown) that the designed current flowing through the switch 6 is close to 0, or that the current actually flowing through the switch 6 is close to 0, the control circuit 8 In response to a shutoff command from the DC breaker 4, the DC breaker 4 performs a shutoff operation. Therefore, the superconducting coil 1
The energy stored in 1 is appropriately consumed by the protection resistor 2, and the superconducting coil 1 can be protected during quenching.

【0036】このように、第2実施例においては、通常
運転時にも、直流遮断器4に電流を分流させておくこと
ができるので、クエンチ発生時に、直流遮断器4の投入
操作を行なわずに済む。したがって、クエンチ発生から
直流遮断までの時間を大幅に短縮し、超電導コイル1を
より確実に保護できる。
As described above, in the second embodiment, the current can be shunted to the DC circuit breaker 4 even during the normal operation, so that the operation of closing the DC circuit breaker 4 is not performed when the quench occurs. I'm done. Therefore, the time from the occurrence of the quench to the interruption of the direct current can be greatly shortened, and the superconducting coil 1 can be protected more reliably.

【0037】この場合も、直流遮断器4に大電流を流す
期間を実質的にクエンチ発生時のみに限定するので、通
電容量が小さく経済性の高い直流遮断器4を選定でき、
直流大電流で連続運転される超電導コイル1のクエンチ
時の電流を確実に遮断可能である。すなわち、高価な直
流遮断器4は1台のみで、安価な開閉器6を併設してあ
るから、超電導コイルシステム全体としては、大幅なコ
ストダウンが可能である。
Also in this case, since the period during which a large current is passed through the DC circuit breaker 4 is substantially limited only when the quench occurs, it is possible to select the DC circuit breaker 4 having a small current-carrying capacity and high economical efficiency.
It is possible to reliably interrupt the current during quenching of the superconducting coil 1 that is continuously operated with a large DC current. That is, since only one expensive DC circuit breaker 4 is provided and the inexpensive switch 6 is installed, the cost of the superconducting coil system as a whole can be significantly reduced.

【0038】また、クエンチ発生時には、開閉器6を開
き、そのアーク抵抗により直流遮断器4に大電流をシフ
トさせ、それから1台の直流遮断器4を開くことから、
それらの開閉のタイミングはそれほど厳密でなくてもよ
く、開閉タイミングの相対的ずれによる直流遮断器4や
開閉器6自体の損傷のおそれがほとんどない。
When a quench occurs, the switch 6 is opened, a large current is shifted to the DC circuit breaker 4 by its arc resistance, and then one DC circuit breaker 4 is opened.
The opening and closing timings thereof do not have to be so strict, and there is almost no risk of damage to the DC circuit breaker 4 or the switch 6 itself due to the relative deviation of the opening and closing timings.

【0039】なお、直流遮断器4は、機械的に作動する
もののみならず、サイリスタ等の半導体遮断器でも本発
明を適用可能である。
The DC circuit breaker 4 is not limited to one that operates mechanically, and the present invention can be applied to a semiconductor circuit breaker such as a thyristor.

【0040】[0040]

【発明の効果】本発明によれば、以下の効果が得られ
る。
According to the present invention, the following effects can be obtained.

【0041】(1)高価な直流遮断器は1台のみで、安
価な開閉器を併設してあるので、超電導コイルシステム
全体としては、大幅なコストダウンが可能である。
(1) Since there is only one expensive DC circuit breaker and an inexpensive switch is installed, the cost of the superconducting coil system as a whole can be significantly reduced.

【0042】(2)第1発明および第3発明において、
クエンチ発生時には、1台の直流遮断器を一旦投入し、
開閉器側の電流がほぼ0になったところでこれらの開閉
器を開き、それから1台の直流遮断器を開くことから、
それらの開閉のタイミングはそれほど厳密でなくてもよ
く、相対的開閉タイミングのずれによる直流遮断器や開
閉器自体の損傷のおそれがほとんどない。
(2) In the first and third inventions,
When a quench occurs, once turn on one DC breaker,
When the current on the switch side becomes almost 0, open these switches, and then open one DC breaker,
The timing of opening and closing of them does not have to be so strict, and there is almost no risk of damage to the DC circuit breaker or the switch itself due to a shift in relative opening and closing timing.

【0043】(3)第2発明および第4発明において、
クエンチ発生時には、開閉器の開放時のアーク抵抗を利
用して少なくとも1つの開閉器の電流を直流遮断器にシ
フトさせるから、通常運転時にも、直流遮断器に電流を
分流させてさせておくことができる。この方式では、ク
エンチ発生時に、直流遮断器の投入操作を行なわずに済
むので、クエンチ発生から直流遮断までの時間を大幅に
短縮でき、超電導コイルをより確実に保護できる。
(3) In the second and fourth inventions,
When a quench occurs, the arc resistance when the switch is opened is used to shift the current of at least one switch to the DC circuit breaker, so keep the DC circuit breaker shunted during normal operation as well. You can In this method, it is not necessary to turn on the DC circuit breaker when a quench occurs, so the time from the occurrence of a quench to the DC interruption can be greatly shortened, and the superconducting coil can be protected more reliably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超電導コイル保護装置を備えた超
電導コイルシステムの実施例の系統構成を示す図であ
る。
FIG. 1 is a diagram showing a system configuration of an embodiment of a superconducting coil system including a superconducting coil protection device according to the present invention.

【図2】従来の基本的な超電導コイルシステムの系統構
成を示す図である。
FIG. 2 is a diagram showing a system configuration of a conventional basic superconducting coil system.

【図3】並列接続した直流遮断器を用いる従来の超電導
コイルシステムの系統構成を示す図である。
FIG. 3 is a diagram showing a system configuration of a conventional superconducting coil system using DC breakers connected in parallel.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 保護抵抗 3 励磁電源 4 直流遮断器 6 開閉器 7 クエンチ検出器 8 制御回路 1 Superconducting coil 2 Protective resistance 3 Excitation power supply 4 DC breaker 6 Switch 7 Quench detector 8 Control circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05H 7/04 ZAA 9014−2G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H05H 7/04 ZAA 9014-2G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 励磁電源と、通常運転時に前記励磁電源
からエネルギーの供給を受けるとともに、クエンチが生
じた際にはエネルギーの供給を遮断される超電導コイル
と、前記超電導コイルと並列に接続され、前記超電導コ
イルへのエネルギーの供給が遮断された状態で前記超電
導コイルに蓄積されていたエネルギーを消費し、クエン
チに起因する損傷から前記超電導コイルを保護する保護
抵抗とを備えた超電導コイルシステムにおいて、 前記励磁電源と前記超電導コイルとの間に、通常運転時
に開放され、クエンチが生じた際には一旦投入され、所
定条件が成立した時に再度開放され、前記励磁電源から
前記超電導コイルへのエネルギーの供給を遮断する直流
遮断器を直列に配置するとともに、 前記直流遮断器と並列に、通常運転時に投入され前記励
磁電源からのエネルギーを前記超電導コイルに供給し、
クエンチが生じた際には自らを流れている前記励磁電源
からのエネルギーを前記直流遮断器にシフトさせ、自ら
を流れているエネルギーが所定値以下に減少したら開放
される少なくとも1つの開閉器を設けたことを特徴とす
る超電導コイルシステム。
1. An exciting power source, a superconducting coil that receives energy from the exciting power source during normal operation, and is cut off from energy when a quench occurs, and is connected in parallel with the superconducting coil. In the superconducting coil system, which consumes the energy stored in the superconducting coil in a state where the supply of energy to the superconducting coil is cut off, and a protective resistance that protects the superconducting coil from damage caused by quenching, Between the excitation power supply and the superconducting coil, it is opened during normal operation, once turned on when a quench occurs, is opened again when a predetermined condition is established, the energy from the excitation power supply to the superconducting coil. A DC circuit breaker that cuts off the supply is arranged in series, and is turned on in parallel with the DC circuit breaker during normal operation. The energy from the excitation power supply is supplied to the superconducting coil is,
Provided is at least one switch that shifts the energy from the excitation power source flowing through itself to the DC circuit breaker when a quench occurs, and opens when the energy flowing through itself decreases below a predetermined value. A superconducting coil system characterized by that.
【請求項2】 励磁電源と、通常運転時に前記励磁電源
からエネルギーの供給を受けるとともに、クエンチが生
じた際にはエネルギーの供給を遮断される超電導コイル
と、前記超電導コイルと並列に接続され、前記超電導コ
イルへのエネルギーの供給が遮断された状態で前記超電
導コイルに蓄積されていたエネルギーを消費し、クエン
チに起因する損傷から前記超電導コイルを保護する保護
抵抗とを備えた超電導コイルシステムにおいて、 前記励磁電源と前記超電導コイルとの間に、通常運転時
に投入され前記励磁電源からのエネルギーを前記超電導
コイルに供給し、前記クエンチが生じた際には所定条件
が成立した時に開放され、前記励磁電源から前記超電導
コイルへのエネルギーの供給を遮断する直流遮断器を直
列に配置するとともに、 前記直流遮断器と並列に、通常運転時に投入され前記励
磁電源からのエネルギーを前記超電導コイルに供給し、
クエンチが生じた際には前記直流遮断器に先立って開放
され自らを流れている前記励磁電源からのエネルギーを
前記直流遮断器にシフトさせる少なくとも1つの開閉器
を設けたことを特徴とする超電導コイルシステム。
2. An exciting power source, a superconducting coil that receives energy supply from the exciting power source during normal operation, and is cut off from energy supply when a quench occurs, and is connected in parallel with the superconducting coil. In the superconducting coil system, which consumes the energy stored in the superconducting coil in a state where the supply of energy to the superconducting coil is cut off, and a protective resistance that protects the superconducting coil from damage caused by quenching, Between the excitation power source and the superconducting coil, the energy from the excitation power source is supplied to the superconducting coil during normal operation, and when the quench occurs, it is opened when a predetermined condition is satisfied, and the excitation is performed. With a DC circuit breaker arranged in series to cut off the supply of energy from the power supply to the superconducting coil, Serial parallel with the DC circuit breaker is put in normal operation to supply energy from the exciting power source to the superconducting coil,
A superconducting coil, which is provided with at least one switch that shifts energy from the excitation power supply flowing through itself, which is opened prior to the DC circuit breaker, to the DC circuit breaker when a quench occurs. system.
【請求項3】 通常運転時は励磁電源から超電導コイル
にエネルギーを供給し前記超電導コイルを励磁する一
方、クエンチが生じた際にはエネルギーの供給を遮断
し、前記超電導コイルに蓄積されていたエネルギーを前
記超電導コイルに並列接続された保護抵抗に消費させ、
クエンチに起因する損傷から前記超電導コイルを保護す
る超電導コイルシステムの運転方法において、 通常運転時には、前記励磁電源と前記超電導コイルとの
間に配置された直流遮断器を開放し、前記直流遮断器に
並列に接続された少なくとも1つの開閉器を介して前記
励磁電源からのエネルギーを前記超電導コイルに供給
し、 クエンチが生じた際には、前記直流遮断器を一旦投入し
て前記開閉器を流れているエネルギーを前記直流遮断器
にシフトさせ、前記開閉器を開放し、前記直流遮断器を
流れていたエネルギーが所定値に減少したら前記直流遮
断器を開放して前記超電導コイルへのエネルギーの供給
を遮断し、その後、前記超電導コイルに蓄積されていた
エネルギーを前記保護抵抗に消費させることを特徴とす
る超電導コイルシステムの運転方法。
3. During normal operation, energy is supplied from an exciting power source to the superconducting coil to excite the superconducting coil, and when a quench occurs, the energy supply is shut off and the energy stored in the superconducting coil is stored. The protective resistance connected in parallel to the superconducting coil,
In a method of operating a superconducting coil system that protects the superconducting coil from damage caused by a quench, during normal operation, the DC breaker disposed between the excitation power source and the superconducting coil is opened to the DC breaker. Energy from the excitation power source is supplied to the superconducting coil through at least one switch connected in parallel, and when a quench occurs, the DC circuit breaker is once closed to flow through the switch. Existing energy is shifted to the DC circuit breaker, the switch is opened, and when the energy flowing through the DC circuit breaker decreases to a predetermined value, the DC circuit breaker is opened to supply energy to the superconducting coil. The superconducting coil system is characterized in that the energy is stored in the superconducting coil, and then the energy is accumulated in the superconducting coil. The method of operation.
【請求項4】 通常運転時は励磁電源から超電導コイル
にエネルギーを供給し前記超電導コイルを励磁する一
方、クエンチが生じた際にはエネルギーの供給を遮断
し、前記超電導コイルに蓄積されていたエネルギーを前
記超電導コイルに並列接続された保護抵抗に消費させ、
クエンチに起因する損傷から前記超電導コイルを保護す
る超電導コイルシステムの運転方法において、 通常運転時には、前記励磁電源と前記超電導コイルとの
間に配置された直流遮断器および当該直流遮断器と並列
に接続されている少なくとも1つの開閉器を介して前記
励磁電源からのエネルギーを前記超電導コイルに供給
し、 クエンチが生じた際には、前記開閉器を開放し、前記励
磁電源からのエネルギーを前記直流遮断器にシフトさ
せ、前記直流遮断器を流れていたエネルギーが所定値に
減少したら前記直流遮断器を開放して前記超電導コイル
へのエネルギーの供給を遮断し、その後、前記超電導コ
イルに蓄積されていたエネルギーを前記保護抵抗に消費
させることを特徴とする超電導コイルシステムの運転方
法。
4. The energy stored in the superconducting coil is cut off when a quench occurs while supplying energy from an exciting power supply to the superconducting coil during normal operation to excite the superconducting coil. The protective resistance connected in parallel to the superconducting coil,
In a method for operating a superconducting coil system that protects the superconducting coil from damage caused by a quench, during normal operation, a DC circuit breaker arranged between the excitation power source and the superconducting coil and the DC circuit breaker are connected in parallel. The energy from the excitation power supply is supplied to the superconducting coil through at least one switch that is installed, and when a quench occurs, the switch is opened to cut off the energy from the excitation power supply to the direct current. The energy was flowing through the DC circuit breaker to a predetermined value, the DC circuit breaker was opened to cut off the supply of energy to the superconducting coil, and then stored in the superconducting coil. A method for operating a superconducting coil system, characterized in that energy is consumed by the protective resistance.
JP6286534A 1994-11-21 1994-11-21 Superconducting coil system and operating method thereof Expired - Fee Related JP2724321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6286534A JP2724321B2 (en) 1994-11-21 1994-11-21 Superconducting coil system and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6286534A JP2724321B2 (en) 1994-11-21 1994-11-21 Superconducting coil system and operating method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1176037A Division JPH0340409A (en) 1989-07-07 1989-07-07 Superconducting coil system

Publications (2)

Publication Number Publication Date
JPH07192913A true JPH07192913A (en) 1995-07-28
JP2724321B2 JP2724321B2 (en) 1998-03-09

Family

ID=17705659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6286534A Expired - Fee Related JP2724321B2 (en) 1994-11-21 1994-11-21 Superconducting coil system and operating method thereof

Country Status (1)

Country Link
JP (1) JP2724321B2 (en)

Also Published As

Publication number Publication date
JP2724321B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
JP2007157700A (en) Power circuit protection device using superconductor
KR101233048B1 (en) Fault current limiter
CA2178356C (en) A high voltage electric power line current limiter
JP2659363B2 (en) Superconducting magnet device with emergency demagnetization device
US5218505A (en) Superconductor coil system and method of operating the same
JP2831516B2 (en) Superconducting energy storage device
JP2560155B2 (en) DC cutoff device
JP2007274744A (en) Superconductive current limiting device, superconductive current limiting system and superconductive current limiting control method
JP2006340418A (en) Protective device of superconducting coil
JPH09260130A (en) Protection of superconductive current-carrying wire and device thereof
JPH07192913A (en) Superconducting coil system and operating method thereof
JPH06347575A (en) Magnetic field generator with protector against quench of superconducting coil and quench protection coil
JPH0513222A (en) Superconducting coil device
JPH05236646A (en) Current limiter
JPH06168820A (en) Power supply for nuclear fusion device
JP3150422B2 (en) Protective resistor for superconducting magnet with circuit switching function
JPH06333739A (en) Superconducting coil system
JPH10164754A (en) Rush current preventing device for single-phase transformer
JP2691106B2 (en) Superconducting coil quench protection method and circuit using iron core reactor
JPH1090376A (en) Method for controlling switch testing circuit
JPH0837732A (en) Method for protecting superconducting device
JPH05300642A (en) Method for limiting and cutting-off circuit current
JPH06342619A (en) Dc breaker device
JPH03278504A (en) Superconducting device
JPH0720335B2 (en) Superconducting coil protector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees