JPH07192746A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPH07192746A
JPH07192746A JP5327866A JP32786693A JPH07192746A JP H07192746 A JPH07192746 A JP H07192746A JP 5327866 A JP5327866 A JP 5327866A JP 32786693 A JP32786693 A JP 32786693A JP H07192746 A JPH07192746 A JP H07192746A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel
hydrocarbon fuel
fuel cell
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5327866A
Other languages
Japanese (ja)
Inventor
Masayuki Hashimoto
昌幸 橋元
Akira Harada
亮 原田
Junji Hizuka
淳次 肥塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5327866A priority Critical patent/JPH07192746A/en
Publication of JPH07192746A publication Critical patent/JPH07192746A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent the deterioration of a carbon monoxide transformed cata lyst to steadily operate for a long time by installing a hydrogen storage con tainer in which a hydrogen storage alloy is incorporated and adding hydrogen stored to hydrocarbon fuel during normal operation for desulfurization. CONSTITUTION:Hydrocarbon fuel 1 is mixed with a fuel gas whose main component is hydrogen introduced from a carbon monoxide transformer 6 and introduced into a hydrogenating-desulfurizing device 2. A hydrogenating-desulfurizing catalyst such as a No-Co base catalyst carried on alumina is filled in the hydrogenating-desulfurizing device 2, and an organic sulfur component in the hydrocarbon fuel 1 reacts with hydrogen and converted into hydrogen sulfide. The hydrocarbon fuel 1 is introduced into a desulfurizing device 3 in which a adsorbing-desulfurizing agent such as ZnO is filled, and the hydrogen sulfide generated is adsorbed in the adsorbing-desulfurizing agent to desulfurize the hydrocarbon fuel 1. The hydrocarbon fuel 1 desulfurized is mixed with steam supplied from a steam generator 4 and introduced into a steam reformer 5 in which a reforming pipe 6 filled with a reforming catalyst 7 such as a nickel base catalyst carried on alumina is arranged and converted into fuel gas whose main component is hydrogen by a steam reforming reaction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池発電システム
に関するものである。更に詳しくは、起動時も炭化水素
燃料の脱硫が可能で、また改質触媒が破壊しガス下流側
へ飛散しても、一酸化炭素変成器内の一酸化炭素変成触
媒を保護出来ることを特徴とする燃料電池発電システム
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system. More specifically, the hydrocarbon fuel can be desulfurized even at startup, and the carbon monoxide shift catalyst in the carbon monoxide shift converter can be protected even if the reforming catalyst is destroyed and scattered to the gas downstream side. And a fuel cell power generation system.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇化に伴い、種々の
代替エネルギ―が検討されている。その中の1つとし
て、水素を発電用燃料として使用する燃料電池が注目を
集めている。この燃料電池は、燃料極と酸化剤極からな
り、燃料極に水素を、酸化剤極に酸素を供給し、電解質
層を介して接触させ電気化学的反応により発生する電気
エネルギ―を両極から取り出すようにしたものである。
2. Description of the Related Art In recent years, various alternative energies have been studied with the exhaustion of petroleum resources. As one of them, a fuel cell using hydrogen as a fuel for power generation has been attracting attention. This fuel cell consists of a fuel electrode and an oxidant electrode, supplies hydrogen to the fuel electrode and oxygen to the oxidant electrode, and contacts them through the electrolyte layer to take out electrical energy generated by an electrochemical reaction from both electrodes. It was done like this.

【0003】この種の燃料電池においては、燃料として
水素が使用され、この水素は、一般的に、天然ガス、ナ
フサ、液化石油ガス等の炭化水素燃料を水蒸気改質さ
せ、水素を主成分とする燃料ガスに変換する事により得
られる。
In this type of fuel cell, hydrogen is used as a fuel, and this hydrogen is generally used for steam reforming a hydrocarbon fuel such as natural gas, naphtha, liquefied petroleum gas, etc. It can be obtained by converting the fuel gas to

【0004】上記炭化水素燃料には、有機硫黄化合物が
含まれており、この硫黄成分は水蒸気改質触媒表面に吸
着し、被毒させ、触媒の活性が著しく低下する原因にな
る。そのため、炭化水素燃料は、水蒸気改質器に供給さ
れる前に脱硫装置で脱硫される。
The above-mentioned hydrocarbon fuel contains an organic sulfur compound, and this sulfur component is adsorbed on the surface of the steam reforming catalyst and poisoned, which causes a significant decrease in the activity of the catalyst. Therefore, the hydrocarbon fuel is desulfurized by the desulfurization device before being supplied to the steam reformer.

【0005】従来、炭化水素燃料の水蒸気改質前に行わ
れる脱硫方法は、アルミナ担持のMo−Co系触媒等の
存在化で、有機硫黄を水素を添加して分解し、生成する
硫化水素をZnO等に吸着させて除去する水添脱硫法で
ある。
Conventionally, a desulfurization method carried out before steam reforming of a hydrocarbon fuel is the presence of an Mo-Co type catalyst supported on alumina, which decomposes organic sulfur by adding hydrogen to produce hydrogen sulfide. It is a hydrodesulfurization method in which ZnO or the like is adsorbed and removed.

【0006】図3は、水添脱硫法による脱硫装置を具備
した燃料電池発電システムの代表的な例を示す概略系統
図である。図3において、炭化水素燃料1は、後述する
一酸化炭素変成器9から導かれる水素を主成分とする燃
料ガスと混合されて、水添脱硫器2に導入される。水添
脱硫器2には、アルミナ担持のMo−Co系触媒等の水
添脱硫触媒が充填されており、炭化水素燃料1中の有機
硫黄成分は水素と反応し硫化水素に変化する。その後、
ZnO等の吸着脱硫剤が充填された脱硫器3に導入され
生成した硫化水素が吸着脱硫剤に吸着され、炭化水素燃
料1が脱硫される。
FIG. 3 is a schematic system diagram showing a typical example of a fuel cell power generation system equipped with a desulfurization device by a hydrodesulfurization method. In FIG. 3, the hydrocarbon fuel 1 is mixed with a fuel gas containing hydrogen as a main component, which is introduced from a carbon monoxide shift converter 9 described later, and is introduced into a hydrodesulfurizer 2. The hydrodesulfurizer 2 is filled with a hydrodesulfurization catalyst such as an alumina-supported Mo—Co-based catalyst, and the organic sulfur component in the hydrocarbon fuel 1 reacts with hydrogen and changes to hydrogen sulfide. afterwards,
The hydrogen sulfide generated by being introduced into the desulfurizer 3 filled with an adsorbent desulfurizing agent such as ZnO is adsorbed by the adsorbent desulfurizing agent, and the hydrocarbon fuel 1 is desulfurized.

【0007】脱硫された炭化水素燃料1は、蒸気発生器
4からの蒸気と混合され、アルミナ担持のNi系触媒等
の改質触媒7が充填された改質管6を内設した水蒸気改
質器5に導入され、水蒸気改質反応により水素を主成分
とする燃料ガスに変換される。変換された燃料ガスは、
水素が主成分であるが副生成物として一酸化炭素も含有
している。この一酸化炭素は、燃料電池本体10の燃料極
11の触媒を被毒するため、一酸化炭素変成触媒が充填さ
れた一酸化炭素変成器9に導入された二酸化炭素に変換
される。一酸化炭素変成器9から排出された燃料ガス
は、一部が前記の如く水添脱硫器2に送られ、残りは燃
料電池本体10の燃料極11に送られて燃料として使用され
る。燃料極11に流入した燃料ガス中の水素は、コンプレ
ッサ―13により酸化剤極12に送入している空気14中の酸
素と電気化学反応を起こし、その結果燃料ガスが消費さ
れて電気エネルギ―15が得られる。
The desulfurized hydrocarbon fuel 1 is mixed with the steam from the steam generator 4, and steam reforming is provided in which a reforming pipe 6 filled with a reforming catalyst 7 such as an alumina-supported Ni-based catalyst is provided. It is introduced into the vessel 5 and converted into a fuel gas containing hydrogen as a main component by a steam reforming reaction. The converted fuel gas is
Although hydrogen is the main component, it also contains carbon monoxide as a by-product. This carbon monoxide is the fuel electrode of the fuel cell body 10.
In order to poison the catalyst of No. 11, it is converted into carbon dioxide introduced into the carbon monoxide shift converter 9 filled with the carbon monoxide shift catalyst. A part of the fuel gas discharged from the carbon monoxide shift converter 9 is sent to the hydrodesulfurizer 2 as described above, and the rest is sent to the fuel electrode 11 of the fuel cell main body 10 to be used as a fuel. Hydrogen in the fuel gas flowing into the fuel electrode 11 causes an electrochemical reaction with oxygen in the air 14 being sent to the oxidant electrode 12 by the compressor 13, and as a result, the fuel gas is consumed and electric energy is consumed. You get 15.

【0008】[0008]

【発明が解決しようとする課題】ところが、このような
燃料電池発電システムにおいては、炭化水素燃料の脱硫
行程に問題がある。即ち、水添脱硫行程においては水素
の供給が必須条件であるが、起動時には水蒸気改質反応
が生じているので水素の供給がなく、有機硫黄は硫化水
素に変換されないため脱硫器にも吸着されず、脱硫され
ないまま炭化水素燃料が水蒸気改質器に供給されてしま
う。その結果、炭化水素燃料中の有機硫黄は改質管入口
部の改質触媒に吸着され、触媒活性が著しく低下する。
燃料電池発電システムは、その性格上、毎日起動停止が
繰り返されるため、改質触媒への硫黄成分の吸着量が徐
々に増加し、水蒸気改質器の性能が、しいてはシステム
全体の性能が低下し燃料電池発電システムを長時間、安
定的に運転することが出来ないという問題がある。
However, in such a fuel cell power generation system, there is a problem in the desulfurization process of hydrocarbon fuel. That is, in the hydrodesulfurization process, the supply of hydrogen is an essential condition, but since the steam reforming reaction occurs at startup, there is no supply of hydrogen, and since organic sulfur is not converted to hydrogen sulfide, it is also adsorbed in the desulfurizer. Instead, the hydrocarbon fuel is supplied to the steam reformer without being desulfurized. As a result, the organic sulfur in the hydrocarbon fuel is adsorbed by the reforming catalyst at the inlet of the reforming pipe, and the catalytic activity is significantly reduced.
Due to the nature of the fuel cell power generation system, starting and stopping are repeated every day, so the amount of sulfur components adsorbed on the reforming catalyst gradually increases, and the performance of the steam reformer, and thus the performance of the entire system, increases. There is a problem that the fuel cell power generation system deteriorates and cannot be stably operated for a long time.

【0009】更に改質触媒はセラミックスの固体ででき
ているが、燃料電池は起動停止の回数が多く、そのため
改質管の熱膨張及び収縮が頻繁におき、改質管に繰返し
応力がかかる。このため改質管中の改質触媒はこの応力
により破壊し、ついには粉化する。粉化が起きるとガス
下流側に飛散していく。飛散した改質触媒は一酸化炭素
変成器流入し、器内に充填された一酸化炭素変成触媒上
に堆積し、(1)式の如くメタネ―ション反応を誘発す
る。
Further, although the reforming catalyst is made of a ceramic solid, the fuel cell has a large number of start and stop times, and therefore the thermal expansion and contraction of the reforming tube occur frequently, and the reforming tube is repeatedly stressed. Therefore, the reforming catalyst in the reforming tube is destroyed by this stress, and finally powdered. When pulverization occurs, the gas will be scattered downstream. The scattered reforming catalyst flows into the carbon monoxide shift converter, is deposited on the carbon monoxide shift catalyst filled in the converter, and induces a metathesis reaction as shown in equation (1).

【0010】[0010]

【数1】 CO+3H2 =CH4 +H2 O …(1) メタネ―ション反応は大きな発熱反応で、一酸化炭素変
成触媒の加熱劣化を引き起す。この結果一酸化炭素変成
能が低下し、高濃度の一酸化炭素が燃料電池本体の燃料
極に流入し、燃料極の触媒を被毒し、電池寿命を低下さ
せる。更に、メタネ―ション反応は、炊事容器改質反応
の逆反応で改質された燃料ガス中のH2を原料のメタン
に戻してしまうので、H2 の収率が低下し、発電に必要
なH2 量を確保出来なくなる等の問題がある。
## EQU1 ## CO + 3H 2 ═CH 4 + H 2 O (1) The metalation reaction is a large exothermic reaction, and causes the heat deterioration of the carbon monoxide shift catalyst. As a result, the carbon monoxide metamorphic ability is reduced, and high concentration carbon monoxide flows into the fuel electrode of the fuel cell body, poisons the catalyst of the fuel electrode, and shortens the cell life. Further, the methanol reaction returns H 2 in the fuel gas reformed by the reverse reaction of the reforming reaction in the cooking vessel to methane as a raw material, so that the yield of H 2 is lowered and it is necessary for power generation. There is a problem that the amount of H 2 cannot be secured.

【0011】本発明は、上記した問題点を解消せんとし
てなされたものであり、起動時においても、水添脱硫用
の水素を供給できるようにすることにより、長時間、安
定的に運転することができる燃料電池発電システムを提
供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and enables stable operation for a long time by supplying hydrogen for hydrodesulfurization even at the time of starting. It is an object of the present invention to provide a fuel cell power generation system capable of achieving the above.

【0012】本発明の他の目的は、改質触媒が起動停止
の繰り返しにより破壊し粉化しガスと同伴し下流へ飛散
したとしても、一酸化炭素変成器の上流側に設置したメ
ッシュ状の永久磁石を充填した改質触媒補集器で粉化し
た改質触媒を補集し、メタネ―ション反応の発生と一酸
化炭素変成器内の一酸化炭素変成触媒の劣化を防止する
により、長時間、安定的に運転することができる燃料電
池発電システムを提供することにある。
Another object of the present invention is to provide a mesh-shaped permanent catalyst installed upstream of the carbon monoxide shifter even if the reforming catalyst is destroyed by repeated start-up and stop, pulverized and carried with gas and scattered downstream. The reforming catalyst collector filled with magnets collects the pulverized reforming catalyst to prevent the occurrence of a methanation reaction and the deterioration of the carbon monoxide shift catalyst in the carbon monoxide shift converter, thus ensuring a long time. Another object of the present invention is to provide a fuel cell power generation system that can be operated stably.

【0013】[0013]

【課題を解決するための手段】本発明に係る燃料電池発
電プラントは、上述した課題を解決するために、請求項
1に記載したように、起動時にも炭化水素燃料に水素を
供給して、水添脱硫を行えるようにしたものである。す
なわち、脱硫器、蒸気発生器、水蒸気改質器、一酸化炭
素変成器、燃料電池本体等を順次接続してシステムを構
成し、炭化水素燃料を生成水素のリサイクル添加により
水添脱硫した後、水蒸気を加えて改質器に供給し、ここ
で水素を発生させ、この水素を燃料電池に供給し、酸素
と反応させて電気エネルギ―を取り出す燃料電池発電シ
ステムにおいて、前記一酸化炭素変成器後流に、止め
弁、燃料ガスを冷却する冷却器及び水素吸蔵合金を充填
し、かつ加熱用の電気ヒ―タを具備した水素貯蔵器を設
けると共に、水素貯蔵器後流に流量調節弁を配設し、起
動時、炭化水素燃料に水素を供給する際、炭化水素燃料
中の水素濃度が最適値となるように前記流量調節弁に開
閉信号を与える制御装置を設けたことを特徴とする。
In order to solve the above-mentioned problems, a fuel cell power plant according to the present invention supplies hydrogen to a hydrocarbon fuel at the time of starting, as described in claim 1, It is designed so that hydrodesulfurization can be performed. That is, a desulfurizer, a steam generator, a steam reformer, a carbon monoxide shift converter, a fuel cell main body, and the like are sequentially connected to form a system, and a hydrocarbon fuel is hydrodesulfurized by recycle addition of generated hydrogen, In a fuel cell power generation system in which steam is added and supplied to a reformer, where hydrogen is generated, and this hydrogen is supplied to a fuel cell and reacted with oxygen to extract electric energy, after the carbon monoxide transformer The flow is provided with a stop valve, a cooler for cooling the fuel gas and a hydrogen storage alloy, and a hydrogen storage device equipped with an electric heater for heating, and a flow control valve is provided downstream of the hydrogen storage device. Further, at the time of start-up, when supplying hydrogen to the hydrocarbon fuel, a control device is provided which gives an opening / closing signal to the flow rate control valve so that the hydrogen concentration in the hydrocarbon fuel becomes an optimum value.

【0014】また本発明に係る燃料電池発電プラント
は、上述した課題を解決するために、請求項2に記載し
たように、改質触媒が破壊、粉化し飛散しても一酸化炭
素変成器の上流側に改質触媒補集器を装備することによ
り、一酸化炭素変成器内の一酸化炭素変成触媒が保護さ
れるようにしたものである。すなわち、脱硫器、蒸気発
生器、水蒸気改質器、一酸化炭素変成器、燃料電池本体
等を順次接続してシステムを構成し、水素を燃料電池に
供給し、酸素と反応させて電気エネルギ―を取り出す燃
料電池発電システムにおいて、水蒸気改質器と一酸化炭
素変成器との間にメッシュ状の永久磁石を充填した改質
触媒補集器を設置し、改質触媒が一酸化炭素変成器に流
入しないようにし、あわせて補集器差圧計を具備するこ
とにより改質触媒の補集程度を測定し、これにより改質
管内の改質触媒の残量を知ることができることを特徴と
する。
Further, in order to solve the above-mentioned problems, the fuel cell power plant according to the present invention is characterized in that, even if the reforming catalyst is destroyed, pulverized and scattered, the carbon monoxide converter By equipping the reforming catalyst collector on the upstream side, the carbon monoxide shift catalyst in the carbon monoxide shift converter is protected. That is, a desulfurizer, a steam generator, a steam reformer, a carbon monoxide shift converter, a fuel cell main body, etc. are sequentially connected to form a system, and hydrogen is supplied to a fuel cell to react with oxygen to generate electrical energy. In the fuel cell power generation system that takes out the gas, a reforming catalyst collector filled with mesh-shaped permanent magnets is installed between the steam reformer and the carbon monoxide shifter, and the reforming catalyst becomes the carbon monoxide shifter. It is characterized in that it is possible to measure the degree of collection of the reforming catalyst by providing a collector differential pressure gauge while preventing the inflow, and thereby to know the remaining amount of the reforming catalyst in the reforming pipe.

【0015】[0015]

【作用】本発明においては、燃料電池発電システムの通
常運転時には、一酸化炭素変成器後流の止め弁を開と
し、燃料ガスを流入させる。その流入したガスを冷却器
で常温に冷却した後、水素貯蔵器に導入し、水素貯蔵合
金に燃料ガス中の主成分である水素を吸蔵させる。
In the present invention, during normal operation of the fuel cell power generation system, the stop valve at the downstream of the carbon monoxide shift converter is opened to allow the fuel gas to flow in. The inflowing gas is cooled to room temperature by a cooler, and then introduced into a hydrogen storage device to cause the hydrogen storage alloy to occlude hydrogen as a main component in the fuel gas.

【0016】一方、起動時には止め弁を閉、流量調節弁
を開とした水素貯蔵器に内蔵した電気ヒ―タで加熱して
通常運転中に水素吸蔵合金に吸蔵させた水素を放出さ
せ、炭化水素燃料に添加する。炭化水素燃料に添加する
水素量は、水添脱硫器入口と流量調節弁後流に設けられ
た流量計で流量を測定し、水素添加量が炭化水素燃料流
量の2容量%になるように制御装置で調節弁の開度調節
により制御される。
On the other hand, at the time of start-up, the stop valve is closed and the flow control valve is opened, and the hydrogen is heated by an electric heater built in the hydrogen storage device to release the hydrogen stored in the hydrogen storage alloy during normal operation. Add to hydrogen fuel. The amount of hydrogen added to the hydrocarbon fuel is measured with a flow meter provided at the inlet of the hydrodesulfurizer and the flow control valve, and the amount of hydrogen added is controlled to be 2% by volume of the flow rate of the hydrocarbon fuel. It is controlled by adjusting the opening of the control valve in the device.

【0017】このため、水蒸気改質器が作動していない
起動時においても炭化水素燃料に水素が供給され、水添
脱硫を行うことが出来る。起動停止の繰り返しによる改
質触媒の破壊・粉化に対しては、粉化した触媒が燃料ガ
スに同伴されて水蒸気改質器から流出しても、改質触媒
は強磁性体のNi系なので、改質触媒補集器に充填され
たメッシュ状の永久磁石に補集され下流側の一酸化炭素
変成器に堆積することを防止することが出来る。
Therefore, hydrogen can be supplied to the hydrocarbon fuel and hydrodesulfurization can be performed even when the steam reformer is not operating. For destruction and pulverization of the reforming catalyst due to repeated start and stop, even if the pulverized catalyst is carried along with the fuel gas and flows out from the steam reformer, the reforming catalyst is a Ni-based ferromagnetic material. , And can be prevented from being collected by the mesh-shaped permanent magnets filled in the reforming catalyst collector and accumulated on the downstream side carbon monoxide transformer.

【0018】また、補集器差圧計を具備しているので、
運転中に改質管内の改質触媒の残量を知ることができ、
これによって水蒸気改質器の運転中における改質状態も
把握することができる。
Further, since it is equipped with a collector differential pressure gauge,
It is possible to know the remaining amount of reforming catalyst in the reforming pipe during operation,
This makes it possible to grasp the reforming state during the operation of the steam reformer.

【0019】[0019]

【実施例】以下、本発明の一実施例について添付図面を
参照して説明する。図1は本発明の一実施例の燃料電池
発電システムを示しており、図3と同一部分には同一の
符号を付して示した。図1において示される符号1は、
炭化水素燃料であって、炭化水素燃料1は、後述する一
酸化炭素変成器6から導かれる水素を主成分とする燃料
ガスと混合されて、水添脱硫器2に導入される。水添脱
硫器2には、アルミナ担持のMo−Co系触媒等の水添
脱硫触媒が充填されており、炭化水素燃料1中の有機硫
黄成分は水素と反応し硫化水素に変化する。その後、Z
nO等の吸着脱硫剤が充填された脱硫器3に導入され生
成した硫化水素が吸着脱硫剤に吸着され、炭化水素燃料
1が脱硫される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a fuel cell power generation system according to an embodiment of the present invention. The same parts as those in FIG. 3 are designated by the same reference numerals. Reference numeral 1 shown in FIG.
A hydrocarbon fuel, which is a hydrocarbon fuel 1, is mixed with a fuel gas containing hydrogen as a main component, which is introduced from a carbon monoxide shift converter 6 described later, and is introduced into a hydrodesulfurizer 2. The hydrodesulfurizer 2 is filled with a hydrodesulfurization catalyst such as an alumina-supported Mo—Co-based catalyst, and the organic sulfur component in the hydrocarbon fuel 1 reacts with hydrogen and changes to hydrogen sulfide. Then Z
Hydrogen sulfide produced by being introduced into the desulfurizer 3 filled with an adsorbent desulfurizing agent such as nO is adsorbed by the adsorbent desulfurizing agent, and the hydrocarbon fuel 1 is desulfurized.

【0020】脱硫された炭化水素燃料1は、蒸気発生器
4からの蒸気と混合され、アルミナ担持のNi系触媒等
の改質触媒7が充填された改質管6を内設した水蒸気改
質器5に導入され、水蒸気改質反応により水素を主成分
とする燃料ガスに変換される。変換された燃料ガスは、
水素が主成分であるが副生成物として一酸化炭素も含有
している。この一酸化炭素は、燃料電池本体10の燃料極
11の触媒を被毒するため、一酸化炭素変成触媒が充填さ
れた一酸化炭素変成器9に導入され二酸化炭素に変換さ
れる。一酸化炭素変成器9から排出された燃料ガスは、
一部が前記の如く水添脱硫器2に送られ、残りは燃料電
池本体10の燃料極11に送られて燃料として使用される。
燃料極11に流入した燃料ガス中の水素は、コンプレッサ
―13により酸化剤極12に送入している空気14中の酸素と
電気化学反応を起こし、その結果燃料ガスが消費されて
電気エネルギ―15が得られる。
The desulfurized hydrocarbon fuel 1 is mixed with the steam from the steam generator 4, and steam reforming is provided in which a reforming pipe 6 filled with a reforming catalyst 7 such as a Ni-based catalyst supported on alumina is provided. It is introduced into the vessel 5 and converted into a fuel gas containing hydrogen as a main component by a steam reforming reaction. The converted fuel gas is
Although hydrogen is the main component, it also contains carbon monoxide as a by-product. This carbon monoxide is the fuel electrode of the fuel cell body 10.
In order to poison the 11 catalyst, it is introduced into the carbon monoxide shift converter 9 filled with the carbon monoxide shift catalyst and converted into carbon dioxide. The fuel gas discharged from the carbon monoxide transformer 9 is
A part is sent to the hydrodesulfurizer 2 as described above, and the rest is sent to the fuel electrode 11 of the fuel cell body 10 and used as a fuel.
Hydrogen in the fuel gas flowing into the fuel electrode 11 causes an electrochemical reaction with oxygen in the air 14 being sent to the oxidant electrode 12 by the compressor 13, and as a result, the fuel gas is consumed and electric energy is consumed. You get 15.

【0021】一方、上記運転中は、一酸化炭素変成器9
後流に設けられた止め弁16を開とし、燃料ガスを流入さ
せる。その流入した燃料ガスを冷却器17で常温に冷却し
た後、水素貯蔵器18に導入し、水素吸蔵合金19に燃料ガ
ス中の主成分である水素を吸蔵させる。
On the other hand, during the above operation, the carbon monoxide transformer 9
The stop valve 16 provided on the downstream side is opened to allow the fuel gas to flow in. After the inflowing fuel gas is cooled to room temperature by the cooler 17, it is introduced into the hydrogen storage device 18, and the hydrogen storage alloy 19 stores hydrogen as the main component in the fuel gas.

【0022】しかして、起動時には止め弁16を閉、水素
貯蔵器18の後流に設けられた流量調節弁21を開とし水素
貯蔵器に内蔵した電気ヒ―タ20で加熱して通常運転中に
水素吸蔵合金19に吸蔵させた水素を放出させ、炭化水素
燃料1に添加する。炭化水素燃料1に添加する水素量
は、炭化水素燃料流量の2容量%になるよう次のように
調節される。すなわち、水添脱硫器2入口に設けられた
流量計22で炭化水素燃料流量が測定され、また流量調節
弁21後流に設けられた流量計23で水素流量が測定され
る。各流量計の流量信号は制御装置24に送信され、両者
の流量が比較される。炭化水素燃料流量に応じ、水素流
量が2容量%となるように制御装置24からの出力信号25
により流量調節弁23の開度が調節される。2容量%の水
素が添加された炭化水素燃料1は、前述の運転中と同様
脱硫器で脱硫される。
However, at the time of start-up, the stop valve 16 is closed, the flow control valve 21 provided in the downstream of the hydrogen storage 18 is opened, and the electric heater 20 built in the hydrogen storage is used for heating to perform normal operation. The hydrogen stored in the hydrogen storage alloy 19 is released and added to the hydrocarbon fuel 1. The amount of hydrogen added to the hydrocarbon fuel 1 is adjusted as follows so as to be 2% by volume of the flow rate of the hydrocarbon fuel. That is, the flow rate of hydrocarbon fuel is measured by the flow meter 22 provided at the inlet of the hydrodesulfurizer 2, and the flow rate of hydrogen is measured by the flow meter 23 provided downstream of the flow rate control valve 21. The flow rate signal of each flow meter is transmitted to the control device 24, and the flow rates of the both are compared. An output signal 25 from the control device 24 so that the hydrogen flow rate becomes 2% by volume according to the hydrocarbon fuel flow rate.
Thus, the opening degree of the flow rate control valve 23 is adjusted. The hydrocarbon fuel 1 to which 2% by volume of hydrogen has been added is desulfurized by the desulfurizer as in the above-described operation.

【0023】この様に、炭化水素燃料1中の水素量が2
容量%になるように、流量調節弁21の開度で水素貯蔵器
18からの水素流量を調節し、炭化水素燃料1に添加する
ことにより、起動時おいても炭化水素燃料1中に水素を
存在させることが出来る。これにより、水蒸気改質器5
が作動しておらず、そのため水素の無い起動時において
も、炭化水素燃料1に水素が添加されるため、水添脱硫
器2で炭化水素燃料1中の有機硫黄が硫化水素に変換さ
れる。そして脱硫器3で変換された硫化水素が吸着ささ
れるため、脱硫された炭化水素燃料1が水蒸気改質器5
に導入され、改質管6に充填された改質触媒7への硫黄
成分の吸着を防止することが出来る。
Thus, the amount of hydrogen in the hydrocarbon fuel 1 is 2
Adjust the flow rate control valve 21 opening so that the volume% is reached.
By adjusting the hydrogen flow rate from 18 and adding it to the hydrocarbon fuel 1, hydrogen can be made to exist in the hydrocarbon fuel 1 even at the time of starting. As a result, the steam reformer 5
Is not operating and therefore hydrogen is added to the hydrocarbon fuel 1 even at the time of starting without hydrogen, so that the organic sulfur in the hydrocarbon fuel 1 is converted into hydrogen sulfide in the hydrodesulfurizer 2. Then, since the hydrogen sulfide converted in the desulfurizer 3 is adsorbed, the desulfurized hydrocarbon fuel 1 is converted into the steam reformer 5
It is possible to prevent the sulfur component from being adsorbed to the reforming catalyst 7 introduced into the reforming pipe 6 and filled in the reforming pipe 6.

【0024】図2は本発明に係る燃料電池発電システム
の他の実施例を示すものである。図3と同一の機器及び
部位には同一の符号を付して示した。図2において示さ
れている符号1は炭化水素燃料であって、水添脱硫器
2、脱硫器3に順次導入され、炭化水素燃料中の硫黄成
分が除去される。硫黄成分の除去された炭化水素燃料1
は、蒸気発生器4からの蒸気と混合され改質触媒7が充
填された改質管6を内設した水蒸気改質器5に導入され
る。改質管6内の改質触媒7は主にアルミナに担持され
た強磁性の金属粒子で構成されており、炭化水素燃料は
水蒸気改質反応により水素を主成分とする燃料ガスに変
換される。そして改質された燃料ガスは改質触媒補集器
26及び一酸化炭素変成器9を順次通り燃料電池本体10の
燃料極11に送入される。また、燃料電池本体10の酸化剤
極12の酸素は、空気14をコンプレッサ―13で送りこむこ
とにより供給される。この結果、燃料電池本体10内で水
素と酸素より水が合成する電気化学反応が行われ、化学
エネルギ―が直接電気エネルギ―に変換され発電が起
き、電気エネルギ―15が得られる。
FIG. 2 shows another embodiment of the fuel cell power generation system according to the present invention. The same devices and parts as those in FIG. 3 are designated by the same reference numerals. Reference numeral 1 shown in FIG. 2 is a hydrocarbon fuel, which is sequentially introduced into the hydrodesulfurizer 2 and the desulfurizer 3 to remove the sulfur component in the hydrocarbon fuel. Hydrocarbon fuel from which sulfur components have been removed 1
Is introduced into the steam reformer 5 in which the reforming pipe 6 filled with the reforming catalyst 7 is mixed with the steam from the steam generator 4. The reforming catalyst 7 in the reforming tube 6 is mainly composed of ferromagnetic metal particles supported on alumina, and the hydrocarbon fuel is converted into a fuel gas containing hydrogen as a main component by a steam reforming reaction. . Then, the reformed fuel gas is used as a reforming catalyst collector.
26 and the carbon monoxide shift converter 9 are sequentially sent to the fuel electrode 11 of the fuel cell body 10. Further, the oxygen of the oxidizer electrode 12 of the fuel cell main body 10 is supplied by sending air 14 through the compressor 13. As a result, an electrochemical reaction in which water is synthesized from hydrogen and oxygen is performed in the fuel cell main body 10, the chemical energy is directly converted into electrical energy and power generation occurs, and electrical energy-15 is obtained.

【0025】燃料電池運転時において、水蒸気改質器5
に内設された改質管6の温度はバ―ナ8の加熱により 5
00℃から1000℃という高温となり改質管6は膨張する。
そして停止時には、改質管6の温度は室温となり改質管
6は運転時に比べ収縮する。この膨張と収縮の繰り返し
により、改質管6内の改質触媒7には機械的な繰り返し
応力が加わり破壊され粉化しガス下流側へ飛散してい
く。飛散した改質触媒7は水蒸気改質器5を流出して
も、強磁性体のNi系であるため、改質触媒補集器26に
充填されたメッシュ状の永久磁石に補集される。また、
運転中補集差圧計27で改質触媒補集器26の差圧が計測さ
れ改質触媒7の補集量が監視されている。差圧計測値が
ある一定値を越えると図示しない警報信号により自動的
に燃料電池の発電システムが停止するようになってい
る。これは、改質管6内の改質触媒量が減少し、しいて
は炭化水素燃料1の燃料ガスへの転化率が低下し、燃料
極への水素供給量が不足するため、正常な発電が行えな
くなるからである。この改質触媒補集器26を装備したこ
とにより、一酸化炭素変成器9の保護のみならず燃料電
池本体10の損傷も未然に防ぐことができる。
During operation of the fuel cell, the steam reformer 5
The temperature of the reforming pipe 6 installed inside the
The temperature rises from 00 ° C to 1000 ° C and the reforming pipe 6 expands.
When stopped, the temperature of the reforming pipe 6 becomes room temperature, and the reforming pipe 6 contracts as compared with during operation. By repeating this expansion and contraction, mechanical reforming stress is applied to the reforming catalyst 7 in the reforming pipe 6, and it is destroyed and pulverized and scattered toward the gas downstream side. Even if the reformed catalyst 7 that has scattered is discharged from the steam reformer 5, since it is a Ni-based ferromagnetic material, it is collected by the mesh-shaped permanent magnets filled in the reforming catalyst collector 26. Also,
During operation, the differential pressure of the reforming catalyst collector 26 is measured by the collecting differential pressure gauge 27, and the amount of the reforming catalyst 7 collected is monitored. When the differential pressure measurement value exceeds a certain value, an alarm signal (not shown) automatically stops the fuel cell power generation system. This is because the amount of the reforming catalyst in the reforming pipe 6 decreases, the conversion rate of the hydrocarbon fuel 1 to the fuel gas decreases, and the hydrogen supply amount to the fuel electrode becomes insufficient. Because you cannot do it. By equipping this reforming catalyst collector 26, not only the protection of the carbon monoxide shift converter 9 but also the damage of the fuel cell main body 10 can be prevented beforehand.

【0026】[0026]

【発明の効果】以上に述べたように、本発明において
は、通常運転中に水素吸蔵合金中に吸蔵させた水素を水
素が発生していない起動時に、炭化水素燃料に添加でき
るようにしたものであるから、起動時においても、水添
脱硫器、脱硫器が有効に作動し、炭化水素燃料中の有機
硫黄が脱硫され、水蒸気改質器に導入される。従って、
改質触媒の硫黄成分吸着による活性劣化が防止され、燃
料電池発電システムを長時間、安定的に運転することが
出来、発電効率の向上に寄与する。
As described above, in the present invention, the hydrogen stored in the hydrogen storage alloy during normal operation can be added to the hydrocarbon fuel at the start-up when hydrogen is not generated. Therefore, even at the time of start-up, the hydrodesulfurizer and the desulfurizer are effectively operated, and the organic sulfur in the hydrocarbon fuel is desulfurized and introduced into the steam reformer. Therefore,
Activity deterioration due to adsorption of the sulfur component of the reforming catalyst is prevented, the fuel cell power generation system can be stably operated for a long time, and it contributes to improvement of power generation efficiency.

【0027】また、改質触媒が高活性を長時間維持する
ことが出来るので、高SV(SpaceVelocity)運転が可
能で装置の小型化及び触媒コストの低減が図れる。さら
にまた、膨張と収縮の繰り返しにより、改質管内の改質
触媒は機械的な力が加わり破壊され粉化しガス下流側へ
飛散していくが、飛散した改質触媒は改質触媒補集器に
補集されることにより、一酸化炭素変成器で生じていた
メタネ―ション反応による一酸化炭素変成触媒の劣化、
水素収率の低下等を未然に防ぐことが出来る。また、改
質管内の改質触媒の残量も補集器差圧計を装備したこと
により併せて知ることができ、これによって水蒸気改質
器の改質状態も把握することが出来るので、燃料電池本
体に対して適切な水素量を供給することができ、燃料電
池本体の損傷もなく長寿命化が可能となり、長時間安定
的に運転することができる等の効果を奏する。
Further, since the reforming catalyst can maintain a high activity for a long time, a high SV (Space Velocity) operation can be performed, and the apparatus can be downsized and the catalyst cost can be reduced. Furthermore, due to repeated expansion and contraction, the reforming catalyst in the reforming pipe is destroyed by mechanical force and scattered into powder, and the scattered reforming catalyst is scattered to the downstream side of the gas. And the deterioration of the carbon monoxide shift catalyst due to the metalation reaction that has occurred in the carbon monoxide shift converter,
It is possible to prevent a decrease in hydrogen yield. In addition, the amount of reforming catalyst remaining in the reforming pipe can also be known by installing a collector differential pressure gauge, and the reforming state of the steam reformer can also be ascertained by this. An appropriate amount of hydrogen can be supplied to the main body, the fuel cell main body can be extended without causing damage, and long-term stable operation can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る燃料電池発電システムの一実施例
を示す系統図。
FIG. 1 is a system diagram showing an embodiment of a fuel cell power generation system according to the present invention.

【図2】本発明に係る燃料電池発電システムの他の実施
例を示す系統図。
FIG. 2 is a system diagram showing another embodiment of the fuel cell power generation system according to the present invention.

【図3】従来の燃料電池発電システムを示す系統図。FIG. 3 is a system diagram showing a conventional fuel cell power generation system.

【符号の説明】[Explanation of symbols]

1…炭化水素燃料、2…水添脱硫器、3…脱硫器、4…
蒸気発生器、5…水蒸気改質器、6…改質管、7…改質
触媒、8…バ―ナ、9…一酸化炭素変成器、10…燃料電
池本体、11…燃料極、12…酸化剤極、13…コンプレッサ
―、14…空気、15…電気エネルギ―、16…止め弁、17…
冷却器、18…水素貯蔵器、19…水素吸蔵合金、20…電気
ヒ―タ、21…流量調節弁、22…流量計、23…流量計、24
…制御装置、25…出力信号、26…改質触媒補集器、27…
補集器差圧計。
1 ... Hydrocarbon fuel, 2 ... Hydrodesulfurizer, 3 ... Desulfurizer, 4 ...
Steam generator, 5 ... Steam reformer, 6 ... Reforming tube, 7 ... Reforming catalyst, 8 ... Burner, 9 ... Carbon monoxide shifter, 10 ... Fuel cell main body, 11 ... Fuel electrode, 12 ... Oxidant electrode, 13 ... Compressor, 14 ... Air, 15 ... Electric energy, 16 ... Stop valve, 17 ...
Cooler, 18 ... Hydrogen storage device, 19 ... Hydrogen storage alloy, 20 ... Electric heater, 21 ... Flow control valve, 22 ... Flow meter, 23 ... Flow meter, 24
... Control device, 25 ... Output signal, 26 ... Reforming catalyst collector, 27 ...
Collector differential pressure gauge.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素燃料を脱硫装置で脱硫した後、
水蒸気を加えて水蒸気改質器に供給し、ここで水素を発
生させ、この水素を燃料電池に供給し、酸素と反応させ
て電気エネルギ―を取り出す燃料電池発電システムにお
いて、水素吸蔵合金を内蔵した水素貯蔵器を設置し、通
常運転中に貯蔵した水素を、起動時に放出させ炭化水素
燃料に添加し水添脱硫させることを特徴とする燃料電池
発電システム。
1. After desulfurizing a hydrocarbon fuel with a desulfurizer,
In a fuel cell power generation system in which steam is added and supplied to a steam reformer, where hydrogen is generated, and this hydrogen is supplied to a fuel cell and reacted with oxygen to extract electric energy, a hydrogen storage alloy is incorporated. A fuel cell power generation system comprising a hydrogen storage device, wherein hydrogen stored during normal operation is released at the time of startup and added to a hydrocarbon fuel for hydrodesulfurization.
【請求項2】 炭化水素燃料を脱硫装置で脱硫した後、
水蒸気を加えて水蒸気改質器に供給し、ここで水素を発
生させ、この水素を燃料電池に供給し、酸素と反応させ
て電気エネルギ―を取り出す燃料電池発電システムにお
いて、メッシュ状の永久磁石を充填した改質触媒補集器
を設置し、通常運転中に改質触媒が破壊しガス下流側へ
飛散しても、改質触媒補集器で補集することにより後流
に設置された一酸化炭素変成器内の一酸化炭素変成触媒
を保護することを特徴とする燃料電池発電システム。
2. After desulfurizing the hydrocarbon fuel with a desulfurizer,
In a fuel cell power generation system in which steam is added and supplied to a steam reformer, where hydrogen is generated, and this hydrogen is supplied to a fuel cell and reacted with oxygen to extract electric energy, a mesh-shaped permanent magnet is used. If the packed reforming catalyst collector is installed and the reforming catalyst is destroyed during normal operation and scatters to the gas downstream side, it is installed in the downstream by collecting with the reforming catalyst collector. A fuel cell power generation system characterized by protecting a carbon monoxide shift catalyst in a carbon oxide shift converter.
JP5327866A 1993-12-24 1993-12-24 Fuel cell power generating system Pending JPH07192746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5327866A JPH07192746A (en) 1993-12-24 1993-12-24 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5327866A JPH07192746A (en) 1993-12-24 1993-12-24 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPH07192746A true JPH07192746A (en) 1995-07-28

Family

ID=18203854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5327866A Pending JPH07192746A (en) 1993-12-24 1993-12-24 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPH07192746A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073102A (en) * 2001-09-04 2003-03-12 Masaru Ichikawa Apparatus for generating or storing hydrogen
JP2006092764A (en) * 2004-09-21 2006-04-06 Fuji Electric Holdings Co Ltd Fuel cell power generating device provided with supply system of reformed recycle gas for desulfurization
KR100652591B1 (en) * 2005-03-04 2006-12-01 엘지전자 주식회사 Fuel cell having hydrogen bombe
KR100675686B1 (en) * 2000-12-29 2007-02-01 주식회사 엘지이아이 Fuel supply apparatus for fuel cell
DE102008030575A1 (en) 2007-06-29 2009-01-29 Hitachi, Ltd. Organohydride reactor and hydrogen generator
WO2010041471A1 (en) 2008-10-09 2010-04-15 パナソニック株式会社 Hydrogen generator, fuel cell system, and method of operating hydrogen generator
WO2012073383A1 (en) 2010-12-03 2012-06-07 株式会社日立製作所 Natural energy storage system
US8568665B2 (en) 2010-12-28 2013-10-29 Nippon Seisen Co., Ltd. Catalyst structure and hydrogenation/dehydrogenation reaction module using the same catalyst structure
US8709967B2 (en) 2010-04-28 2014-04-29 Nippon Seisen Co., Ltd. Wire catalyst for hydrogenation/dehydrogenation reaction and manufacturing method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675686B1 (en) * 2000-12-29 2007-02-01 주식회사 엘지이아이 Fuel supply apparatus for fuel cell
JP2003073102A (en) * 2001-09-04 2003-03-12 Masaru Ichikawa Apparatus for generating or storing hydrogen
JP2006092764A (en) * 2004-09-21 2006-04-06 Fuji Electric Holdings Co Ltd Fuel cell power generating device provided with supply system of reformed recycle gas for desulfurization
KR100652591B1 (en) * 2005-03-04 2006-12-01 엘지전자 주식회사 Fuel cell having hydrogen bombe
DE102008030575A1 (en) 2007-06-29 2009-01-29 Hitachi, Ltd. Organohydride reactor and hydrogen generator
WO2010041471A1 (en) 2008-10-09 2010-04-15 パナソニック株式会社 Hydrogen generator, fuel cell system, and method of operating hydrogen generator
US8709967B2 (en) 2010-04-28 2014-04-29 Nippon Seisen Co., Ltd. Wire catalyst for hydrogenation/dehydrogenation reaction and manufacturing method therefor
US9180438B2 (en) 2010-04-28 2015-11-10 Nippon Seisen Co., Ltd. Wire catalyst for hydrogenation/dehydrogenation reaction and manufacturing method therefor
WO2012073383A1 (en) 2010-12-03 2012-06-07 株式会社日立製作所 Natural energy storage system
US9028781B2 (en) 2010-12-03 2015-05-12 Hitachi, Ltd. Renewable energy storage system
US8568665B2 (en) 2010-12-28 2013-10-29 Nippon Seisen Co., Ltd. Catalyst structure and hydrogenation/dehydrogenation reaction module using the same catalyst structure

Similar Documents

Publication Publication Date Title
US20020071976A1 (en) Sulfur-absorbent bed and fuel processing assembly incorporating the same
US20020114747A1 (en) Fuel processing system and apparatus therefor
JP2013177300A (en) Production method for reformed gas
WO2012169199A1 (en) Hydrogen generator, fuel cell system comprising same, and method for operating hydrogen generator
JPH07192746A (en) Fuel cell power generating system
TWI385845B (en) Solid oxide fuel cell (sofc) system and its operation method
US9527055B2 (en) Hydrogen generator and fuel cell system
JPH0333191A (en) Desulfurizer
JP4887021B2 (en) CO removing device, fuel reforming device, and fuel cell system
EP2138456A1 (en) Hydrogen generator, fuel cell power generation system including the same, and method for stopping the operation of hydrogen generator
JPH10214632A (en) Fuel cell power generation device
JP3865479B2 (en) Carbon monoxide removal system and carbon monoxide removal method
CN100483825C (en) Shift reactor, fuel cell system employing the same, and operating method of the same
JPH09268001A (en) Carbon monoxide modifier for fuel cell
JP2004217505A (en) Method for operating reformed gas production unit
JPH02188406A (en) Carbon monoxide converter
EP2821367B1 (en) Method for operating hydrogen generation device
JP2998217B2 (en) Fuel reformer
JP2004296102A (en) Fuel cell system and fuel cell system stopping method
JP2005082436A (en) Hydrogen generator and fuel cell system using the same
JP2000340242A (en) Heat pump type hydrogen purification device using waste heat of fuel cell
Krumpelt et al. Fuel Processing for Mobile Fuel Cell Systems
JP2012134056A (en) Fuel battery system and method for operating fuel battery system
JPS63231878A (en) Power generating method by fuel cell and its system
JP2012250873A (en) Hydrogen generation apparatus, and fuel cell system using the same