JP2004217505A - Method for operating reformed gas production unit - Google Patents

Method for operating reformed gas production unit Download PDF

Info

Publication number
JP2004217505A
JP2004217505A JP2003295408A JP2003295408A JP2004217505A JP 2004217505 A JP2004217505 A JP 2004217505A JP 2003295408 A JP2003295408 A JP 2003295408A JP 2003295408 A JP2003295408 A JP 2003295408A JP 2004217505 A JP2004217505 A JP 2004217505A
Authority
JP
Japan
Prior art keywords
temperature
reaction chamber
reforming
gas
reformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003295408A
Other languages
Japanese (ja)
Other versions
JP4304025B2 (en
Inventor
Osamu Okada
治 岡田
Kouta Yokoyama
晃太 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003295408A priority Critical patent/JP4304025B2/en
Publication of JP2004217505A publication Critical patent/JP2004217505A/en
Application granted granted Critical
Publication of JP4304025B2 publication Critical patent/JP4304025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a reformed gas production unit where the reduction of catalytic activity caused by the precipitation of carbon can be prevented while realizing high reforming efficiency. <P>SOLUTION: The fluid to be reformed comprising water vapor, carbon dioxide, ≥2C hydrocarbon fuel and oxygen is fed to a reaction chamber in a low temperature reformer 1 incorporated with a catalyst for reforming, and temperature control is performed in such a manner that the maximum temperature of the fluid to be reformed in contact with the catalyst for reforming is regulated to the temperature range of 200 to 800°C, and also, to the thermal decomposition temperature of the fuel or lower, so that a reformed gas comprising methane, hydrogen and carbon monoxide is produced. Further, gaseous oxygen and the second fluid to be reformed are fed to a second reaction chamber in a high temperature reformer 2 incorporated with a second catalyst for reforming, and temperature control is performed in such a manner that the maximum temperature of the second fluid to be reformed in contact with the second catalyst for reforming is held to the temperature range of 400 to 1,200°C, and also, the outlet temperature in the second reaction chamber is made higher than the outlet temperature in the reaction chamber, so that a second reformed gas comprising hydrogen, and carbon monoxide is produced. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、炭化水素系燃料を改質して水素及び一酸化炭素を含む合成ガスを生成するための改質ガス製造装置の運転方法に関する。   The present invention relates to a method for operating a reformed gas producing apparatus for reforming a hydrocarbon-based fuel to generate a synthesis gas containing hydrogen and carbon monoxide.

上記合成ガスは炭化水素又はメタノールなどを改質することによって製造することができ、このような燃料改質によって合成ガスを製造する改質ガス製造装置は、天然ガスからの液体燃料(GTL)の製造などの合成ガス製造分野や、燃料電池用などの水素製造分野に使用することができる。
現在の炭化水素系燃料の改質方式は、水蒸気改質、部分酸化およびこれらを複合したオートサーマル改質の3方式が主な方式である。
水蒸気改質法は下記の化1に示すように記述され、得られる合成ガスのH/CO比が高いため、主に水素製造分野にて適用されており、数多くの実績がある。炭化水素のみならず水蒸気からも水素を生成するため、高いH/CO比になり、水素製造に有利である反面、吸熱反応のため外部加熱が律速となって気体空間速度(ガス流量/触媒量)を大きくすることができない。
The above-mentioned synthesis gas can be produced by reforming hydrocarbon or methanol, and a reformed gas production apparatus for producing synthesis gas by such fuel reforming is capable of producing liquid fuel (GTL) from natural gas. It can be used in the field of syngas production such as production, and in the field of hydrogen production such as for fuel cells.
Currently, three main reforming methods for hydrocarbon fuels are steam reforming, partial oxidation, and autothermal reforming in which these are combined.
Steam reforming process is described as shown in the chemical formula 1 below, since H 2 / CO ratio of the resulting synthesis gas is high, which is mainly applied in hydrogen manufacturing field, there are a number of results. Hydrogen is generated not only from hydrocarbons but also from water vapor, resulting in a high H 2 / CO ratio, which is advantageous for hydrogen production. On the other hand, the endothermic reaction limits the rate of external heating, and the gas space velocity (gas flow rate / catalyst) Volume) cannot be increased.

[化1]
2n+2+nHO →(2n+1)H+nCO
[Formula 1]
C n H 2n + 2 + nH 2 O → (2n + 1) H 2 + nCO

部分酸化法(部分燃焼法ともいう)は、下記の化2に示すように燃料を部分酸化(部分燃焼)させて水素を生成する発熱反応であり、反応速度が速く、気体空間速度が大きくできるメリットがある反面、熱効率が低いデメリットがある。   The partial oxidation method (also referred to as a partial combustion method) is an exothermic reaction in which fuel is partially oxidized (partial combustion) to generate hydrogen as shown in the following Chemical Formula 2, and has a high reaction rate and a high gas space velocity. Although it has advantages, it has the disadvantage of low thermal efficiency.

[化2]
2n+2+0.5nO →(n+1)H+nCO
[Formula 2]
C n H 2n + 2 +0.5 nO 2 → (n + 1) H 2 + nCO

部分酸化法により得られる合成ガスはH/CO比が水蒸気改質法により得られる合成ガスに比較して低く、合成ガスの利用側で望まれるH/CO比が低い場合は有効である。しかし、部分酸化法による燃料改質の場合、メタンを始めとする炭化水素が改質されると同時に酸化脱水素反応を受けて重質炭化水素やカーボンになるため、連続運転が困難であり、また上記したように熱効率が良くないこともあって、天然ガスやナフサ等の改質法としては実用化が困難である。 Part synthesis gas obtained by the oxidation method is low as compared to synthesis gas H 2 / CO ratio is obtained by steam reforming process, if H 2 / CO ratios desired in the utilization side of the synthesis gas is low is effective . However, in the case of fuel reforming by the partial oxidation method, continuous operation is difficult because hydrocarbons such as methane are reformed at the same time and undergo oxidative dehydrogenation to become heavy hydrocarbons and carbon, Also, as described above, the thermal efficiency is not good, and it is difficult to commercialize the method for reforming natural gas, naphtha, and the like.

オートサーマル改質法は、部分酸化反応と水蒸気改質反応を一連または同時に進行させて、吸熱の水蒸気改質反応に必要な熱を部分酸化反応の発熱によって賄う複合システムである。一般的には2つのタイプがあり、1つはバーナ等を用いて部分酸化反応をガス相にて行った後、水蒸気改質を一連で行う方法(以下、ATRと略す)であり、もう1つは触媒を用いて部分酸化と水蒸気改質を同時に行う方法(以下、CPOと略す)である。これらオートサーマル改質法を用いた水素あるいは合成ガスの製造方法は各種文献に開示されている(例えば、特許文献1、2参照)。   The autothermal reforming method is a composite system in which a partial oxidation reaction and a steam reforming reaction proceed in series or simultaneously, and heat required for the endothermic steam reforming reaction is covered by heat generated by the partial oxidation reaction. Generally, there are two types, one is a method of performing a partial oxidation reaction in a gas phase using a burner or the like, and then performing a series of steam reforming (hereinafter abbreviated as ATR). One is a method of simultaneously performing partial oxidation and steam reforming using a catalyst (hereinafter abbreviated as CPO). Methods for producing hydrogen or synthesis gas using the autothermal reforming method are disclosed in various documents (for example, see Patent Documents 1 and 2).

オートサーマル改質法による燃料改質の問題点として、炭素数が2以上の炭化水素を原料として用いた場合、原料がメタンである場合に比べて改質器の入口付近でカーボン析出が激しく発生する点が挙げられる。即ち、図19に示すように、酸素による炭化水素の部分燃焼反応によって改質器の入口付近の温度が急激に上昇して、炭素数が2以上の炭化水素が熱分解して炭素になるためである。例えば、特許文献2の実施例及び比較例には、炭素析出が確認された例が記載されているが、その原因は反応室内の触媒層入口部の温度が急激に高温になって、炭化水素が熱分解して炭素が析出しているためと考えられる。   As a problem of fuel reforming by the autothermal reforming method, when hydrocarbons having 2 or more carbon atoms are used as a raw material, carbon deposition occurs more violently near the inlet of the reformer than when the raw material is methane. Point. That is, as shown in FIG. 19, the temperature near the inlet of the reformer rapidly rises due to the partial combustion reaction of hydrocarbons with oxygen, and hydrocarbons having 2 or more carbon atoms are thermally decomposed into carbon. It is. For example, in Examples and Comparative Examples of Patent Document 2, an example in which carbon deposition was confirmed is described. The cause is that the temperature of the inlet of the catalyst layer in the reaction chamber suddenly becomes high, and hydrocarbons are generated. Is thought to be due to the thermal decomposition of carbon.

上記オートサーマル改質法による燃料改質の問題点(カーボン析出)を解決するために、前段にプレリフォーマーを設置する技術が用いられる場合がある。プレリフォーマーでの改質方法としては、水蒸気改質を行うものとCPOを行うタイプがある(特許文献3参照)。水蒸気改質プレリフォーマーとしては、例えば図20に示すようなプレリフォーマー付きオートサーマル改質器が提案されている。即ち、プレリフォーマーにおいて、水蒸気改質反応によってカーボン析出が発生しない低温で炭化水素をメタンに改質したのち、オートサーマル改質器でメタンを改質して水素と一酸化炭素に変換している。特許文献3には、CPOプレリフォーマー+ATR技術の開示がなされており、すべてのより高級な炭化水素はCPO中で転化するとの記述があり、炭素数2以上の飽和炭化水素をCPOによって転化させるというコンセプトで実施していることがわかる。   In order to solve the problem (carbon deposition) of the fuel reforming by the autothermal reforming method, a technique of installing a pre-reformer in a preceding stage may be used. As reforming methods using a pre-reformer, there are a method of performing steam reforming and a method of performing CPO (see Patent Document 3). As a steam reforming prereformer, for example, an autothermal reformer with a prereformer as shown in FIG. 20 has been proposed. That is, in a pre-reformer, hydrocarbons are reformed to methane at a low temperature at which carbon deposition does not occur due to a steam reforming reaction, and then methane is reformed in an autothermal reformer to convert the hydrogen into hydrogen and carbon monoxide. . Patent Document 3 discloses a CPO prereformer + ATR technology, and describes that all higher hydrocarbons are converted in CPO, and that a saturated hydrocarbon having 2 or more carbon atoms is converted by CPO. You can see that the concept is being implemented.

特開2000−84410号公報(第2−14頁)JP-A-2000-84410 (pages 2-14) 特開2001−146406号公報(第2−6頁)JP 2001-146406 A (pages 2-6) 特開2002−97479号公報(第2−5頁)JP-A-2002-97479 (pages 2 to 5)

しかし、上記プレリフォーマー付きオートサーマル改質器では、プレリフォーマーに水蒸気改質を適用した場合、部分酸化反応に比べて反応速度の遅い水蒸気改質反応を低温で行うため、大量の触媒が必要になり改質器が小型化できないという問題がある。また、このプレリフォーマー付きオートサーマル改質器を日常の起動停止が必要とされる自動車用燃料電池や家庭用燃料電池の改質システムに適用する場合は常温からの起動に長時間を要するため改質器を改質温度近辺に維持するために改質原料である炭化水素燃料を常時燃やしておかなければならないという問題がある。   However, in the autothermal reformer with a pre-reformer, when steam reforming is applied to the pre-reformer, a large amount of catalyst is required because the steam reforming reaction, which has a lower reaction rate than the partial oxidation reaction, is performed at a low temperature. There is a problem that the reformer cannot be downsized. In addition, when this auto-thermal reformer with pre-reformer is applied to a reforming system for automobile fuel cells or household fuel cells that require daily startup and shutdown, it takes a long time to start up from room temperature. There is a problem in that the hydrocarbon fuel as the reforming raw material must be constantly burned in order to maintain the reformer near the reforming temperature.

また、プレリフォーマーにCPOを適用した場合は、改質効率を高くすることが可能であるが、一方で、例えば特許文献2に示される通り、触媒層入口部の温度が急激に高温となるため、炭素数2以上の炭化水素が熱分解して炭素析出が発生し、長期間安定に使用できないという問題がある。   In addition, when CPO is applied to the pre-reformer, the reforming efficiency can be increased, but on the other hand, as shown in Patent Document 2, for example, the temperature at the inlet of the catalyst layer rapidly increases. In addition, there is a problem that hydrocarbons having 2 or more carbon atoms are thermally decomposed and carbon deposition occurs, so that they cannot be used stably for a long time.

本発明は、上記実情に鑑みてなされたものであり、その第1の目的は、従来のプレリフォーマー付きオートサーマル改質装置の問題点を解決して、高い改質効率を実現しながら、カーボン析出による触媒活性の低下を防止して長期に亘って安定した性能を維持することが可能となる改質ガス製造装置の運転方法を提供することである。
第2の目的は、起動時間を短縮することが可能となる改質ガス製造装置の運転方法を提供することである。
The present invention has been made in view of the above circumstances, and a first object of the present invention is to solve the problems of the conventional autothermal reformer with a pre-reformer and realize a high reforming efficiency while achieving a high reforming efficiency. It is an object of the present invention to provide a method for operating a reformed gas production apparatus capable of preventing a decrease in catalyst activity due to precipitation and maintaining stable performance for a long period of time.
A second object is to provide an operation method of a reformed gas production device that can shorten a start-up time.

上記目的を達成するための本発明に係る改質ガス製造装置の運転方法の第一の特徴構成は、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つと、炭素数が2以上の炭化水素を含有する燃料と、酸素含有ガスとを含む流体を被改質流体として、改質用触媒を内蔵した反応室に供給し、前記改質用触媒に接する前記被改質流体の最高温度が200〜800℃(好ましくは200〜750℃)の温度範囲で且つ前記燃料の熱分解温度以下になるように前記反応室の温度を調整して、メタン、水素及び一酸化炭素を含む改質ガスを製造する点にある。   A first characteristic configuration of the operation method of the reformed gas production apparatus according to the present invention for achieving the above object includes a gas containing at least one of steam and a carbon dioxide-containing gas and a hydrocarbon having 2 or more carbon atoms. A fluid containing a fuel to be reformed and an oxygen-containing gas is supplied as a reforming fluid to a reaction chamber containing a reforming catalyst, and the maximum temperature of the reforming fluid in contact with the reforming catalyst is 200 to 800. A reformed gas containing methane, hydrogen and carbon monoxide is produced by adjusting the temperature of the reaction chamber so that the temperature is within a temperature range of 200 ° C. (preferably 200 to 750 ° C.) and equal to or lower than a thermal decomposition temperature of the fuel. On the point.

同第二の特徴構成は、上記第一の特徴構成に加えて、前記反応室に供給する前記酸素含有ガス、前記水蒸気及び前記二酸化炭素含有ガスのうちの少なくとも1つの前記燃料に対する供給量比を変化させて、前記反応室の温度を調整する点にある。   The second characteristic configuration is, in addition to the first characteristic configuration, a supply amount ratio to the fuel of at least one of the oxygen-containing gas, the water vapor, and the carbon dioxide-containing gas supplied to the reaction chamber. That is, the temperature of the reaction chamber is adjusted by changing the temperature.

同第三の特徴構成は、上記第二の特徴構成に加えて、前記反応室内の温度を検出する温度センサの検出情報に基づいて、前記燃料に対する供給量比を調整する制御を行う点にある。   The third characteristic configuration is that, in addition to the second characteristic configuration, control is performed to adjust a supply amount ratio to the fuel based on detection information of a temperature sensor that detects a temperature in the reaction chamber. .

同第四の特徴構成は、上記第一から第三のいずれかの特徴構成に加えて、前記反応室を冷却または加熱可能な温度調整機構により前記反応室の温度を調整する点にある。   The fourth characteristic configuration is that, in addition to any one of the first to third characteristic configurations, the temperature of the reaction chamber is adjusted by a temperature adjustment mechanism capable of cooling or heating the reaction chamber.

同第五の特徴構成は、上記第一から第四のいずれかの特徴構成に加えて、前記反応室に対して、水素含有ガスを供給する点にある。   The fifth feature is that, in addition to any of the first to fourth features, a hydrogen-containing gas is supplied to the reaction chamber.

同第六の特徴構成は、上記第五の特徴構成に加えて、前記反応室の温度が前記燃料の改質に必要な適正運転温度に達するまでは、前記反応室に前記水素含有ガスと酸素含有ガスを供給して水素を燃焼させ、その水素の燃焼熱により前記反応室の温度を前記適正運転温度に上昇させる点にある。   The sixth characteristic configuration is characterized in that, in addition to the fifth characteristic configuration, the hydrogen-containing gas and the oxygen-containing gas are supplied to the reaction chamber until the temperature of the reaction chamber reaches an appropriate operating temperature required for reforming the fuel. Hydrogen is burned by supplying a contained gas, and the temperature of the reaction chamber is raised to the proper operating temperature by the heat of combustion of the hydrogen.

同第七の特徴構成は、上記第一から第六のいずれかの特徴構成に加えて、前記改質用触媒が、水蒸気改質性能を有する金属を主成分とする触媒である点にある。   The seventh characteristic configuration is that, in addition to any one of the first to sixth characteristic configurations, the reforming catalyst is a catalyst containing a metal having steam reforming performance as a main component.

同第八の特徴構成は、上記第一から第七のいずれかの特徴構成に加えて、前記反応室の前に備えた脱硫装置によって、前記反応室に供給する前記燃料、前記各ガス及び前記水蒸気のうちの少なくとも1つに対して脱硫処理を行う点にある。   The eighth characteristic configuration is, in addition to any one of the first to seventh characteristic configurations, by a desulfurization device provided in front of the reaction chamber, the fuel supplied to the reaction chamber, the gases, and the fuel. The point is that at least one of the steam is subjected to the desulfurization treatment.

同第九の特徴構成は、上記第八の特徴構成に加えて、前記反応室に供給する総ガス中の硫黄濃度が5vol.ppb以下になるように前記脱硫装置を作動させる点にある。   The ninth feature is that, in addition to the eighth feature, the sulfur concentration in the total gas supplied to the reaction chamber is 5 vol. The point is to operate the desulfurization device so as to be ppb or less.

同第十の特徴構成は、上記第一から第九のいずれかの特徴構成に加えて、酸素含有ガス及び前記反応室にて生成した前記改質ガスを含む流体を第二被改質流体として、改質用第二触媒を内蔵した第二反応室に供給し、前記改質用第二触媒に接する前記第二被改質流体の最高温度が400〜1200℃の温度範囲に維持され、且つ前記第二反応室の出口温度が前記反応室の出口温度よりも高くなるように前記第二反応室の温度を調整して、水素及び一酸化炭素を含む第二改質ガスを製造する点にある。   The tenth feature configuration is, in addition to the first to ninth feature configurations, a fluid containing an oxygen-containing gas and the reformed gas generated in the reaction chamber as a second fluid to be reformed. Supplying the second catalyst for reforming to the second reaction chamber containing the second catalyst for reforming, the maximum temperature of the second fluid to be reformed in contact with the second catalyst for reforming is maintained in a temperature range of 400 to 1200 ° C., and By adjusting the temperature of the second reaction chamber so that the outlet temperature of the second reaction chamber is higher than the outlet temperature of the reaction chamber, to produce a second reformed gas containing hydrogen and carbon monoxide is there.

同第十一の特徴構成は、上記第十の特徴構成に加えて、前記第二反応室に対して、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つを供給する点にある。   The eleventh feature is that, in addition to the tenth feature, at least one of steam and a carbon dioxide-containing gas is supplied to the second reaction chamber.

同第十二の特徴構成は、上記第十一の特徴構成に加えて、前記第二反応室に供給する前記酸素含有ガス、前記水蒸気及び前記二酸化炭素含有ガスのうちの少なくとも1つの前記改質ガスに対する供給量比を変化させて、前記第二反応室の温度を調整する点にある。   The twelfth characteristic configuration is, in addition to the eleventh characteristic configuration, at least one of the oxygen-containing gas, the steam, and the carbon dioxide-containing gas supplied to the second reaction chamber. The point is to adjust the temperature of the second reaction chamber by changing the supply ratio to the gas.

同第十三の特徴構成は、上記第十二の特徴構成に加えて、前記第二反応室内の温度を検出する温度センサの検出情報に基づいて、前記改質ガスに対する供給量比を調整する制御を行う点にある。   The thirteenth characteristic configuration is that, in addition to the twelfth characteristic configuration, a supply amount ratio to the reformed gas is adjusted based on detection information of a temperature sensor that detects a temperature in the second reaction chamber. The point is to control.

同第十四の特徴構成は、上記第十から第十三のいずれかの特徴構成に加えて、前記第二反応室を冷却または加熱可能な第二温度調整機構により前記第二反応室の温度を調整する点にある。   The fourteenth characteristic configuration is characterized in that, in addition to any one of the tenth to thirteenth characteristic configurations, a temperature of the second reaction chamber is controlled by a second temperature adjustment mechanism capable of cooling or heating the second reaction chamber. The point is to adjust.

同第十五の特徴構成は、上記第十から第十四のいずれかの特徴構成に加えて、前記第二反応室の前に備えた脱硫装置によって、前記第二反応室に供給する前記各ガスのうちの少なくとも1つに対して脱硫処理を行う点にある。   The fifteenth feature is, in addition to any one of the tenth to fourteenth features, a desulfurization device provided in front of the second reaction chamber, wherein each of the components supplied to the second reaction chamber is provided. The desulfurization treatment is performed on at least one of the gases.

同第十六の特徴構成は、上記第十五の特徴構成に加えて、前記第二反応室に供給する総ガス中の硫黄濃度が5vol.ppb以下になるように前記脱硫装置を作動させる点にある。   The sixteenth characteristic configuration is the same as the fifteenth characteristic configuration, except that the sulfur concentration in the total gas supplied to the second reaction chamber is 5 vol. The point is to operate the desulfurization device so as to be ppb or less.

同第十七の特徴構成は、上記第十から第十六のいずれかの特徴構成に加えて、前記改質用第二触媒が、水蒸気改質性能を有する金属を主成分とする触媒である点にある。   The seventeenth characteristic configuration is, in addition to any one of the tenth to sixteenth characteristic configurations, the second reforming catalyst is a catalyst mainly composed of a metal having steam reforming performance. On the point.

同第十八の特徴構成は、上記第一から第十七のいずれかの特徴構成に加えて、前記反応室に供給する総ガス流量を時間当たりの気体空間速度で750h−1〜300000h−1の範囲とする点にある。 Wherein configuration of the eighteenth, said from the first addition to any of the characteristic feature of the seventeenth, the reaction per the total gas flow time is supplied to the chamber gas space velocity in 750h -1 ~300000h -1 In the range.

同第十九の特徴構成は、上記第一から第十八のいずれかの特徴構成に加えて、移動体用あるいは定置用に用いられる点にある。   A nineteenth feature of the present invention resides in that the nineteenth feature is used for a mobile object or for stationary use in addition to any one of the first to eighteenth features.

上記被改質流体又は第二被改質流体を構成することになる水蒸気、燃料、酸素含有ガス等の構成流体は、反応室又は第二反応室の触媒部に到着するまでに混合されていればよいから、各反応室に入る前に混合しても、各反応室に入ったのち触媒部に到着するまでの間で混合してもよい。
また、本発明の特徴構成(第一から第十九の特徴構成)は改質ガス製造装置の運転方法として規定しているが、本発明に従って改質ガス製造装置を運転すると改質ガスが製造されるから、本発明の特徴構成は改質ガス製造方法でもある。
The constituent fluids such as steam, fuel, and oxygen-containing gas that constitute the above-mentioned fluid to be reformed or the second fluid to be reformed may be mixed before reaching the catalyst section of the reaction chamber or the second reaction chamber. For this purpose, mixing may be performed before entering each reaction chamber, or may be performed after entering each reaction chamber and arriving at the catalyst section.
In addition, the characteristic configuration of the present invention (the first to nineteenth characteristic configurations) is defined as an operation method of the reformed gas producing apparatus, but when the reformed gas producing apparatus is operated according to the present invention, the reformed gas is produced. Therefore, the characteristic configuration of the present invention is also a reformed gas production method.

以下に作用並びに効果を説明する。
本発明に係る改質ガス製造装置の運転方法の第一の特徴構成によれば、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つと、炭素数が2以上の炭化水素を含有する燃料と、酸素含有ガスとを含む被改質流体が改質用触媒を内蔵した反応室に供給され、上記改質用触媒に接する上記被改質流体の最高温度が200〜800℃の温度範囲で且つ前記燃料の熱分解温度以下になるように前記反応室の温度が調整されて、メタン、水素及び一酸化炭素を含む改質ガスが生成される。換言すれば、第一の特徴構成(第二から第十九の特徴構成の場合も同様)を有する本発明は改質ガスの製造方法でもある。
The operation and effect will be described below.
According to the first characteristic configuration of the operation method of the reformed gas production device according to the present invention, at least one of steam and carbon dioxide-containing gas, a fuel containing a hydrocarbon having 2 or more carbon atoms, and oxygen A fluid to be reformed containing a contained gas is supplied to a reaction chamber containing a reforming catalyst, and the maximum temperature of the fluid to be reformed in contact with the reforming catalyst is in a temperature range of 200 to 800 ° C. and the fuel The temperature of the reaction chamber is adjusted so as to be equal to or lower than the thermal decomposition temperature of, and a reformed gas containing methane, hydrogen and carbon monoxide is generated. In other words, the present invention having the first characteristic configuration (the same applies to the second to nineteenth characteristic configurations) is also a method for producing a reformed gas.

すなわち、炭素数が2以上の炭化水素を含有する燃料を、メタン、水素及び一酸化炭素に改質する場合に、上記改質用触媒を内蔵した反応室内で、上記燃料が酸素含有ガスと反応して水素及び一酸化炭素が生成する発熱の部分酸化反応を進行させ、同時に、この部分酸化反応の発生熱を用いて、上記燃料が水または二酸化炭素と反応して炭素数1のメタン、水素、一酸化炭素などに改質される水蒸気改質反応を進行させる。この時、反応室内の温度を、上記改質用触媒に接する前記被改質流体の最高温度が200〜800℃(好ましくは200〜750℃)の温度範囲で且つ炭素数が2以上の炭化水素を含有する燃料の熱分解温度以下に抑えることにより、炭素数が2以上の炭化水素を含有する燃料の熱分解を防止することができる。また条件を選べば、上記の部分酸化反応の発熱と水蒸気改質反応の吸熱をバランスさせることが可能で、外部からの熱供給をなくすことも可能である。   That is, when a fuel containing a hydrocarbon having 2 or more carbon atoms is reformed into methane, hydrogen, and carbon monoxide, the fuel reacts with an oxygen-containing gas in a reaction chamber containing the reforming catalyst. To cause the exothermic partial oxidation reaction to generate hydrogen and carbon monoxide, and at the same time, using the heat generated by this partial oxidation reaction, the fuel reacts with water or carbon dioxide to produce methane and hydrogen having 1 carbon atom. And a steam reforming reaction for reforming into carbon monoxide or the like. At this time, the temperature in the reaction chamber is set so that the maximum temperature of the fluid to be reformed in contact with the reforming catalyst is in the temperature range of 200 to 800 ° C (preferably 200 to 750 ° C) and the hydrocarbon has 2 or more carbon atoms. By suppressing the temperature below the thermal decomposition temperature of the fuel containing, it is possible to prevent the thermal decomposition of the fuel containing a hydrocarbon having 2 or more carbon atoms. If the conditions are selected, it is possible to balance the heat generation of the partial oxidation reaction and the heat absorption of the steam reforming reaction, and it is also possible to eliminate external heat supply.

ここで、熱分解とは、炭化水素が気相中や固体表面などで炭素や水素、アセチレン等に分解することを意味し、熱分解温度とは上記の現象が顕著に見られる下限温度のことを意味する。また熱分解温度は炭化水素固有の物性値であり固定値であって、炭化水素の種類により異なり、炭素数が多いほど熱分解温度は低く、不飽和炭化水素は飽和炭化水素よりも熱分解温度が低い。炭素数が2以上の炭化水素を2種以上含有する燃料の熱分解温度は、一般的には燃料中に含まれる炭化水素の熱分解温度の中で最も低い熱分解温度のことである。なお、炭化水素の具体的な熱分解温度に関して、化学大辞典には、メタンの場合1200℃、エタンの場合800℃と記載されている。また、成書「Tables of Chemical Kinetics Homogeneous Reaction」(Circular of the National Bureau of Standards 510,1951)には熱分解温度に関する研究が纏められており、反応速度のアレニウスプロットおよび上記化学大辞典記載のメタン、エタンの熱分解温度から、プロパンの熱分解温度は約755℃、ブタンの熱分解温度は約690℃である。またヘキサンの熱分解温度は634℃〜665℃の間と推定される。   Here, thermal decomposition means that hydrocarbons are decomposed into carbon, hydrogen, acetylene, etc. in a gas phase or on a solid surface, and the thermal decomposition temperature is a lower limit temperature at which the above-mentioned phenomenon is remarkably observed. Means The pyrolysis temperature is a physical property value unique to hydrocarbons and is a fixed value. The pyrolysis temperature differs depending on the type of hydrocarbon. The higher the number of carbon atoms, the lower the pyrolysis temperature. Is low. The thermal decomposition temperature of a fuel containing two or more hydrocarbons having two or more carbon atoms is generally the lowest thermal decomposition temperature among the thermal decomposition temperatures of hydrocarbons contained in the fuel. Note that, regarding the specific thermal decomposition temperature of hydrocarbons, the Dictionary of Chemistry describes 1200 ° C. for methane and 800 ° C. for ethane. In addition, the book “Tables of Chemical Kinetics Homogeneous Reaction” (Circular of the National Bureau of Standards 510,1951) summarizes the study on thermal decomposition temperature, From the thermal decomposition temperatures of ethane and ethane, the thermal decomposition temperature of propane is about 755 ° C, and the thermal decomposition temperature of butane is about 690 ° C. The thermal decomposition temperature of hexane is estimated to be between 634 ° C and 665 ° C.

以上より、本発明のように、カーボン析出による触媒活性の低下を防止して長期に亘って安定した性能を維持するためには、改質用触媒に接する炭化水素の温度が炭化水素に固有の熱分解温度を超えない状態で改質反応を行うことが最も安全で確実な方法である。因みに、前述の従来技術には、触媒層に接する炭化水素の温度が熱分解温度以下の条件でオートサーマル改質を行う点の開示は見られない。例えば、特許文献1においては、炭化水素燃料としてナフサ(炭素数が5以上の炭化水素を含む)を用いて800℃の条件でオートサーマル改質を行っており、反応温度がナフサの熱分解温度以上であるため、触媒によっては炭素が析出している。特許文献2においては、重質炭化水素を原料として、触媒層の入口温度550℃、出口温度680℃で改質反応を行っていることから判断すると、触媒層の温度は更に高温になって、触媒層に接する重質炭化水素の熱分解温度を超えていることが推定され、実際に炭素析出が確認されている。特許文献3においては、炭化水素成分としてメタン、エタン、プロパン、ブタン、ペンタンを含んでいるが、出口温度が705℃以上であることから判断すると、触媒層に接する炭化水素の温度は更に高温になっているので、ブタンの熱分解温度(690℃)を超えていることが予想される。   From the above, as in the present invention, in order to prevent a decrease in catalytic activity due to carbon deposition and to maintain stable performance over a long period of time, the temperature of the hydrocarbon in contact with the reforming catalyst is specific to the hydrocarbon. Performing the reforming reaction at a temperature not exceeding the thermal decomposition temperature is the safest and most reliable method. Incidentally, the above-mentioned prior art does not disclose that autothermal reforming is performed under the condition that the temperature of the hydrocarbon in contact with the catalyst layer is equal to or lower than the thermal decomposition temperature. For example, in Patent Document 1, autothermal reforming is performed at 800 ° C. using naphtha (including a hydrocarbon having 5 or more carbon atoms) as a hydrocarbon fuel, and the reaction temperature is the thermal decomposition temperature of naphtha. As described above, carbon is deposited depending on the catalyst. In Patent Document 2, judging from the fact that the reforming reaction is performed at 550 ° C. inlet temperature and 680 ° C. outlet temperature of the catalyst layer using heavy hydrocarbon as a raw material, the temperature of the catalyst layer becomes higher, It is estimated that the temperature exceeds the thermal decomposition temperature of heavy hydrocarbons in contact with the catalyst layer, and carbon deposition has actually been confirmed. Patent Literature 3 includes methane, ethane, propane, butane, and pentane as the hydrocarbon components. However, judging from the fact that the outlet temperature is 705 ° C. or higher, the temperature of the hydrocarbon in contact with the catalyst layer is further increased. Therefore, it is expected that the temperature exceeds the thermal decomposition temperature of butane (690 ° C.).

また、炭化水素の炭素化は高温になるほど起こりやすくなること、及び、反応温度が低過ぎると改質反応が進まないことから、運転温度が200℃以上、800℃以下で反応させる。もっとも原料炭化水素の熱分解挙動によっては上限温度を幾分高くすることが可能である。   The carbonization of hydrocarbons is more likely to occur as the temperature increases, and the reforming reaction does not proceed if the reaction temperature is too low. Therefore, the reaction is performed at an operating temperature of 200 ° C. or more and 800 ° C. or less. However, it is possible to raise the maximum temperature somewhat depending on the thermal decomposition behavior of the raw hydrocarbon.

従って、高い改質効率を実現しながら、カーボン析出による改質触媒の活性の低下を防止して長期に亘って安定した性能を維持することが可能となる改質ガス製造装置の運転方法が提供される。   Therefore, there is provided a method for operating a reformed gas production apparatus that can prevent a decrease in activity of a reforming catalyst due to carbon deposition and maintain stable performance over a long period of time while realizing high reforming efficiency. Is done.

同第二の特徴構成によれば、前記反応室に供給する前記酸素含有ガス、前記水蒸気及び前記二酸化炭素含有ガスのうちの少なくとも1つの前記燃料に対する供給量比を変化させて、前記反応室の温度を調整する。
すなわち、上記反応室内の温度は前記部分酸化反応の発熱と水蒸気改質反応の吸熱のバランスに関係するので、反応室内の温度を200〜800℃の温度範囲で且つ炭素数2以上の炭化水素を含有する燃料の熱分解温度よりも低い温度に維持するように、酸素含有ガス、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つの前記燃料に対する供給量比を調整する。
According to the second feature, the supply ratio of the oxygen-containing gas, the water vapor and the carbon dioxide-containing gas to be supplied to the reaction chamber to at least one of the fuels is changed to change the supply amount ratio of the reaction chamber. Adjust the temperature.
That is, since the temperature in the reaction chamber is related to the balance between the heat generation of the partial oxidation reaction and the endothermic heat of the steam reforming reaction, the temperature in the reaction chamber is in the temperature range of 200 to 800 ° C and the hydrocarbon having 2 or more carbon atoms is The supply ratio of at least one of oxygen-containing gas, water vapor, and carbon dioxide-containing gas to the fuel is adjusted so as to maintain a temperature lower than the thermal decomposition temperature of the contained fuel.

例えば、前記燃料に対する酸素含有ガスの供給量比を大きくすると、上記炭化水素系燃料中の炭素量に対して酸素含有ガス量の比率が大きくなり、炭化水素系燃料の部分酸化反応が促進されるので、反応室の温度は上昇し、一方、前記燃料に対する酸素含有ガスの供給量比を小さくすると、上記炭化水素系燃料中の炭素量に対して酸素含有ガス量の比率が小さくなり、炭化水素系燃料の部分酸化反応が抑制されるので、反応室の温度は低下する。同様に、前記燃料に対する水蒸気または二酸化炭素含有ガスの供給量比を大きくすると、炭化水素系燃料の吸熱の改質反応が促進されるので、反応室の温度は低下し、一方、前記燃料に対する水蒸気または二酸化炭素含有ガスの供給量比を小さくすると、炭化水素系燃料の吸熱の改質反応が抑制されるので、反応室の温度は上昇する。   For example, when the supply ratio of the oxygen-containing gas to the fuel is increased, the ratio of the oxygen-containing gas amount to the carbon amount in the hydrocarbon-based fuel is increased, and the partial oxidation reaction of the hydrocarbon-based fuel is promoted. Therefore, when the temperature of the reaction chamber rises, while decreasing the supply ratio of the oxygen-containing gas to the fuel, the ratio of the oxygen-containing gas amount to the carbon amount in the hydrocarbon-based fuel decreases, and the Since the partial oxidation reaction of the system fuel is suppressed, the temperature of the reaction chamber decreases. Similarly, when the supply ratio of the steam or the carbon dioxide-containing gas to the fuel is increased, the endothermic reforming reaction of the hydrocarbon-based fuel is promoted, so that the temperature of the reaction chamber decreases, while the steam to the fuel decreases. Alternatively, when the supply ratio of the carbon dioxide-containing gas is reduced, the endothermic reforming reaction of the hydrocarbon-based fuel is suppressed, so that the temperature of the reaction chamber increases.

従って、例えば炭化水素系燃料の供給量を一定にした状態(炭素量を固定した状態)で、酸素含有ガス、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つの供給量を変化させることにより、前記反応室の温度を適正な温度に調整することが可能となる改質ガス製造装置の運転方法の好適な実施形態が提供される。   Therefore, for example, by changing the supply amount of at least one of the oxygen-containing gas, the water vapor, and the carbon dioxide-containing gas in a state where the supply amount of the hydrocarbon-based fuel is constant (a state in which the carbon amount is fixed), A preferred embodiment of a method for operating a reformed gas production device capable of adjusting the temperature of a reaction chamber to an appropriate temperature is provided.

同第三の特徴構成によれば、前記反応室内の温度を検出する温度センサの検出情報に基づいて、反応室内に供給される酸素含有ガス、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つの前記燃料に対する供給量比を調整制御する。   According to the third characteristic configuration, at least one of the oxygen-containing gas, water vapor, and carbon dioxide-containing gas supplied into the reaction chamber based on the detection information of the temperature sensor that detects the temperature in the reaction chamber. The supply ratio to the fuel is adjusted and controlled.

すなわち、反応室内に供給される酸素含有ガス、水蒸気または二酸化炭素含有ガスのうちの少なくとも1つの前記燃料に対する供給量比を反応室内の検出温度に基づいて調整する。なお、酸素含有ガスの前記燃料に対する供給量比(O/C)が高すぎると温度制御が困難になるため、大型の装置では上記供給量比(O/C)は0.01〜0.5の範囲にあることが望ましい。
従って、反応室内の温度の検出情報に基づいて、反応室内の温度について的確な自動温度制御が可能となる改質ガス製造装置の運転方法の好適な実施形態が提供される。
That is, the supply ratio of at least one of oxygen-containing gas, water vapor, or carbon dioxide-containing gas supplied into the reaction chamber to the fuel is adjusted based on the detected temperature in the reaction chamber. If the supply ratio (O 2 / C) of the oxygen-containing gas to the fuel is too high, temperature control becomes difficult. Therefore, in a large-sized apparatus, the supply ratio (O 2 / C) is 0.01 to 0. .5.
Therefore, a preferred embodiment of the operating method of the reformed gas production apparatus that enables accurate automatic temperature control of the temperature in the reaction chamber based on the detection information of the temperature in the reaction chamber is provided.

同第四の特徴構成によれば、温度調整機構によって、前記反応室を冷却または加熱して温度を調整することができる。
すなわち、前記反応室内の温度が高くなり過ぎる場合は、炭素数が2以上の炭化水素を含有する燃料の熱分解温度を超えないように前記反応室を冷却し、前記反応室内の温度が低くなり過ぎて反応が円滑に進まない場合は、前記反応室を加熱する。尚、上記反応室の冷却又は加熱は、例えば、反応室全体を冷却又は加熱し、あるいは、反応室の入口温度を低下又は上昇させることにより行う。
従って、前記反応室の反応温度を適切な温度範囲から外れないように維持することができる改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the fourth characteristic configuration, the temperature can be adjusted by cooling or heating the reaction chamber by the temperature adjustment mechanism.
That is, when the temperature in the reaction chamber is too high, the reaction chamber is cooled so as not to exceed the thermal decomposition temperature of a fuel containing a hydrocarbon having 2 or more carbon atoms, and the temperature in the reaction chamber becomes low. If the reaction does not proceed smoothly after that, the reaction chamber is heated. The cooling or heating of the reaction chamber is performed, for example, by cooling or heating the entire reaction chamber, or by lowering or increasing the inlet temperature of the reaction chamber.
Accordingly, there is provided a preferred embodiment of a method for operating a reformed gas production apparatus capable of maintaining the reaction temperature of the reaction chamber so as not to fall out of an appropriate temperature range.

同第五の特徴構成によれば、前記反応室に対して、水素含有ガスを供給して、反応室の温度を迅速に上昇させることができる。
すなわち、例えば、前記反応室に水素含有ガスと前記燃料と前記酸素含有ガスを供給すると、炭化水素系燃料よりも燃焼開始温度が低い水素が酸素と反応して燃焼し、また、反応室内の温度が300℃程度以上では大過剰の水蒸気共存下でも燃焼活性の高い触媒上で水素が燃焼するため、水素の燃焼熱により反応室の温度を炭素質の析出なく迅速に上昇させて、水蒸気改質及び部分酸化反応を円滑に進行させることができる。
従って、迅速な温度上昇操作が可能となる改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the fifth characteristic configuration, a hydrogen-containing gas is supplied to the reaction chamber, and the temperature of the reaction chamber can be quickly increased.
That is, for example, when a hydrogen-containing gas, the fuel, and the oxygen-containing gas are supplied to the reaction chamber, hydrogen having a combustion start temperature lower than that of the hydrocarbon-based fuel reacts with oxygen and burns, and the temperature in the reaction chamber also increases. However, when the temperature is about 300 ° C. or higher, hydrogen is burned on a catalyst having high combustion activity even in the presence of a large excess of steam, so that the heat of combustion of the hydrogen rapidly raises the temperature of the reaction chamber without depositing carbonaceous material, thereby improving steam reforming. In addition, the partial oxidation reaction can smoothly proceed.
Therefore, a preferred embodiment of the operating method of the reformed gas production device that enables a quick temperature increasing operation is provided.

同第六の特徴構成によれば、前記反応室の温度が前記燃料の改質に必要な適正運転温度に達するまでは、反応室に前記水素含有ガスと酸素含有ガスを供給して水素を燃焼させ、その水素の燃焼熱により反応室の温度を上記適正運転温度に上昇させる。
すなわち、始動時においては、前記反応室に水素含有ガスと酸素含有ガスを供給して、触媒による水素と酸素の燃焼反応により発生する熱で前記反応室の温度を適正運転温度まで短時間で迅速に上昇させる。
従って、始動性に優れた改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the sixth characteristic configuration, the hydrogen-containing gas and the oxygen-containing gas are supplied to the reaction chamber to burn hydrogen until the temperature of the reaction chamber reaches a proper operation temperature required for reforming the fuel. Then, the temperature of the reaction chamber is raised to the appropriate operating temperature by the heat of combustion of the hydrogen.
That is, at the time of startup, a hydrogen-containing gas and an oxygen-containing gas are supplied to the reaction chamber, and the temperature of the reaction chamber is quickly increased to an appropriate operation temperature by heat generated by a combustion reaction of hydrogen and oxygen by a catalyst in a short time. To rise.
Therefore, a preferred embodiment of the operation method of the reformed gas production apparatus having excellent startability is provided.

同第七の特徴構成によれば、前記反応室には、水蒸気改質性能を有する金属を主成分とする改質用触媒を備えられている。望ましい金属として、Ni,Co,Ru,Rh,Pt,Pdの中から選ばれる1つを主成分とする触媒がよい。担体の制限は特にないが、望ましくは、アルミナ、ジルコニア、シリカ、チタニア、マグネシア、カルシアから選ばれる1つを主成分とする担体がよい。
従って、前記反応室の改質性能を良好に発揮させるための改質用触媒を備えた改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the seventh characteristic configuration, the reaction chamber is provided with a reforming catalyst mainly composed of a metal having steam reforming performance. As a desirable metal, a catalyst mainly containing one selected from Ni, Co, Ru, Rh, Pt, and Pd is preferable. The carrier is not particularly limited, but is preferably a carrier containing one selected from alumina, zirconia, silica, titania, magnesia, and calcia as a main component.
Accordingly, a preferred embodiment of a method for operating a reformed gas producing apparatus including a reforming catalyst for satisfactorily exhibiting the reforming performance of the reaction chamber is provided.

同第八の特徴構成によれば、前記反応室に供給する炭化水素燃料、酸素含有ガス、水蒸気が供給される場合にはその水蒸気、二酸化炭素含有ガスが供給される場合にはその二酸化炭素含有ガス、及び水素が供給される場合にはその水素のうちの少なくとも1つに対して、反応室の前に備えた脱硫装置によって脱硫処理がされる。
すなわち、前記反応室に備えた改質用触媒が高濃度の硫黄成分によって活性低下しないように、各ガス中の硫黄成分を除去してから反応室に供給する。なお、脱硫装置には、例えば酸化銅CuOと酸化亜鉛ZnOを混合した銅亜鉛系の高次脱硫技術が採用できる。
従って、前記反応室に備えた改質用触媒の改質性能を硫黄被毒により低下させないようにした改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the eighth characteristic configuration, the hydrocarbon fuel, the oxygen-containing gas, and the water vapor to be supplied to the reaction chamber, when the water vapor is supplied, and when the carbon dioxide-containing gas is supplied, the carbon dioxide-containing gas is supplied. When gas and hydrogen are supplied, at least one of the hydrogen is desulfurized by a desulfurization device provided in front of the reaction chamber.
That is, the sulfur component in each gas is removed and then supplied to the reaction chamber so that the activity of the reforming catalyst provided in the reaction chamber does not decrease due to the high concentration of the sulfur component. The desulfurization apparatus may employ, for example, a copper-zinc-based high-order desulfurization technique in which copper oxide CuO and zinc oxide ZnO are mixed.
Accordingly, there is provided a preferred embodiment of a method for operating a reformed gas producing apparatus in which the reforming performance of a reforming catalyst provided in the reaction chamber is not reduced by sulfur poisoning.

同第九の特徴構成によれば、前記脱硫装置を作動させて、前記反応室に供給する総ガス中の硫黄濃度を5vol.ppb以下にする。
すなわち、前記反応室に備えた改質用触媒の硫黄被毒が発生しない総ガス中の硫黄濃度の具体値として、5vol.ppb以下の濃度にする。なお、望ましくは2vol.ppb以下、更に望ましくは1vol.ppb以下の濃度にする。
従って、前記反応室に備えた改質用触媒の硫黄被毒を確実に防止することが可能となる改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the ninth aspect, the desulfurization apparatus is operated to reduce the sulfur concentration in the total gas supplied to the reaction chamber to 5 vol. ppb or less.
That is, as a specific value of the sulfur concentration in the total gas in which the sulfur poisoning of the reforming catalyst provided in the reaction chamber does not occur, 5 vol. Make the concentration less than ppb. Preferably, 2 vol. ppb or less, more preferably 1 vol. Make the concentration less than ppb.
Therefore, there is provided a preferred embodiment of a method for operating a reformed gas production apparatus capable of reliably preventing sulfur poisoning of a reforming catalyst provided in the reaction chamber.

同第十の特徴構成によれば、酸素含有ガスと前記反応室で生成した改質ガスを含む第二被改質流体が改質用第二触媒を内蔵した第二反応室に供給され、上記改質用第二触媒に接する上記第二被改質流体の最高温度が400〜1200℃(好ましくは500〜1100℃)の温度範囲に維持され、且つ第二反応室の出口温度が前記反応室の出口温度よりも高くなるように前記第二反応室の温度が調整されて、水素及び一酸化炭素を含む第二改質ガスが生成される。   According to the tenth characteristic configuration, the second reforming fluid containing the oxygen-containing gas and the reformed gas generated in the reaction chamber is supplied to the second reaction chamber containing the second reforming catalyst, The maximum temperature of the second fluid to be reformed in contact with the second reforming catalyst is maintained in the temperature range of 400 to 1200 ° C (preferably 500 to 1100 ° C), and the outlet temperature of the second reaction chamber is set to The temperature of the second reaction chamber is adjusted so as to be higher than the outlet temperature of the second reaction chamber, and a second reformed gas containing hydrogen and carbon monoxide is generated.

すなわち、炭素数が2以上の炭化水素を含有する燃料を水素及び一酸化炭素に改質する場合に、前段の反応室と後段の第二反応室の2段の反応室構成により、前段の反応室において、前述のように、反応室内の温度を炭素数が2以上の炭化水素燃料の熱分解温度よりも低い温度に抑えて当該燃料の熱分解を防止しながらメタン(炭素数1)を生成するとともに、改質用第二触媒を内蔵した後段の第二反応室において、上記メタンが酸素含有ガスと反応する発熱の部分酸化反応と同時にメタンが水蒸気と反応する吸熱の水蒸気改質反応が進行する場合に、第二反応室の温度をメタンの熱分解が顕著に発生する1200℃よりも低い温度に抑えて、メタンの熱分解を防止することができる。一方、第二反応室の反応温度が低過ぎるとメタンの改質反応が進まないので下限温度を400℃として、第二反応室の運転温度を400〜1200℃の範囲に設定する。   That is, when a fuel containing a hydrocarbon having 2 or more carbon atoms is reformed into hydrogen and carbon monoxide, a two-stage reaction chamber configuration of a first-stage reaction chamber and a second-stage reaction chamber of a second stage is used to form a first-stage reaction chamber. In the chamber, as described above, the temperature in the reaction chamber is controlled to a temperature lower than the thermal decomposition temperature of the hydrocarbon fuel having 2 or more carbon atoms, thereby preventing the thermal decomposition of the fuel and producing methane (1 carbon number). At the same time, in the second reaction chamber in the second stage in which the second reforming catalyst is built, an endothermic steam reforming reaction in which methane reacts with steam proceeds simultaneously with the exothermic partial oxidation reaction in which the methane reacts with the oxygen-containing gas. In this case, the temperature of the second reaction chamber can be suppressed to a temperature lower than 1200 ° C. at which thermal decomposition of methane occurs remarkably, thereby preventing thermal decomposition of methane. On the other hand, if the reaction temperature in the second reaction chamber is too low, the reforming reaction of methane does not proceed. Therefore, the lower limit temperature is set to 400 ° C, and the operating temperature of the second reaction chamber is set in the range of 400 to 1200 ° C.

さらに、第二反応室の出口温度が前記反応室の出口温度よりも高くなるように前記第二反応室の温度を調整すると、前記反応室で生成した改質ガスに対する第二反応室内での部分酸化反応が促進される結果、第二反応室から生成される改質ガスの組成において、水素の割合が低下し、一酸化炭素の割合を上昇させることができる。   Further, when the temperature of the second reaction chamber is adjusted so that the outlet temperature of the second reaction chamber is higher than the outlet temperature of the reaction chamber, a portion of the reformed gas generated in the reaction chamber in the second reaction chamber is adjusted. As a result of the accelerated oxidation reaction, in the composition of the reformed gas generated from the second reaction chamber, the proportion of hydrogen decreases, and the proportion of carbon monoxide can increase.

従って、炭素数が2以上の炭化水素を含有する燃料を水素及び一酸化炭素に改質する場合に、後段の第二反応室において、高い改質効率を実現しながら、カーボン析出による触媒活性の低下及び過熱による触媒の劣化を防止して長期に亘って安定した性能を維持することが可能となり、さらに、水素対一酸化炭素の比が低い、例えば液体燃料の原料として好適な改質ガスを製造することができる改質ガス製造装置の運転方法の好適な実施形態が提供される。   Therefore, when reforming a fuel containing hydrocarbons having 2 or more carbon atoms to hydrogen and carbon monoxide, the catalyst activity due to carbon deposition is realized while realizing high reforming efficiency in the second reaction chamber at the subsequent stage. It is possible to prevent the catalyst from deteriorating due to reduction and overheating, and to maintain stable performance over a long period of time.Furthermore, the ratio of hydrogen to carbon monoxide is low. A preferred embodiment of a method for operating a reformed gas production device that can be produced is provided.

同第十一の特徴構成によれば、第二反応室に対して、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つが供給される。
すなわち、第二反応室において前段の反応室で生成された前記改質ガスを、水素及び一酸化炭素を含む合成ガスに改質する場合に、前記改質ガスが酸素含有ガスと反応して水素及び一酸化炭素を生成する発熱の部分酸化反応を進行させ、同時に、この部分酸化反応の発生熱を用いて、前記改質ガスが水蒸気または二酸化炭素と反応して水素及び一酸化炭素を生成する改質反応を進行させる。また、条件を選べば、上記の部分酸化反応の発熱とその後の改質反応の吸熱をバランスさせることが可能で、外部からの熱供給をなくすことも可能である。この場合に、第二反応室に供給する水蒸気及び二酸化炭素含有ガスの供給比率を変化させると、生成される合成ガス中の水素及び一酸化炭素の比率が変化する。
従って、メタン、水素、一酸化炭素からなる改質ガスを水素及び一酸化炭素を含む合成ガスに改質する場合に、高い改質効率を実現しながら、生成される合成ガス中の水素及び一酸化炭素の比率を必要に応じて調整することが可能となる改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the eleventh feature, at least one of steam and a carbon dioxide-containing gas is supplied to the second reaction chamber.
That is, when the reformed gas generated in the previous reaction chamber in the second reaction chamber is reformed into a synthesis gas containing hydrogen and carbon monoxide, the reformed gas reacts with the oxygen-containing gas to generate hydrogen. And the exothermic partial oxidation reaction that produces carbon monoxide proceeds, and at the same time, using the heat of this partial oxidation reaction, the reformed gas reacts with steam or carbon dioxide to produce hydrogen and carbon monoxide. The reforming reaction proceeds. Further, if conditions are selected, it is possible to balance the heat generation of the above-mentioned partial oxidation reaction with the endothermic heat of the subsequent reforming reaction, and it is also possible to eliminate external heat supply. In this case, when the supply ratio of the water vapor and the carbon dioxide-containing gas supplied to the second reaction chamber is changed, the ratio of hydrogen and carbon monoxide in the generated synthesis gas changes.
Therefore, when reforming a reformed gas consisting of methane, hydrogen, and carbon monoxide into a synthesis gas containing hydrogen and carbon monoxide, it is possible to achieve a high reforming efficiency and achieve a high reforming efficiency, while achieving a high reforming efficiency. A preferred embodiment of a method for operating a reformed gas production device that enables the ratio of carbon oxide to be adjusted as needed is provided.

同第十二の特徴構成によれば、前記第二反応室に供給する前記酸素含有ガス、前記水蒸気及び前記二酸化炭素含有ガスのうちの少なくとも1つの前記改質ガスに対する供給量比を変化させて、前記第二反応室の温度を調整する。
すなわち、上記第二反応室内の温度は部分酸化反応の発熱と水蒸気改質反応の吸熱のバランスに関係するので、第二反応室内の温度を調整するために、酸素含有ガス、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つの前記改質ガスに対する供給量比を調整する。
According to the twelfth characteristic configuration, the supply amount ratio to the reformed gas of at least one of the oxygen-containing gas, the water vapor, and the carbon dioxide-containing gas supplied to the second reaction chamber is changed. And adjusting the temperature of the second reaction chamber.
That is, the temperature in the second reaction chamber is related to the balance between the heat generated in the partial oxidation reaction and the endotherm in the steam reforming reaction. A supply ratio of at least one of the gases to the reformed gas is adjusted.

例えば、前記改質ガスに対する酸素含有ガスの供給量比を大きくすると、改質ガスに含まれるメタン中の炭素量に対して酸素含有ガス量の比率が大きくなり、メタンの部分酸化反応が促進されるので、第二反応室の温度は上昇し、一方、前記改質ガスに対する酸素含有ガスの供給量比を小さくすると、上記メタン中の炭素量に対して酸素含有ガス量の比率が小さくなり、メタンの部分酸化反応が抑制されるので、第二反応室の温度は低下する。同様に、前記改質ガスに対する水蒸気または二酸化炭素含有ガスの供給量比を大きくすると、メタンの吸熱の水蒸気改質反応が促進されるので、第二反応室の温度は低下し、一方、前記改質ガスに対する水蒸気または二酸化炭素含有ガスの供給量比を小さくすると、メタンの吸熱の水蒸気改質反応が抑制されるので、第二反応室の温度は上昇する。   For example, when the supply ratio of the oxygen-containing gas to the reformed gas is increased, the ratio of the oxygen-containing gas amount to the carbon amount in the methane contained in the reformed gas is increased, and the partial oxidation reaction of methane is promoted. Therefore, the temperature of the second reaction chamber rises, while reducing the supply ratio of the oxygen-containing gas to the reformed gas reduces the ratio of the oxygen-containing gas amount to the carbon amount in the methane, Since the partial oxidation reaction of methane is suppressed, the temperature of the second reaction chamber decreases. Similarly, if the supply ratio of the steam or the carbon dioxide-containing gas to the reformed gas is increased, the steam reforming reaction of endothermic methane is accelerated, so that the temperature of the second reaction chamber decreases, while the reforming temperature decreases. If the supply ratio of the steam or carbon dioxide-containing gas to the gas is reduced, the endothermic steam reforming reaction of methane is suppressed, and the temperature of the second reaction chamber rises.

従って、例えば改質ガス中のメタンの供給量を一定にした状態(炭素量を固定した状態)で、酸素含有ガス、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つの供給量を変化させることにより、前記第二反応室の温度を適正な温度に調整することが可能となる改質ガス製造装置の運転方法の好適な実施形態が提供される。   Therefore, for example, by changing the supply amount of at least one of the oxygen-containing gas, the water vapor, and the carbon dioxide-containing gas in a state where the supply amount of methane in the reformed gas is kept constant (in a state where the carbon amount is fixed). A preferred embodiment of a method for operating a reformed gas production apparatus that enables the temperature of the second reaction chamber to be adjusted to an appropriate temperature is provided.

同第十三の特徴構成によれば、前記第二反応室内の温度を検出する温度センサの検出情報に基づいて、第二反応室内に供給される酸素含有ガス、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つの前記改質ガスに対する供給量比を調整制御する。   According to the thirteenth characteristic configuration, based on the detection information of the temperature sensor that detects the temperature in the second reaction chamber, the oxygen-containing gas, water vapor, and carbon dioxide-containing gas supplied into the second reaction chamber The supply ratio to at least one of the reformed gases is adjusted and controlled.

すなわち、第二反応室内に供給される酸素含有ガス、水蒸気または二酸化炭素含有ガスのうちの少なくとも1つの前記改質ガスに対する供給量比を第二反応室内の検出温度に基づいて調整する。なお、酸素含有ガスの前記改質ガス中のメタンに対する供給量比(O/C)が高すぎると温度制御が困難になるため、大型の装置では上記供給量比(O/C)は0.01〜0.5の範囲にあることが望ましい。
従って、第二反応室内の温度の検出情報に基づいて、第二反応室内の温度について的確な自動温度制御が実現できる改質ガス製造装置の運転方法の好適な実施形態が提供される。
That is, the supply ratio of at least one of the oxygen-containing gas, steam, and carbon dioxide-containing gas supplied to the second reaction chamber to the reformed gas is adjusted based on the detected temperature in the second reaction chamber. If the supply ratio (O 2 / C) of the oxygen-containing gas to methane in the reformed gas is too high, it becomes difficult to control the temperature. Therefore, in a large-sized apparatus, the supply ratio (O 2 / C) is large. It is desirable to be in the range of 0.01 to 0.5.
Therefore, a preferred embodiment of the operating method of the reformed gas production device capable of realizing accurate automatic temperature control of the temperature in the second reaction chamber based on the detection information of the temperature in the second reaction chamber is provided.

同第十四の特徴構成によれば、第二温度調整機構によって、前記第二反応室を冷却または加熱して温度を調整することができる。
すなわち、前記第二反応室内の温度が高くなり過ぎる場合は、メタンの熱分解が顕著に発生する1200℃を超えないように第二反応室を冷却し、第二反応室内の温度が低くなり過ぎて反応が円滑に進まない場合は、第二反応室を加熱する。尚、第二反応室の冷却又は加熱は、例えば、第二反応室全体を冷却又は加熱したり、あるいは、第二反応室の入口温度を低下又は上昇させることにより行う。
従って、前記第二反応室の反応温度を適切な温度範囲から外れないように維持することができる改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the fourteenth characteristic configuration, the temperature can be adjusted by cooling or heating the second reaction chamber by the second temperature adjustment mechanism.
That is, when the temperature in the second reaction chamber is too high, the second reaction chamber is cooled so that the temperature does not exceed 1200 ° C. at which thermal decomposition of methane occurs remarkably, and the temperature in the second reaction chamber becomes too low. If the reaction does not proceed smoothly, the second reaction chamber is heated. The cooling or heating of the second reaction chamber is performed, for example, by cooling or heating the entire second reaction chamber, or by lowering or increasing the inlet temperature of the second reaction chamber.
Therefore, a preferred embodiment of the method for operating the reformed gas production device capable of maintaining the reaction temperature of the second reaction chamber so as not to fall out of an appropriate temperature range is provided.

同第十五の特徴構成によれば、前記第二反応室に供給する酸素含有ガス、水蒸気が供給される場合にはその水蒸気、二酸化炭素含有ガスが供給される場合にはその二酸化炭素含有ガスのうちの少なくとも1つに対して、第二反応室の前に備えた脱硫装置によって脱硫処理がされる。
すなわち、前記第二反応室に備えた改質用第二触媒が高濃度の硫黄成分によって活性低下しないように、各ガス中の硫黄成分を除去してから第二反応室に供給する。なお、脱硫装置には、例えば酸化銅CuOと酸化亜鉛ZnOを混合した銅亜鉛系の高次脱硫技術が採用できる。
従って、第二反応室に備えた改質用第二触媒の改質性能を硫黄被毒により低下させないようにした改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the fifteenth feature, the oxygen-containing gas to be supplied to the second reaction chamber, the water vapor when the water vapor is supplied, and the carbon dioxide-containing gas when the carbon dioxide-containing gas is supplied Is desulfurized by a desulfurization device provided in front of the second reaction chamber.
That is, the sulfur component in each gas is removed and then supplied to the second reaction chamber so that the activity of the second reforming catalyst provided in the second reaction chamber does not decrease due to the high concentration of the sulfur component. The desulfurization apparatus may employ, for example, a copper-zinc-based high-order desulfurization technique in which copper oxide CuO and zinc oxide ZnO are mixed.
Therefore, a preferred embodiment of the operating method of the reformed gas producing apparatus is provided in which the reforming performance of the second reforming catalyst provided in the second reaction chamber is not reduced by sulfur poisoning.

同第十六の特徴構成によれば、前記脱硫装置を作動させて、前記第二反応室に供給する総ガス中の硫黄濃度を5vol.ppb以下にする。
すなわち、前記第二反応室に備えた改質用第二触媒の硫黄被毒が発生しない総ガス中の硫黄濃度の具体値として、5vol.ppb以下の濃度にする。なお、望ましくは2vol.ppb以下、更に望ましくは1vol.ppb以下の濃度にする。
従って、前記第二反応室に備えた改質用第二触媒の硫黄被毒を確実に防止することが可能となる改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the sixteenth aspect, the desulfurization device is operated to reduce the sulfur concentration in the total gas supplied to the second reaction chamber to 5 vol. ppb or less.
That is, as a specific value of the sulfur concentration in the total gas in which the sulfur poisoning of the second reforming catalyst provided in the second reaction chamber does not occur, 5 vol. Make the concentration less than ppb. Preferably, 2 vol. ppb or less, more preferably 1 vol. Make the concentration less than ppb.
Therefore, a preferred embodiment of the operating method of the reformed gas production device which can surely prevent the sulfur poisoning of the second reforming catalyst provided in the second reaction chamber is provided.

同第十七の特徴構成によれば、前記第二反応室には、水蒸気改質性能を有する金属を主成分とする改質用第二触媒を備えられている。望ましい金属として、Ni,Co,Ru,Rh,Pt,Pdの中から選ばれる1つを主成分とする触媒がよい。担体の制限は特にないが、望ましくは、アルミナ、ジルコニア、シリカ、チタニア、マグネシア、カルシアから選ばれる1つを主成分とする担体がよい。
従って、前記第二反応室の改質性能を良好に発揮させるための改質用第二触媒を備えた改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the seventeenth characteristic configuration, the second reaction chamber is provided with a second reforming catalyst mainly composed of a metal having steam reforming performance. As a desirable metal, a catalyst mainly containing one selected from Ni, Co, Ru, Rh, Pt, and Pd is preferable. The carrier is not particularly limited, but is preferably a carrier containing one selected from alumina, zirconia, silica, titania, magnesia, and calcia as a main component.
Therefore, a preferred embodiment of the operating method of the reformed gas producing apparatus including the reforming second catalyst for satisfactorily exhibiting the reforming performance of the second reaction chamber is provided.

同第十八の特徴構成によれば、前記反応室に供給する総ガス流量を時間当たりの気体空間速度で750h−1〜300000h−1の範囲とする。
すなわち、前記反応室では水蒸気改質反応とともに、反応速度が速い部分酸化反応が同時進行するので、前記反応室に供給する総ガス流量を、時間当たりの気体空間速度で750h−1〜300000h−1の広い範囲で変更して、生成する改質ガス量を増減させるようにしても、前記反応室での改質反応を適正に行わせることができる。
従って、広い範囲のガス流量の条件で安定した改質反応を行わせることが可能となる改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to a feature configuration of the eighteenth, the range of 750h -1 ~300000h -1 at a gas space velocity per a total gas flow rate supplied into the reaction chamber time.
That is, in the reaction chamber, since the partial oxidation reaction having a high reaction rate simultaneously proceeds with the steam reforming reaction, the total gas flow rate supplied to the reaction chamber is set to a gas hourly space velocity of 750 h -1 to 300,000 h -1. The reforming reaction in the reaction chamber can be properly performed even if the amount of the reformed gas to be generated is increased or decreased by changing in a wide range.
Therefore, a preferred embodiment of the operating method of the reformed gas producing apparatus that enables a stable reforming reaction to be performed under a wide range of gas flow conditions is provided.

同第十九の特徴構成によれば、改質ガス製造装置が、移動体用あるいは定置用に用いられる。
すなわち、前記反応室や第二反応室において部分酸化反応と水蒸気改質反応を同時進行させることで、改質ガス製造装置を全体として小型に形成しながらも反応速度を速くして、水素等の改質ガスを多量に生成することが可能となる。また、移動体用や定置用の小型の改質ガス製造装置の場合は、第二反応室での生成高温改質ガスから熱交換器等によって回収した熱で水を加熱して、前記反応室や第二反応室に供給する水蒸気を簡単に発生させることができるので、特別の水蒸気発生熱源が不要となり、この点でも装置をコンパクト化できる。
従って、小型且つ高性能で、移動体用あるいは定置用に適した改質ガス製造装置の運転方法の好適な実施形態が提供される。
According to the nineteenth characteristic configuration, the reformed gas production device is used for a mobile object or a stationary object.
That is, by simultaneously proceeding the partial oxidation reaction and the steam reforming reaction in the reaction chamber and the second reaction chamber, the reaction speed is increased while the reformed gas production apparatus is formed in a small size as a whole, and hydrogen and the like are produced. A large amount of reformed gas can be generated. Further, in the case of a small reformed gas producing apparatus for a moving object or stationary, water is heated by heat recovered from a high-temperature reformed gas generated in the second reaction chamber by a heat exchanger or the like, and the reaction chamber is heated. And the steam to be supplied to the second reaction chamber can be easily generated, so that a special heat source for generating steam is not required, and the apparatus can be made compact in this respect as well.
Accordingly, a preferred embodiment of a method for operating a reformed gas producing apparatus which is small, has high performance, and is suitable for a moving object or stationary is provided.

本発明に係る改質ガス製造装置(以下、燃料改質装置という)の運転方法の実施形態について説明する。
図1は燃料改質装置の概念図であり、低温改質部1と高温改質部2の2段の改質部からなる。すなわち、前段の低温改質部1(以下、低温改質器1という)では、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つと、炭素数が2以上の炭化水素を含有する燃料(以下、炭素数が2以上の炭化水素系燃料ともいう)と、酸素含有ガスとを含む流体を被改質流体として、改質用触媒を内蔵した反応室に供給し、前記改質用触媒に接する前記被改質流体の最高温度が200〜800℃(好ましくは200〜750℃)の温度範囲で且つ前記燃料の熱分解温度以下になるように前記反応室の温度を調整して、メタン、水素及び一酸化炭素を含む改質ガス(以下、第一改質ガスという)を製造する。
An embodiment of a method for operating a reformed gas producing apparatus (hereinafter, referred to as a fuel reforming apparatus) according to the present invention will be described.
FIG. 1 is a conceptual diagram of a fuel reforming apparatus, which includes a two-stage reforming section including a low-temperature reforming section 1 and a high-temperature reforming section 2. That is, in the former low-temperature reforming section 1 (hereinafter, referred to as low-temperature reformer 1), at least one of steam and carbon dioxide-containing gas and a fuel containing a hydrocarbon having 2 or more carbon atoms (hereinafter, carbon A fluid containing a hydrocarbon-based fuel having a number of 2 or more) and an oxygen-containing gas is supplied as a fluid to be reformed to a reaction chamber containing a reforming catalyst, and the fluid in contact with the reforming catalyst is supplied to the reaction chamber. The temperature of the reaction chamber is adjusted so that the maximum temperature of the reforming fluid is in the temperature range of 200 to 800 ° C. (preferably 200 to 750 ° C.) and equal to or lower than the thermal decomposition temperature of the fuel. A reformed gas containing carbon oxide (hereinafter, referred to as a first reformed gas) is produced.

また、後段の高温改質部2(以下、高温改質器2という)では、酸素含有ガス及び前記反応室にて生成した前記第一改質ガスを含む流体を第二被改質流体として、改質用第二触媒を内蔵した第二反応室に供給し、前記改質用第二触媒に接する前記第二被改質流体の最高温度が400〜1200℃の温度範囲に維持され、且つ前記第二反応室の出口温度が前記反応室の出口温度よりも高くなるように前記第二反応室の温度を調整して、水素及び一酸化炭素を含む第二改質ガスを製造する。さらに、上記第二反応室に対して、上記第一改質ガス及び酸素含有ガスが供給される他、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つが供給可能である。   Further, in the subsequent high-temperature reforming section 2 (hereinafter, referred to as high-temperature reformer 2), a fluid containing an oxygen-containing gas and the first reformed gas generated in the reaction chamber is used as a second reformed fluid. The maximum temperature of the second fluid to be reformed, which is supplied to the second reaction chamber containing the second reforming catalyst and is in contact with the second reforming catalyst, is maintained in a temperature range of 400 to 1200 ° C., and A second reformed gas containing hydrogen and carbon monoxide is produced by adjusting the temperature of the second reaction chamber so that the outlet temperature of the second reaction chamber is higher than the outlet temperature of the reaction chamber. Furthermore, in addition to the supply of the first reformed gas and the oxygen-containing gas to the second reaction chamber, at least one of water vapor and a carbon dioxide-containing gas can be supplied.

図1に示すように、上記低温改質器1の反応室の前に備えた各脱硫装置3A,3B,3Cによって、低温改質器1の反応室に供給する前記燃料、前記酸素含有ガス及び前記二酸化炭素含有ガスに対して脱硫処理を行う。また、水蒸気は、イオン交換水を原料として作製しているため、ppbレベルの低硫黄濃度に脱硫されている。   As shown in FIG. 1, the fuel, the oxygen-containing gas, and the fuel supplied to the reaction chamber of the low-temperature reformer 1 by the desulfurization devices 3A, 3B, and 3C provided in front of the reaction chamber of the low-temperature reformer 1. A desulfurization treatment is performed on the carbon dioxide-containing gas. Further, since steam is produced using ion-exchanged water as a raw material, it is desulfurized to a low sulfur concentration of ppb level.

また、上記酸素含有ガスに対する脱硫装置3Bは、高温改質器2に供給する酸素含有ガスに対する脱硫装置に兼用され、上記二酸化炭素含有ガスに対する脱硫装置3Cは、高温改質器2に供給する二酸化炭素含有ガスに対する脱硫装置に兼用され、前記脱硫された水蒸気が高温改質器2に供給されている。すなわち、上記高温改質器2の第二反応室の前に備えた各脱硫装置3B,3Cによって、高温改質器2の第二反応室に供給する前記酸素含有ガス及び前記二酸化炭素含有ガスに対して脱硫処理を行う。
なお、被改質流体に含まれる硫黄含有量を所望値以下にすればよいから、複数の供給流体すべてについて脱硫処理を行うことは必須ではない。
The desulfurizer 3B for the oxygen-containing gas is also used as a desulfurizer for the oxygen-containing gas supplied to the high-temperature reformer 2, and the desulfurizer 3C for the carbon dioxide-containing gas is used for the sulfur dioxide supplied to the high-temperature reformer 2. The desulfurized steam is also supplied to the high-temperature reformer 2, which is also used as a desulfurization device for carbon-containing gas. That is, the desulfurization devices 3B and 3C provided in front of the second reaction chamber of the high temperature reformer 2 apply the oxygen-containing gas and the carbon dioxide-containing gas supplied to the second reaction chamber of the high temperature reformer 2 to each other. Then, desulfurization treatment is performed.
In addition, since the sulfur content contained in the fluid to be reformed may be set to a desired value or less, it is not essential to perform the desulfurization treatment on all of the plurality of supply fluids.

図2に示すように、上記燃料改質装置は、低温改質器1を200〜800℃(好ましくは、400〜750℃、より好ましくは400〜700℃)の温度範囲で運転させ、高温改質器2を400〜1200℃(好ましくは、500〜1100℃、より好ましくは600〜1000℃)の温度範囲で運転させる。例えば、炭化水素系燃料としてガソリンを供給する場合には、低温改質器1の反応室内の反応温度をガソリン中の炭化水素成分の熱分解温度よりも低い温度に維持し、また、高温改質器2の第二反応室内の反応温度をメタンの熱分解温度(1200℃)よりも低い温度に維持する。すなわち、第一改質ガス中のメタンの熱分解が顕著に発生する温度である1200℃を超えないようにしている。   As shown in FIG. 2, the fuel reformer operates the low-temperature reformer 1 in a temperature range of 200 to 800 ° C. (preferably 400 to 750 ° C., more preferably 400 to 700 ° C.), The porcelain vessel 2 is operated in a temperature range of 400 to 1200C (preferably 500 to 1100C, more preferably 600 to 1000C). For example, when gasoline is supplied as a hydrocarbon-based fuel, the reaction temperature in the reaction chamber of the low-temperature reformer 1 is maintained at a temperature lower than the thermal decomposition temperature of the hydrocarbon component in the gasoline, and The reaction temperature in the second reaction chamber of the vessel 2 is maintained at a temperature lower than the thermal decomposition temperature of methane (1200 ° C.). That is, the temperature does not exceed 1200 ° C., which is the temperature at which the thermal decomposition of methane in the first reformed gas is remarkably generated.

上記低温改質器1の反応室に供給する前記酸素含有ガス、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つの前記炭化水素系燃料に対する供給量比を変化させて、低温改質器1の反応室の温度を調整することができる。低温改質器1の反応室の温度調整は、具体的には、低温改質器1に供給する前記炭化水素系燃料に対する酸素含有ガスの供給量の比を変化させることで、前記炭化水素系燃料中の炭素量と前記酸素含有ガス中の酸素量の比率を変化させて、低温改質器1の反応室の温度を調整している。   The reaction of the low-temperature reformer 1 is performed by changing a supply ratio of at least one of the oxygen-containing gas, water vapor, and carbon dioxide-containing gas to the reaction chamber of the low-temperature reformer 1 to the hydrocarbon-based fuel. The temperature of the room can be adjusted. Specifically, the temperature of the reaction chamber of the low-temperature reformer 1 is adjusted by changing the ratio of the supply amount of the oxygen-containing gas to the hydrocarbon-based fuel supplied to the low-temperature reformer 1, The temperature of the reaction chamber of the low-temperature reformer 1 is adjusted by changing the ratio between the amount of carbon in the fuel and the amount of oxygen in the oxygen-containing gas.

前記低温改質器1の反応室に対して、水素含有ガスが供給可能である。なお、この低温改質器1に供給する水素含有ガスとしては、燃料電池のオフガスや、改質ガスなどを用いることができる。水素濃度に特に制限はないが、好ましくは30%以上含まれているのがよい。また、図1に示すように、上記低温改質器1に供給する水素含有ガスに対する脱硫装置3Dを前記低温改質器1の前に備えている。   A hydrogen-containing gas can be supplied to the reaction chamber of the low-temperature reformer 1. The hydrogen-containing gas supplied to the low-temperature reformer 1 may be an off-gas of a fuel cell, a reformed gas, or the like. Although there is no particular limitation on the hydrogen concentration, it is preferable that the hydrogen concentration be 30% or more. Further, as shown in FIG. 1, a desulfurization device 3 </ b> D for the hydrogen-containing gas supplied to the low-temperature reformer 1 is provided in front of the low-temperature reformer 1.

そして、低温改質器1の反応室に内蔵した改質用触媒は、水蒸気改質性能を有する金属を主成分とする触媒である。同様に、高温改質器2の第二反応室に内蔵した改質用第二触媒も、水蒸気改質性能を有する金属を主成分とする触媒である。この改質用触媒及び改質用第二触媒は、水蒸気改質活性が高く、耐カーボン析出性能の高い改質触媒であることが好ましく、具体的には、ルテニウムなどの貴金属系触媒やニッケル系触媒が充填されている。これらの触媒はどのような形状でもよいが、望ましくはアルミナなどの担体に担持して、タブレット状、球状、リング状の成型品の形で使用するか、ハニカム状に成型して使用するのが好ましい。   The reforming catalyst incorporated in the reaction chamber of the low-temperature reformer 1 is a catalyst mainly composed of a metal having steam reforming performance. Similarly, the reforming second catalyst contained in the second reaction chamber of the high-temperature reformer 2 is also a catalyst mainly composed of a metal having steam reforming performance. The reforming catalyst and the second reforming catalyst are preferably reforming catalysts having high steam reforming activity and high carbon deposition resistance, and specifically, a noble metal catalyst such as ruthenium or a nickel catalyst. The catalyst is filled. These catalysts may be of any shape, but preferably are supported on a carrier such as alumina and used in the form of tablets, spheres, rings, or formed into honeycombs. preferable.

また、前記低温改質器1の反応室に供給する総ガス流量を時間あたりの気体空間速度(但し、標準状態換算の値)で750h−1〜300000h−1(好ましくは10000h−1〜300000h−1、より好ましくは50000h−1〜300000h−1)の範囲としている。すなわち、総ガス流量をこのような広い気体空間速度の範囲で変更することが可能である。 Further, the low-temperature gas space velocity per the total gas flow supplied to the reaction chamber time of the reformer 1 (however, the standard values of the state conversion) 750h -1 ~300000h -1 (preferably at 10000h -1 ~300000h - 1 , more preferably 50,000 h -1 to 300,000 h -1 ). That is, it is possible to change the total gas flow rate in such a wide gas space velocity range.

反応時の圧力についての制限は特にはない。用途により、反応圧力を変更することが可能である。例えば燃料電池用の水素製造用途に用いる場合は、常圧付近(例えば、1MPs以下)で使用し、GTLなどの液体燃料合成用途に用いる場合は、2〜7MPa程度で使用することが可能である。   There is no particular limitation on the pressure during the reaction. The reaction pressure can be changed depending on the application. For example, when used for hydrogen production for fuel cells, it can be used near normal pressure (for example, 1MPs or less), and when used for liquid fuel synthesis such as GTL, it can be used at about 2 to 7MPa. .

燃料改質装置の起動時は、低温改質器1の反応室の温度(反応温度)が前記炭化水素系燃料の改質に必要な適正運転温度(例えば、400℃)に達するまでは、低温改質器1の反応室に前記炭化水素系燃料と水素含有ガスと酸素含有ガスを供給して水素を燃焼させ、その水素の燃焼熱により低温改質器1の反応室の温度を上記適正運転温度に上昇させている。なお、上記適正運転温度への昇温途中において(例えば、反応温度が300℃になった時点で)水蒸気を追加供給し、水蒸気共存下で水素燃焼を継続させている。そして、低温改質器1の反応室の温度が前記適正運転温度に達したのちは、低温改質器1の反応室に対する水素含有ガスの供給を停止して、前記炭化水素系燃料、酸素含有ガス及び水蒸気の供給状態に切り替えるように運転する。   When the fuel reformer is started, the temperature of the reaction chamber (reaction temperature) of the low-temperature reformer 1 reaches a proper operating temperature (for example, 400 ° C.) required for reforming the hydrocarbon-based fuel. The hydrocarbon-based fuel, the hydrogen-containing gas, and the oxygen-containing gas are supplied to the reaction chamber of the reformer 1 to burn the hydrogen, and the heat of combustion of the hydrogen is used to raise the temperature of the reaction chamber of the low-temperature reformer 1 to the above-described proper operation. The temperature is rising. In the course of raising the temperature to the appropriate operating temperature (for example, when the reaction temperature reaches 300 ° C.), steam is additionally supplied, and hydrogen combustion is continued in the presence of steam. After the temperature of the reaction chamber of the low-temperature reformer 1 reaches the appropriate operating temperature, the supply of the hydrogen-containing gas to the reaction chamber of the low-temperature reformer 1 is stopped, and the hydrocarbon-based fuel and the oxygen-containing gas are stopped. Operate to switch to gas and steam supply.

なお、上記のように起動時に、低温改質器1の反応室に対して前記炭化水素系燃料と水素含有ガスと酸素含有ガスを供給することも可能であるが、起動時に水素含有ガスと酸素含有ガスだけを供給することも可能である。また、適正運転温度への昇温途中で、水蒸気の代わりに二酸化炭素を追加供給したり、水蒸気と二酸化炭素の両方を追加供給したり、あるいは、適正運転温度への昇温途中で水蒸気や二酸化炭素を追加供給しないようにすることも可能である。   As described above, at the time of startup, the hydrocarbon-based fuel, the hydrogen-containing gas, and the oxygen-containing gas can be supplied to the reaction chamber of the low-temperature reformer 1. It is also possible to supply only the contained gas. In addition, during the heating to the proper operating temperature, additional carbon dioxide is supplied instead of steam, both steam and carbon dioxide are additionally supplied, or steam or carbon dioxide is added during the heating to the proper operating temperature. It is also possible not to supply additional carbon.

次に、前記低温改質器1による改質実験の実施例について、図3に示す実験装置を用いて行った実験結果を説明する。
実験装置には、改質用触媒を充填した反応室4A(以下、マイクロリアクターという)を有する反応器4、マイクロリアクター4A内の温度を測定・記録する温度レコーダ5、反応器4からの出力ガス中の水分を凝縮させる水凝縮器6、水凝縮器6を通した出力ガスをサンプルする自動サンプラ7、サンプルガスを分析するガスクロマトグラフ8等を備え、上記反応室4Aの触媒充填層に対して、前記炭化水素燃料ガス、酸素含有ガスとしての酸素又は空気、水素含有ガスとしての水素、水蒸気、二酸化炭素含有ガスとしての二酸化炭素、及び、メタン中10ppm濃度のジメチルサルファイド(DMS)の各供給源が開閉弁V1〜V6を経由したのち供給されている。反応室4Aの触媒充填層は周囲を電気炉4Bで囲われるとともに、入口側にラシシリングを設け、出口側に石英ウールを設けている。
Next, with respect to an example of a reforming experiment using the low-temperature reformer 1, an experimental result performed using the experimental apparatus shown in FIG. 3 will be described.
The experimental apparatus includes a reactor 4 having a reaction chamber 4A (hereinafter, referred to as a microreactor) filled with a reforming catalyst, a temperature recorder 5 for measuring and recording the temperature in the microreactor 4A, and an output gas from the reactor 4. A water condenser 6 for condensing the water therein, an automatic sampler 7 for sampling the output gas passing through the water condenser 6, a gas chromatograph 8 for analyzing the sample gas, and the like are provided for the catalyst packed bed of the reaction chamber 4A. Supply sources of the hydrocarbon fuel gas, oxygen or air as an oxygen-containing gas, hydrogen as a hydrogen-containing gas, water vapor, carbon dioxide as a carbon dioxide-containing gas, and dimethyl sulfide (DMS) at a concentration of 10 ppm in methane Is supplied after passing through on-off valves V1 to V6. The catalyst packed bed of the reaction chamber 4A is surrounded by an electric furnace 4B, and is provided with a lash ring on the inlet side and quartz wool on the outlet side.

即ち、上記反応室4Aが低温改質器1の反応室に相当し、この反応室4Aを加熱可能な温度調整機構としての上記電気炉4Bによって反応室4Aの温度を調整することができる。また、上記温度レコーダ5によって、反応室4Aに供給されて改質用触媒に接する前記被改質流体の温度を測定することができる。なお、以下の実施例では、各開閉弁V1〜V6を手動操作して各ガス及び水蒸気の供給量を調整し、また、反応時の圧力は全て常圧で行った。   That is, the reaction chamber 4A corresponds to the reaction chamber of the low-temperature reformer 1, and the temperature of the reaction chamber 4A can be adjusted by the electric furnace 4B as a temperature adjustment mechanism capable of heating the reaction chamber 4A. Further, the temperature of the fluid to be reformed supplied to the reaction chamber 4A and in contact with the reforming catalyst can be measured by the temperature recorder 5. In the following examples, the on-off valves V1 to V6 were manually operated to adjust the supply amount of each gas and water vapor, and the pressure during the reaction was all normal pressure.

(実施例1) プロパンを燃料ガスとしたときの改質装置の起動実験
水素の触媒燃焼による起動状況を確認するために温度上昇特性を測定した。マイクロリアクター4A内に、ルテニウム系の改質用触媒Ru/Al(2重量%Ru/アルミナ担持、粒径:0.5〜1.0mm)を33ml充填した。その他の条件は、プロパン(C)供給速度176ml/分、水素供給速度158ml/分、酸素供給速度79ml/分である。この条件下で、反応器4に水素、酸素、プロパンの混合ガスを室温で導入すると、触媒による水素燃焼反応によって、触媒充填層が加熱されて温度が上昇した。このときの触媒充填層入口の温度上昇特性を図4に示すが、約40分で400℃(適正運転温度)に到達している。
なお上記の操作の間、触媒層を囲む電気炉4Bの温度を触媒層温度よりも5℃低い温度に加熱して反応器4からの放熱を防いだ(このようにしないと反応器4及び触媒層の温度は上昇しない)。
(Example 1) Start-up experiment of reformer when propane is used as fuel gas In order to confirm the start-up situation due to catalytic combustion of hydrogen, temperature rise characteristics were measured. Into the microreactor 4A, 33 ml of a ruthenium-based reforming catalyst Ru / Al 2 O 3 (2 wt% Ru / alumina supported, particle size: 0.5 to 1.0 mm) was filled. Other conditions are a propane (C 3 H 8 ) supply rate of 176 ml / min, a hydrogen supply rate of 158 ml / min, and an oxygen supply rate of 79 ml / min. Under these conditions, when a mixed gas of hydrogen, oxygen, and propane was introduced into the reactor 4 at room temperature, the catalyst packed bed was heated and increased in temperature due to the hydrogen combustion reaction by the catalyst. FIG. 4 shows the temperature rise characteristic of the catalyst packed bed inlet at this time, and it has reached 400 ° C. (appropriate operating temperature) in about 40 minutes.
During the above operation, the temperature of the electric furnace 4B surrounding the catalyst layer was heated to a temperature lower by 5 ° C. than the catalyst layer temperature to prevent heat radiation from the reactor 4 (otherwise, the reactor 4 and the catalyst The temperature of the bed does not rise).

(実施例2) ルテニウム系触媒によるプロパンの改質
実施例1と同じ装置により、プロパンガスの部分酸化と水蒸気改質反応を行った。本実験では酸素含有ガスとして空気を用いた。改質段階の実験条件を図5の表1に示すが、SVとO/C比と入口温度Tinを変化させて、4つの条件C2−1,C2−2,C2−3,C2−4を設定している。
各条件で温度が安定した改質段階での改質ガスの組成等の結果を図6及び図7の表2−1〜4に示す。
SV=10000h−1、Tin300℃で、O/C比を0.3〜1.4の範囲で変化させた条件C2−1に対する実験結果を表2−1に示す。
SV=10000h−1、Tin400℃で、O/C比を0.3〜1.4の範囲で変化させたC2−2に対する実験結果を表2−2に示す。
SV=20000h−1、Tin300℃で、O/C比を0.3〜1.2の範囲で変化させたC2−3に対する実験結果を表2−3に示す。
SV=20000h−1、Tin400℃で、O/C比を0.3〜1.0の範囲で変化させ、さらに、S/Cを2.0,2.5と変化させたC2−4に対する実験結果を表2−4に示す。
(Example 2) Reforming of propane with a ruthenium-based catalyst Using the same apparatus as in Example 1, partial oxidation of propane gas and a steam reforming reaction were performed. In this experiment, air was used as the oxygen-containing gas. The experimental conditions in the reforming stage are shown in Table 1 of FIG. 5, and the four conditions C2-1, C2-2, C2-3, and C2-4 were changed by changing the SV, the O 2 / C ratio, and the inlet temperature Tin. Is set.
The results such as the composition of the reformed gas at the reforming stage in which the temperature is stable under each condition are shown in Tables 2-1 to 4 in FIGS.
Table 2-1 shows the experimental results for the condition C2-1 in which the O 2 / C ratio was changed in the range of 0.3 to 1.4 at SV = 10000 h −1 and Tin 300 ° C.
Table 2-2 shows the experimental results for C2-2 in which the O 2 / C ratio was changed in the range of 0.3 to 1.4 at SV = 10000 h −1 and Tin 400 ° C.
Table 2-3 shows the experimental results for C2-3 in which the O 2 / C ratio was changed in the range of 0.3 to 1.2 at SV = 20,000 h −1 and Tin 300 ° C.
SV = 20,000 h −1 , Tin 400 ° C., the O 2 / C ratio was changed in the range of 0.3 to 1.0, and further, the C / C was changed to 2.0 / 2.5. The experimental results are shown in Table 2-4.

上記実験結果より次のことが判る。
各条件において、O/C比を大きくするほど、入口温度Tinに対して触媒層内の最大温度Tmax、触媒層出口温度Toutが高くなっている。これにより反応温度をO/C比で制御することが可能であることがわかった。
C2−1とC2−2の結果を比較すると、温度が高いC2−2の方が、水素、一酸化炭素の濃度が高く(O/C=1.4の水素濃度を除く)、メタン濃度が低いことから、プロパンの改質が進んでいることがわかる。
C2−1とC2−3の結果を比較すると、SVが大きいC2−3の方が、放熱の影響が半分になり、触媒層温度が上昇したことがわかる。
C2−4の結果より、S/C比が小さくなると、温度が高くなる。これにより反応温度をS/C比で制御することが可能であることがわかった。また、S/C比が小さくなると、一酸化炭素は増加しているが、水素及びメタンが減少している。これにより出口ガス組成をS/C比で制御することが可能であることがわかる。
触媒層の最大温度Tmaxがプロパンの熱分解温度以下であることが示されている。
また、5時間反応させた後、反応器を常温に戻して解体・観察した結果、反応器内部や触媒表面へのカーボン析出は、いずれの場合も認められなかった。
The following can be seen from the above experimental results.
Under each condition, as the O 2 / C ratio is increased, the maximum temperature Tmax in the catalyst layer and the catalyst layer outlet temperature Tout are higher than the inlet temperature Tin. Thus, it was found that the reaction temperature could be controlled by the O 2 / C ratio.
Comparing the results of C2-1 and C2-2, the higher temperature C2-2 has higher concentrations of hydrogen and carbon monoxide (excluding the hydrogen concentration of O 2 /C=1.4) and the methane concentration Is low, it is understood that the reforming of propane is progressing.
Comparing the results of C2-1 and C2-3, it can be seen that C2-3, which has a larger SV, has half the effect of heat radiation and the catalyst layer temperature has increased.
From the result of C2-4, as the S / C ratio decreases, the temperature increases. Thus, it was found that the reaction temperature could be controlled by the S / C ratio. When the S / C ratio decreases, the amount of carbon monoxide increases, but the amounts of hydrogen and methane decrease. This indicates that the outlet gas composition can be controlled by the S / C ratio.
It is shown that the maximum temperature Tmax of the catalyst layer is lower than the thermal decomposition temperature of propane.
After reacting for 5 hours, the reactor was returned to normal temperature and disassembled and observed. As a result, no carbon deposition on the inside of the reactor or on the catalyst surface was observed in any case.

(実施例3) ルテニウム系触媒によるn−ヘキサンの改質
プロパンの代わりにn−ヘキサンを燃料ガスとしたときの改質反応について、Tin400℃に固定し、図8の表3に示すように、SV10000h−1として実施例1と同じ装置により、n−ヘキサンの部分酸化と水蒸気改質反応を行った。本実施例では酸素含有ガスとして空気を用いた。
図9の表4にO/C比を0.1〜0.6の範囲で変化させたときの改質ガスの組成等の結果を示す。
(Example 3) Reforming of n-hexane with ruthenium-based catalyst Regarding the reforming reaction when n-hexane was used as a fuel gas instead of propane, the temperature was fixed at Tin 400 ° C, and as shown in Table 3 of FIG. The partial oxidation of n-hexane and the steam reforming reaction were performed using the same apparatus as in Example 1 with SV10000h- 1 . In this embodiment, air was used as the oxygen-containing gas.
Table 4 in FIG. 9 shows the results such as the composition of the reformed gas when the O 2 / C ratio was changed in the range of 0.1 to 0.6.

上記実験結果より次のことが判る。
/C比を大きくするほど、入口温度Tinに対して最大温度Tmax、出口温度Toutが高くなっている。これにより反応温度をO/C比で制御することが可能であることがわかった。またO/C比が増加するほどH/CO比が減少している。これにより出口ガス組成をO/C比で制御することが可能であることがわかる。
本実施例では出口部にヘキサンが微量残存していたが、SVを減少(又は触媒量を増加)することにより、ヘキサンを全て改質することは容易にできる。また、反応後、反応器を常温に戻して解体・観察した結果、反応器内部や触媒表面へのカーボン析出は、いずれの場合も認められなかった。
The following can be seen from the above experimental results.
As the O 2 / C ratio increases, the maximum temperature Tmax and the outlet temperature Tout become higher than the inlet temperature Tin. Thus, it was found that the reaction temperature could be controlled by the O 2 / C ratio. Also, the H 2 / CO ratio decreases as the O 2 / C ratio increases. This indicates that the outlet gas composition can be controlled by the O 2 / C ratio.
In this example, a small amount of hexane remained at the outlet, but it is easy to reform hexane entirely by reducing the SV (or increasing the amount of catalyst). After the reaction, the reactor was returned to room temperature and disassembled and observed. As a result, no carbon deposition was observed inside the reactor or on the catalyst surface in any case.

(実施例4) ルテニウム系触媒の耐久試験
ルテニウム系触媒Ru/Alがプロパン及びヘキサンの改質反応において優れた性能を示したので、次に、ヘキサンを燃料ガスとして、ルテニウム系触媒の耐久性を確認した。本実施例では酸素含有ガスとして空気を用いた。その耐久試験結果を図10に示すが、ヘキサンの改質反応において、110時間経過しても、触媒層の温度Tmax(最大温度),Tmid(中間部の温度),Tout(出口温度)、及び圧力P(MPa)共に安定し、カーボンが析出せず改質反応が安定に進行することが判った。
また、反応後、反応器を常温に戻して解体・観察した結果、反応器内部や触媒表面へのカーボン析出は認められなかった。
(Example 4) Durability test of ruthenium-based catalyst Since ruthenium-based catalyst Ru / Al 2 O 3 showed excellent performance in the reforming reaction of propane and hexane, next, using hexane as fuel gas, The durability was confirmed. In this embodiment, air was used as the oxygen-containing gas. The results of the durability test are shown in FIG. 10. In the hexane reforming reaction, even after 110 hours, the catalyst layer temperature Tmax (maximum temperature), Tmid (intermediate temperature), Tout (outlet temperature), and It was found that both the pressures P (MPa) were stable, the carbon did not precipitate, and the reforming reaction proceeded stably.
After the reaction, the reactor was returned to room temperature and disassembled and observed. As a result, no carbon deposition was observed inside the reactor or on the catalyst surface.

(実施例5) ニッケル系触媒によるプロパンの改質
ルテニウム系触媒の代わりにニッケル触媒Ni/Al(ニッケル濃度22重量%、アルミナ担体)を使用して、実施例1と同じ装置により、プロパンガスの部分酸化と水蒸気改質反応を行った。実験条件と結果を図11の表5に示す。プロパンガスが水素、メタン等に安定して改質されていることがわかる。
なお、Ni触媒は、マイクロリアクター充填後に、水素10%を含む窒素ガスにより400℃で1時間還元した。
また、反応後、反応器を常温に戻して解体・観察した結果、反応器内部や触媒表面へのカーボン析出は認められなかった。
(Example 5) nickel catalyst Ni / Al 2 O 3 in place of the reforming ruthenium-based catalysts propane by nickel catalysts (nickel concentration of 22 wt%, alumina support) was used to the same apparatus as in Example 1, Partial oxidation of propane gas and steam reforming reaction were performed. The experimental conditions and results are shown in Table 5 of FIG. It can be seen that propane gas is stably reformed to hydrogen, methane, and the like.
The Ni catalyst was reduced by a nitrogen gas containing 10% of hydrogen at 400 ° C. for 1 hour after filling the microreactor.
After the reaction, the reactor was returned to room temperature and disassembled and observed. As a result, no carbon deposition was observed inside the reactor or on the catalyst surface.

(実施例6)ニッケル触媒によるn―ヘキサンの改質
実施例1と同じ装置により、ニッケル触媒Ni/Al(ニッケル濃度22重量%、アルミナ担体、粒径0.5〜1.0mm)2.2mlをマイクロリアクター4A内に充填して、n―ヘキサンの部分酸化と水蒸気改質反応を行った。本実施例では酸素含有ガスとして空気を用いた。
なお、Ni触媒は、マイクロリアクター充填後に、水素10%を含む窒素ガスにより530℃で1時間還元した。実験条件及び実験結果を図12の表6に示す。
本実施例では出口部にヘキサンが微量残存していたが、SVを減少(又は触媒量を増加)することにより、ヘキサンを全て改質することは容易にできる。また、反応後反応器を常温に戻して解体・観察した結果、反応器内部や触媒表面へのカーボン析出は認められなかった。
The same apparatus as reforming Example 1 of n- hexane by Example 6 nickel catalyst, a nickel catalyst Ni / Al 2 O 3 (nickel concentration 22 wt%, alumina support, particle size 0.5 to 1.0 mm) 2.2 ml was filled in the microreactor 4A, and a partial oxidation of n-hexane and a steam reforming reaction were performed. In this embodiment, air was used as the oxygen-containing gas.
The Ni catalyst was reduced at 530 ° C. for 1 hour with a nitrogen gas containing 10% of hydrogen after filling the microreactor. The experimental conditions and results are shown in Table 6 in FIG.
In this example, a small amount of hexane remained at the outlet, but it is easy to reform hexane entirely by reducing the SV (or increasing the amount of catalyst). After the reaction, the reactor was returned to room temperature and disassembled and observed. As a result, no carbon deposition was observed inside the reactor or on the catalyst surface.

(実施例7)ルテニウム系触媒によるn―ヘキサンの改質
実施例1と同じ実験装置により、ルテニウム系触媒Ru/Al(2重量%Ru/アルミナ担持、粒径:0.5〜1.0mm)2.4mlをマイクロリアクター4A内に充填して、n−ヘキサンの部分酸化と水蒸気改質反応を行った。本実施例では酸素含有ガスとして純酸素を用いた。実験条件及び実験結果を図12の表7に示す。
本実施例では出口部にヘキサンが微量残存していたが、SVを減少(又は触媒量を増加)することにより、ヘキサンを全て改質することは容易にできる。また、反応後、反応器を常温に戻して解体・観察した結果、反応器内部や触媒表面へのカーボン析出は認められなかった。
(Example 7) by the same experimental apparatus as reforming Example 1 of n- hexane by ruthenium-based catalyst, a ruthenium catalyst Ru / Al 2 O 3 (2 wt% Ru / alumina supported, particle size: 0.5 (0.0 mm) into the microreactor 4A to perform a partial oxidation of n-hexane and a steam reforming reaction. In this embodiment, pure oxygen was used as the oxygen-containing gas. The experimental conditions and results are shown in Table 7 in FIG.
In this example, a small amount of hexane remained at the outlet, but it is easy to reform hexane entirely by reducing the SV (or increasing the amount of catalyst). After the reaction, the reactor was returned to room temperature and disassembled and observed. As a result, no carbon deposition was observed inside the reactor or on the catalyst surface.

(比較例1)ルテニウム系触媒によるn―ヘキサンの高温改質
実施例1と同じ実験装置により、ルテニウム系触媒Ru/Al(2重量%Ru/アルミナ担持、粒径:0.5〜1.0mm)2.4mlをマイクロリアクター4A内に充填して、n−ヘキサンの部分酸化と水蒸気改質反応を行った。本実施例では酸素含有ガスとして純酸素を用いた。実施例7では反応温度を594℃としたが、本比較例1では665℃とした。実験条件及び実験結果を図12の表8に示す。
反応後、反応器を常温に戻して解体・観察した結果、触媒上での炭素析出が見られた。この原因は反応温度がn−ヘキサンの熱分解温度より高いためであると考えられる。
(Comparative Example 1) High-temperature reforming of n-hexane with a ruthenium-based catalyst Ruthenium-based catalyst Ru / Al 2 O 3 (2 wt% Ru / alumina supported, particle size: 0.5 to (1.0 mm) of 2.4 ml was charged into the microreactor 4A, and a partial oxidation of n-hexane and a steam reforming reaction were performed. In this embodiment, pure oxygen was used as the oxygen-containing gas. In Example 7, the reaction temperature was 594 ° C, but in Comparative Example 1, the reaction temperature was 665 ° C. The experimental conditions and results are shown in Table 8 in FIG.
After the reaction, the reactor was returned to room temperature and disassembled and observed. As a result, carbon deposition on the catalyst was observed. This is considered to be because the reaction temperature is higher than the thermal decomposition temperature of n-hexane.

(比較例2)ルテニウム系触媒によるn―ヘキサンの高温改質
実施例1と同じ実験装置により、ルテニウム系触媒Ru/Al(2重量%Ru/アルミナ担持、粒径:0.5〜1.0mm)3.3mlをマイクロリアクター4A内に充填して、n−ヘキサンの部分酸化と水蒸気改質反応を行った。本実施例では酸素含有ガスとして空気を用いた。反応温度を669℃と高くした。実験条件及び実験結果を図12の表9に示す。
反応後、反応器を常温に戻して解体・観察した結果、触媒上での炭素析出が見られた。そこで堀場製作所製の炭素分析装置(EMIA−820)を用いて、反応後に抜き出した触媒中の炭素量を分析し、0.42wt%の値を得た。反応前の新触媒の炭素量も同時に分析を実施し、0.16wt%であったことから、反応前後での炭素量の差(0.26wt%)の炭素析出が発生していることを分析でも明らかにできた。この炭素析出の原因は反応温度がn−ヘキサンの熱分解温度より高いためであると考えられる。
Comparative Example 2 High-Temperature Reforming of n-Hexane with Ruthenium-Based Catalyst Ruthenium-based catalyst Ru / Al 2 O 3 (2% by weight Ru / alumina supported, particle size: 0.5 to 5%) by the same experimental device as in Example 1. (1.0 mm) 3.3 ml was charged into the microreactor 4A, and a partial oxidation of n-hexane and a steam reforming reaction were performed. In this embodiment, air was used as the oxygen-containing gas. The reaction temperature was raised to 669 ° C. The experimental conditions and results are shown in Table 9 in FIG.
After the reaction, the reactor was returned to room temperature and disassembled and observed. As a result, carbon deposition on the catalyst was observed. Then, using a carbon analyzer (EMIA-820) manufactured by HORIBA, Ltd., the amount of carbon in the catalyst extracted after the reaction was analyzed, and a value of 0.42 wt% was obtained. The carbon content of the new catalyst before the reaction was also analyzed at the same time, and it was 0.16 wt%. Therefore, it was determined that the carbon deposition of the difference in carbon content before and after the reaction (0.26 wt%) occurred. But it was clear. It is considered that the cause of the carbon precipitation is that the reaction temperature is higher than the thermal decomposition temperature of n-hexane.

すなわち、ヘキサンの熱分解温度について考察すると、前記実施例3の結果(図9参照)では、触媒層最高温度Tmaxが634℃で炭素析出は見られず、又、上記実施例6,7及び比較例1,2の結果(図12参照)より、触媒層最高温度Tmaxが530℃、594℃では炭素析出は見られず、触媒層最高温度Tmaxが665℃、699℃では炭素析出は見られる。   That is, considering the thermal decomposition temperature of hexane, the results of Example 3 (see FIG. 9) show that no carbon deposition was observed at the catalyst layer maximum temperature Tmax of 634 ° C. From the results of Examples 1 and 2 (see FIG. 12), no carbon deposition was observed when the catalyst layer maximum temperature Tmax was 530 ° C. and 594 ° C., and carbon deposition was observed when the catalyst layer maximum temperature Tmax was 665 ° C. and 699 ° C.

(実施例8)ルテニウム系触媒による模擬天然ガスの改質
実施例1と同じ実験装置により、ルテニウム系触媒Ru/Al(2重量%Ru/アルミナ担持、粒径:0.5〜1.0mm)2.4mlをマイクロリアクター4A内に充填して、模擬天然ガス(メタン濃度88%、エタン6%、プロパン4%、ブタン2%)の部分酸化と水蒸気改質反応を行った。本実施例では酸素含有ガスとして純酸素を用いた。実験条件及び実験結果を図13の表10に示す。
触媒層の最高温度Tmaxは505℃であり、模擬天然ガス中の最高炭素数のブタンの熱分解温度以下であることが示されている。
反応後、反応器を常温に戻して解体・観察した結果、反応器内部や触媒表面へのカーボン析出は認められなかった。
(Example 8) by the same experimental apparatus as reforming the first embodiment of simulated natural gas by a ruthenium-based catalyst, a ruthenium catalyst Ru / Al 2 O 3 (2 wt% Ru / alumina supported, particle size: 0.5 (0.0 mm) into the microreactor 4A, and a partial oxidation of simulated natural gas (methane concentration 88%, ethane 6%, propane 4%, butane 2%) and a steam reforming reaction were performed. In this embodiment, pure oxygen was used as the oxygen-containing gas. The experimental conditions and results are shown in Table 10 of FIG.
The maximum temperature Tmax of the catalyst layer is 505 ° C., which indicates that it is lower than the thermal decomposition temperature of butane having the highest carbon number in the simulated natural gas.
After the reaction, the reactor was returned to room temperature and disassembled and observed. As a result, no carbon deposition was observed inside the reactor or on the catalyst surface.

(実施例9)ルテニウム系触媒による模擬天然ガスの改質
実施例1と同じ実験装置により、ルテニウム系触媒Ru/Al(2重量%Ru/アルミナ担持、粒径:0.5〜1.0mm)2.4mlをマイクロリアクター4A内に充填して、模擬天然ガス(メタン濃度88%、エタン6%、プロパン4%、ブタン2%)の部分酸化、水蒸気改質、CO改質反応を行った。本実施例では酸素含有ガスとして純酸素を用いた。実験条件及び実験結果を図13の表11に示す。
実施例8と比較すると、二酸化炭素の添加によりH/CO比を減少させることが可能であることがわかった。触媒層の最高温度Tmaxは504℃であり、模擬天然ガス中の最高炭素数のブタンの熱分解温度以下であることが示されている。また、反応後、反応器を常温に戻して解体・観察した結果、反応器内部や触媒表面へのカーボン析出は認められなかった。
(Example 9) by the same experimental apparatus as reforming the first embodiment of simulated natural gas by a ruthenium-based catalyst, a ruthenium catalyst Ru / Al 2 O 3 (2 wt% Ru / alumina supported, particle size: 0.5 2.0 mm) into a microreactor 4A, and simulated natural gas (methane concentration 88%, ethane 6%, propane 4%, butane 2%), partial oxidation, steam reforming, CO 2 reforming reaction Was done. In this embodiment, pure oxygen was used as the oxygen-containing gas. The experimental conditions and results are shown in Table 11 of FIG.
As compared with Example 8, it was found that the H 2 / CO ratio could be reduced by adding carbon dioxide. The maximum temperature Tmax of the catalyst layer is 504 ° C., which indicates that the maximum temperature Tmax is lower than the thermal decomposition temperature of butane having the highest carbon number in the simulated natural gas. After the reaction, the reactor was returned to room temperature and disassembled and observed. As a result, no carbon deposition was observed inside the reactor or on the catalyst surface.

以上の実施例1〜9は、前段改質部(低温改質器1)だけで改質実験を行ったが、次の実施例10で、前段改質部(低温改質器1)と後段改質部(高温改質器2)の2段構成の改質部による改質実験結果について説明する。   In the above Examples 1 to 9, the reforming experiment was performed only in the former reforming section (low-temperature reformer 1), but in the following Example 10, the former reforming section (low-temperature reformer 1) and the latter reformer were used. The results of a reforming experiment using a two-stage reforming section of the reforming section (high-temperature reformer 2) will be described.

(実施例10)ルテニウム系触媒による模擬天然ガスの改質
図14に示すように、連続で2段のマイクロリアクターを有する実験装置を用いて、ルテニウム系改質用触媒Ru/Al(2重量%Ru/アルミナ担持、粒径:0.5〜1.0mm)2.9mlを前段のマイクロリアクター4A内に、同じルテニウム系触媒Ru/Alの2.9mlを改質用第二触媒として後段のマイクロリアクター9A内に充填して、模擬天然ガス(メタン濃度88%、エタン6%、プロパン4%、ブタン2%)の部分酸化、水蒸気改質、CO改質反応を行った。なお、後段の反応器9は、前段の反応器4(図3参照)と同様な構成のマイクロリアクター9A、電気炉9B等で構成され、また、マイクロリアクター9A内の温度を測定するための温度レコーダ10を備えている。本実施例10では酸素含有ガスとして純酸素を用いた。そして、後段の反応器9からの出力ガスをサンプルして分析している。
(Example 10) Reforming of simulated natural gas with ruthenium-based catalyst As shown in FIG. 14, a ruthenium-based reforming catalyst Ru / Al 2 O 3 ( 2.9 ml of 2 wt% Ru / alumina supported, particle size: 0.5 to 1.0 mm) was placed in the microreactor 4A in the former stage, and 2.9 ml of the same ruthenium-based catalyst Ru / Al 2 O 3 was used for reforming. The two-catalyst is charged into the latter microreactor 9A to perform partial oxidation, steam reforming, and CO 2 reforming of simulated natural gas (methane concentration 88%, ethane 6%, propane 4%, butane 2%). Was. The reactor 9 at the latter stage is composed of a microreactor 9A, an electric furnace 9B and the like having the same configuration as the reactor 4 at the former stage (see FIG. 3), and a temperature for measuring the temperature inside the microreactor 9A. A recorder 10 is provided. In Example 10, pure oxygen was used as the oxygen-containing gas. Then, the output gas from the latter-stage reactor 9 is sampled and analyzed.

即ち、上記マイクロリアクター9Aが高温改質器2の第二反応室に相当し、この第二反応室9Aを加熱可能な温度調整機構としての上記電気炉9Bによって第二反応室4Aの温度を調整することができる。また、上記温度レコーダ10によって、反応室9Aに供給されて改質用第二触媒に接する前記第二被改質流体の温度を測定することができる。   That is, the microreactor 9A corresponds to the second reaction chamber of the high-temperature reformer 2, and the temperature of the second reaction chamber 4A is adjusted by the electric furnace 9B as a temperature adjustment mechanism capable of heating the second reaction chamber 9A. can do. Further, the temperature of the second fluid to be reformed supplied to the reaction chamber 9A and in contact with the second reforming catalyst can be measured by the temperature recorder 10.

実験条件及び実験結果を図15の表12に示す。前段のマイクロリアクター4Aの条件は表12に示すとおりであるが、前段のマイクロリアクター4Aと後段のマイクロリアクター9Aの間で、図14に示すように、さらに酸素、水蒸気、二酸化炭素を開閉弁V7〜V9を経由させて添加した。マイクロリアクター4A入口に導入した模擬天然ガスに対して、マイクロリアクター4A入口及び9A入口に添加した水蒸気の総量をS/C比として、マイクロリアクター4A+9A条件に記載した。酸素や二酸化炭素も同様にマイクロリアクター4A入口に導入した模擬天然ガスに対して、マイクロリアクター4A入口及び9A入口に添加した酸素または二酸化炭素の総量をO/C比またはCO/C比としてマイクロリアクター4A+9A条件に記載した。 The experimental conditions and results are shown in Table 12 of FIG. The conditions of the first-stage microreactor 4A are as shown in Table 12, and between the first-stage microreactor 4A and the second-stage microreactor 9A, as shown in FIG. ~ V9. With respect to the simulated natural gas introduced into the microreactor 4A inlet, the total amount of water vapor added to the microreactor 4A inlet and 9A inlet was described as the S / C ratio in the microreactor 4A + 9A conditions. Similarly, the total amount of oxygen or carbon dioxide added to the microreactor 4A inlet and the 9A inlet is defined as the O 2 / C ratio or the CO 2 / C ratio with respect to the simulated natural gas introduced into the microreactor 4A inlet. The conditions were described in the microreactor 4A + 9A conditions.

一段目の改質器(マイクロリアクター4A)の触媒層最高温度は512℃、二段目の改質器(マイクロリアクター9A)の触媒層最高温度は895℃となり、200時間安定に運転することができた。これより、第二反応室(マイクロリアクター9A)の出口温度が前記反応室(マイクロリアクター4A)の出口温度よりも高くなるように第二反応室(マイクロリアクター9A)の温度が調整されていることが判る。
前段の改質用触媒層の最高温度Tmaxは512℃であり、模擬天然ガス中の最高炭素数のブタンの熱分解温度以下である。後段の改質用第二触媒層の最高温度Tmaxは895℃であり、メタンの熱分解温度以下である。また、後段の改質用第二触媒層の出口温度Toutは843℃であり、前段の改質用触媒層の出口温度Tout500℃よりも高くなっている。反応後、反応器を常温に戻して解体・観察した結果、マイクロリアクター4Aおよび9Aのいずれの反応器内部や触媒表面へのカーボン析出は認められなかった。
The maximum temperature of the catalyst layer of the first stage reformer (microreactor 4A) is 512 ° C, and the maximum temperature of the catalyst layer of the second stage reformer (microreactor 9A) is 895 ° C. did it. Thus, the temperature of the second reaction chamber (microreactor 9A) is adjusted so that the outlet temperature of the second reaction chamber (microreactor 9A) is higher than the outlet temperature of the reaction chamber (microreactor 4A). I understand.
The maximum temperature Tmax of the former reforming catalyst layer is 512 ° C., which is lower than the thermal decomposition temperature of butane having the highest carbon number in the simulated natural gas. The maximum temperature Tmax of the second reforming second catalyst layer is 895 ° C., which is lower than the thermal decomposition temperature of methane. The outlet temperature Tout of the second reforming catalyst layer at the subsequent stage is 843 ° C., which is higher than the outlet temperature Tout of the first reforming catalyst layer at 500 ° C. After the reaction, the reactor was returned to room temperature and disassembled and observed. As a result, no carbon deposition was observed inside the reactor or on the catalyst surface of any of the microreactors 4A and 9A.

次に、前段改質部(低温改質器1)による改質実験結果の説明に戻る。   Next, the description returns to the results of the reforming experiment performed by the former reforming section (low-temperature reformer 1).

(実施例11〜15)ルテニウム系触媒による硫黄を含む模擬天然ガスの改質実験
実施例1と同じ実験装置により、ルテニウム系改質用触媒Ru/Al(2重量%Ru/アルミナ担持、粒径:0.5〜1.0mm)2.4mlをマイクロリアクター4A内に充填して、模擬天然ガス(メタン濃度88%、エタン6%、プロパン4%、ブタン2%)の部分酸化、水蒸気改質反応を行い、改質率(%)を求めた。本実施例では酸素含有ガスとして純酸素を用いた。実験条件及び実験結果を図16の表13に示す。実施例11〜15は、DMS濃度を5vol.ppb以下の範囲で変化させており、実施例11はDMS添加なし、実施例12は総ガス中のDMS濃度0.9vol.ppb、実施例13は総ガス中のDMS濃度1.3vol.ppb、実施例14は総ガス中のDMS濃度2.4vol.ppb、実施例15は総ガス中のDMS濃度4.8vol.ppbの条件で行った。
なお、表13中の改質率は以下の式で求められ、原料ガス中の炭素が、出力ガスにおいて炭化水素として残存せずに、CO及びCOガス中に変換された比率を表わしている。
(Examples 11 to 15) Reforming experiment of simulated natural gas containing sulfur by ruthenium-based catalyst Ruthenium-based reforming catalyst Ru / Al 2 O 3 (2% by weight Ru / alumina supported by the same experimental apparatus as in Example 1) , 2.4-ml in the microreactor 4A and partial oxidation of simulated natural gas (methane concentration 88%, ethane 6%, propane 4%, butane 2%), A steam reforming reaction was performed to determine a reforming rate (%). In this embodiment, pure oxygen was used as the oxygen-containing gas. The experimental conditions and results are shown in Table 13 of FIG. In Examples 11 to 15, the DMS concentration was 5 vol. ppb or less, Example 11 had no DMS added, and Example 12 had a DMS concentration of 0.9 vol. ppb, Example 13 shows a DMS concentration of 1.3 vol. ppb, Example 14 shows a DMS concentration of 2.4 vol. ppb, Example 15 has a DMS concentration of 4.8 vol. Performed under ppb conditions.
The reforming rate in Table 13 is obtained by the following equation, and represents the ratio of carbon in the raw material gas converted to CO and CO 2 gas without remaining as a hydrocarbon in the output gas. .

[数1]
改質率(%)=(出口CO濃度+出口CO2濃度)×100/(出口メタン濃度+出口CO濃度+出口CO2濃度+出口C2成分濃度×2+出口C3成分濃度×3+出口C4成分濃度×4)
[Equation 1]
Reformation rate (%) = (outlet CO concentration + outlet CO 2 concentration) × 100 / (outlet methane concentration + outlet CO concentration + outlet CO 2 concentration + outlet C2 component concentration × 2 + outlet C3 component concentration × 3 + outlet C4 component concentration × 4)

表13に示されるとおり、5vol.ppb以下のいずれのDMS濃度においても急激な活性の低下(改質率の低下)はみられないが、特に1.3vol.ppb以下にすると全く影響がない(改質率が変化しない)ことがわかった。従って、前段改質部(低温改質器1)に供給する総ガス中の硫黄濃度が5vol.ppb以下になるように、本燃料改質装置を運転している。なお、上記の結果は後段改質部(高温改質器2)についても同様に適用できるので、後段改質部(高温改質器2)に供給する総ガス中の硫黄濃度が5vol.ppb以下になるように、本燃料改質装置を運転している。また、触媒層の最高温度Tmaxは504℃〜507℃であり、ブタンの熱分解温度以下である。反応後、反応器を常温に戻して解体・観察した結果、いずれの実施例においても反応器内部や触媒表面へのカーボン析出は認められなかった。   As shown in Table 13, 5 vol. At any DMS concentration of ppb or less, no sharp decrease in the activity (reduction of the reforming rate) was observed, but particularly at 1.3 vol. It was found that there is no effect (the reforming ratio does not change) when the content is less than ppb. Therefore, the sulfur concentration in the total gas supplied to the first-stage reforming section (low-temperature reformer 1) is 5 vol. The present fuel reformer is operated so as to be ppb or less. Note that the above results can be similarly applied to the second-stage reforming section (high-temperature reformer 2). Therefore, when the sulfur concentration in the total gas supplied to the second-stage reforming section (high-temperature reformer 2) is 5 vol. The present fuel reformer is operated so as to be ppb or less. The maximum temperature Tmax of the catalyst layer is 504 ° C to 507 ° C, which is lower than the thermal decomposition temperature of butane. After the reaction, the reactor was returned to normal temperature and disassembled and observed. As a result, no carbon deposition was observed inside the reactor or on the catalyst surface in any of the examples.

以上の実施例1〜15及び比較例1,2は、図3または図14に示す実験装置を用いて、常圧で行ったものである。従って、反応器4,9の断熱性能や反応圧力が変わると、実施例1〜15及び比較例1,2と同一の条件であっても触媒層の最高温度Tmaxや出口ガス組成は変化する可能性がある。しかし、そのような場合でも入口ガスにおけるS/C比、O/C比、CO/C比のいずれか1つ以上を変化させるか、外部からの加熱または冷却により、触媒層の最高温度Tmaxを原料炭化水素の熱分解温度以下に制御するということは可能である。 The above Examples 1 to 15 and Comparative Examples 1 and 2 were performed at normal pressure using the experimental apparatus shown in FIG. 3 or FIG. Therefore, when the heat insulation performance and the reaction pressure of the reactors 4 and 9 change, the maximum temperature Tmax of the catalyst layer and the outlet gas composition can change even under the same conditions as those in Examples 1 to 15 and Comparative Examples 1 and 2. There is. However, even in such a case, the maximum temperature of the catalyst layer is changed by changing at least one of the S / C ratio, O 2 / C ratio, and CO 2 / C ratio in the inlet gas, or by heating or cooling from the outside. It is possible to control Tmax below the pyrolysis temperature of the raw hydrocarbon.

以上説明したように、本発明に係る燃料改質装置は、大きな気体空間速度の条件で使用でき、小型化できるので、自動車等の移動体用(移動体への搭載用)あるいは定置用(例えば、定置型小型電源用)に用いるのに適している。移動体への搭載用としては、例えば自動車の動力装置となる燃料電池への水素燃料の供給に使用でき、また、定置型小型電源用としては、小規模事業所等で発電用に使用する燃料電池への水素燃料の供給に使用できる。   As described above, the fuel reformer according to the present invention can be used under the condition of a large gas space velocity and can be miniaturized, so that it can be used for a moving body such as an automobile (for mounting on a moving body) or stationary (for example, , For stationary small power supplies). For mounting on a moving body, it can be used to supply hydrogen fuel to a fuel cell, for example, as a power unit of an automobile, and for a stationary small power source, a fuel used for power generation at a small business establishment or the like It can be used to supply hydrogen fuel to batteries.

〔別実施形態〕
次に、本発明に係る改質ガス製造装置の運転方法の別実施形態について説明する。
上記実施形態では、改質ガス製造装置(燃料改質装置)を前段の低温改質部1(反応室)と後段の高温改質部2(第二反応室)の2段構成としたが、前段の低温改質部1(反応室)だけ備えるように構成することも可能である。そして、この改質ガス製造装置の運転方法では、前段の低温改質部1(反応室)を200〜800℃(好ましくは、400〜700℃)の温度範囲で運転させる。
[Another embodiment]
Next, another embodiment of the operation method of the reformed gas producing apparatus according to the present invention will be described.
In the above-described embodiment, the reformed gas production device (fuel reforming device) has a two-stage configuration including the former low-temperature reforming unit 1 (reaction chamber) and the latter high-temperature reforming unit 2 (second reaction chamber). It is also possible to configure so that only the former low-temperature reforming section 1 (reaction chamber) is provided. In the operation method of the reformed gas producing apparatus, the former low-temperature reforming section 1 (reaction chamber) is operated in a temperature range of 200 to 800C (preferably 400 to 700C).

上記実施形態では、低温改質器1の反応室に相当する実験用の反応器4の反応室4Aの温度を測定して(図3参照)、その測定温度を見ながら、O/C比を手動操作で変更して(すなわち酸素含有ガス(空気)の供給量を調整して)、反応室4Aの温度を調整するようにしたが、以下のように、この調整操作を自動的に行うようにしてもよい。
この別実施形態では、図17に示すように、低温改質部1の反応室内の温度、例えばTin(入口温度)、Tmax(最大温度)、Tout(出口温度)などを検出する多点式の温度センサ12と、前記温度センサ12の検出情報に基づいて、前記酸素含有ガス、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つの前記炭化水素系燃料に対する供給量比を調整する制御を行う制御手段11が設けられている。図中、13a〜13eは各ガスの流量調整用の電磁弁である。
In the above embodiment, the temperature of the reaction chamber 4A of the experimental reactor 4 corresponding to the reaction chamber of the low-temperature reformer 1 is measured (see FIG. 3), and the O 2 / C ratio is determined while observing the measured temperature. Was manually changed (ie, the supply amount of the oxygen-containing gas (air) was adjusted) to adjust the temperature of the reaction chamber 4A, but this adjustment operation is automatically performed as follows. You may do so.
In this alternative embodiment, as shown in FIG. 17, a multi-point system for detecting the temperature in the reaction chamber of the low-temperature reforming section 1, for example, Tin (inlet temperature), Tmax (maximum temperature), Tout (outlet temperature), and the like. A temperature sensor, and control means for performing control to adjust a supply ratio of at least one of the oxygen-containing gas, water vapor, and carbon dioxide-containing gas to the hydrocarbon-based fuel based on detection information of the temperature sensor. 11 are provided. In the figure, 13a to 13e are solenoid valves for adjusting the flow rate of each gas.

そして、上記反応室内の各部の温度Tin,Tmax,Toutに基づいて、制御手段11が、前記炭化水素系燃料の供給量に対する前記酸素含有ガスの量と水蒸気含有ガスの量と二酸化炭素含有ガスの量の少なくとも1つを調整して、反応室内の温度が燃料である炭化水素ガスの熱分解温度以下の温度で、且つ、改質反応が適正に行われる温度になるように制御する。例えば反応室の温度が適正温度よりも低いときは、酸素含有ガスの供給量比を増加するか、あるいは水蒸気含有ガスの供給量比を減少させて温度を上昇させ、逆に、反応室の温度が適正温度よりも高いときは、水蒸気含有ガス及び二酸化炭素含有ガスのうちの少なくとも1つの供給量比を増加するか、あるいは酸素含有ガスの供給量比を減少させて温度を低下させる。   Then, based on the temperatures Tin, Tmax, and Tout of the respective sections in the reaction chamber, the control means 11 controls the amount of the oxygen-containing gas, the amount of the water vapor-containing gas, and the amount of the carbon dioxide-containing gas with respect to the supply amount of the hydrocarbon-based fuel. At least one of the amounts is adjusted so that the temperature in the reaction chamber is equal to or lower than the thermal decomposition temperature of hydrocarbon gas as a fuel, and is controlled to a temperature at which the reforming reaction is properly performed. For example, when the temperature of the reaction chamber is lower than the appropriate temperature, increase the supply ratio of the oxygen-containing gas or decrease the supply ratio of the steam-containing gas to increase the temperature, and conversely, the temperature of the reaction chamber Is higher than the appropriate temperature, the supply ratio of at least one of the water vapor-containing gas and the carbon dioxide-containing gas is increased, or the supply ratio of the oxygen-containing gas is decreased to lower the temperature.

さらに、本発明の改質ガス製造装置の運転方法として、前段の低温改質部1(反応室)と同様に、後段の高温改質部2(第二反応室)に供給する前記酸素含有ガス、前記水蒸気及び前記二酸化炭素含有ガスのうちの少なくとも1つの前記改質ガスに対する供給量比を変化させて、前記第二反応室の温度を調整する運転方法が可能である。
なお、図示はしないが、後段改質部(高温改質部2)についても、前段の改質部(低温改質器1)と同様に、第二反応室内の各部の温度Tin,Tmax,Toutを検出する温度センサの検出情報に基づいて、制御手段が、高温改質部2に供給する酸素含有ガス、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つの前記第一改質ガスに対する供給量比を変化させて、第二反応室の温度を調整する制御を行うように構成することが可能である。
Further, as an operation method of the reformed gas production apparatus of the present invention, the oxygen-containing gas supplied to the subsequent high-temperature reforming section 2 (second reaction chamber) as in the preceding low-temperature reforming section 1 (reaction chamber). An operation method of adjusting the temperature of the second reaction chamber by changing a supply ratio of at least one of the steam and the carbon dioxide-containing gas to the reformed gas is possible.
Although not shown, the temperatures of the respective sections Tin, Tmax, and Tout in the second reaction chamber in the second reforming section (high-temperature reforming section 2) are also the same as in the first reforming section (low-temperature reformer 1). Is supplied to the high-temperature reforming section 2 by the control means based on the detection information of the temperature sensor for detecting the supply rate ratio of at least one of the oxygen-containing gas, steam, and carbon dioxide-containing gas to the first reformed gas. Can be changed to perform control for adjusting the temperature of the second reaction chamber.

さらに、実際の改質装置においては、前段の低温改質器1(反応室)を外部から強制的に冷却または加熱可能な温度調整機構15、及び後段の高温改質器2(第二反応室)を外部から強制的に冷却または加熱可能な第二温度調整機構15を備えるようにしてもよい。具体的には、図18に例示するように、上記低温改質器1(反応室)に対する温度調整機構15及び上記高温改質器2(第二反応室)に対する第二温度調整機構15の夫々は、加熱用のガスバーナ15Aや、冷却流体が通流して冷却する冷却管15Bで構成される。   Further, in an actual reformer, a temperature adjusting mechanism 15 capable of forcibly cooling or heating the former low-temperature reformer 1 (reaction chamber) from the outside, and the latter high-temperature reformer 2 (second reaction chamber) ) May be provided with a second temperature adjustment mechanism 15 capable of forcibly cooling or heating from outside. Specifically, as illustrated in FIG. 18, a temperature adjustment mechanism 15 for the low-temperature reformer 1 (reaction chamber) and a second temperature adjustment mechanism 15 for the high-temperature reformer 2 (second reaction chamber), respectively. Is composed of a heating gas burner 15A and a cooling pipe 15B through which a cooling fluid flows for cooling.

上記実施形態では、改質用触媒及び改質用第二触媒が水蒸気改質性能を有する金属触媒であるが、改質用触媒及び改質用第二触媒が水蒸気改質性能と共に部分酸化性能を有していてもよい。   In the above embodiment, the reforming catalyst and the second reforming catalyst are metal catalysts having steam reforming performance, but the reforming catalyst and the second reforming catalyst have partial oxidation performance together with steam reforming performance. You may have.

本発明に係る改質ガス製造装置の概念図Conceptual diagram of a reformed gas production device according to the present invention 本発明に係る改質ガス製造装置の改質器の構成と温度分布を示すグラフ4 is a graph showing a configuration and a temperature distribution of a reformer of the reformed gas production device according to the present invention. 低温改質器の特性確認用の試験装置の構成図Configuration diagram of test equipment for checking characteristics of low-temperature reformer 低温改質器の水素燃焼による温度上昇結果(実施例1)を示すグラフGraph showing temperature rise result (Example 1) due to hydrogen combustion in low-temperature reformer ルテニウム系触媒によるプロパンの改質実験(実施例2)の条件を示す図Diagram showing conditions for propane reforming experiment (Example 2) using ruthenium-based catalyst ルテニウム系触媒によるプロパンの改質実験(実施例2)の結果を示す図Diagram showing the results of a propane reforming experiment (Example 2) using a ruthenium-based catalyst ルテニウム系触媒によるプロパンの改質実験(実施例2)の結果を示す図Diagram showing the results of a propane reforming experiment (Example 2) using a ruthenium-based catalyst ルテニウム系触媒によるn−ヘキサンの改質実験(実施例3)の条件を示す図The figure which shows the conditions of the n-hexane reforming experiment (Example 3) with a ruthenium-based catalyst ルテニウム系触媒によるn−ヘキサンの改質実験(実施例3)の結果を示す図The figure which shows the result of the reformation experiment (Example 3) of n-hexane with a ruthenium-based catalyst 低温改質器の改質用触媒の耐久性試験(実施例4)の結果を示すグラフGraph showing the results of the durability test (Example 4) of the reforming catalyst of the low-temperature reformer ニッケル系触媒によるプロパンの改質実験(実施例5)の条件と結果を示す図Diagram showing conditions and results of propane reforming experiment (Example 5) using nickel-based catalyst ニッケル系触媒とルテニウム系触媒によるn−ヘキサンの改質実験(実施例6,7)の条件と結果を示す図Diagram showing conditions and results of an experiment for reforming n-hexane using nickel-based catalyst and ruthenium-based catalyst (Examples 6 and 7) ルテニウム系触媒による模擬天ガスの改質実験(実施例8,9)の条件と結果を示す図Diagram showing the conditions and results of a simulated natural gas reforming experiment (Examples 8 and 9) using a ruthenium-based catalyst 低温改質器と高温改質器の2段構成改質器の特性確認用試験装置の構成図Configuration diagram of test equipment for confirming characteristics of two-stage reformer consisting of low-temperature reformer and high-temperature reformer 低温改質器と高温改質器の2段構成改質器の特性確認実験(実施例10)の条件と結果を示す図Diagram showing conditions and results of a characteristic confirmation experiment (Example 10) of a two-stage reformer including a low-temperature reformer and a high-temperature reformer ルテニウム系触媒による硫黄を含む模擬天ガスの改質実験(実施例11から15)の条件と結果を示す図Diagram showing conditions and results of a reforming experiment of simulated natural gas containing sulfur with a ruthenium-based catalyst (Examples 11 to 15) 別実施形態に係る低温改質器の温度制御構成を示すブロック図FIG. 4 is a block diagram illustrating a temperature control configuration of a low-temperature reformer according to another embodiment. 別実施形態に係る改質ガス製造装置の温度調整機構を示す図The figure which shows the temperature adjustment mechanism of the reformed gas manufacturing apparatus which concerns on another embodiment. 従来の部分酸化改質器の構成と温度分布を示すグラフGraph showing the configuration and temperature distribution of a conventional partial oxidation reformer 従来のプレリフォーマー付き部分酸化改質装置の構成と温度分布のグラフGraph of configuration and temperature distribution of conventional partial oxidation reformer with prereformer

符号の説明Explanation of reference numerals

3A〜3D 脱硫装置
4A 反応室
4B 温度調整機構
9A 第二反応室
9B 第二温度調整機構
12 温度センサ
15 温度調整機構
15 第二温度調整機構
3A to 3D Desulfurizer 4A Reaction chamber 4B Temperature adjustment mechanism 9A Second reaction chamber 9B Second temperature adjustment mechanism 12 Temperature sensor 15 Temperature adjustment mechanism 15 Second temperature adjustment mechanism

Claims (19)

水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つと、炭素数が2以上の炭化水素を含有する燃料と、酸素含有ガスとを含む流体を被改質流体として、改質用触媒を内蔵した反応室に供給し、前記改質用触媒に接する前記被改質流体の最高温度が200〜800℃の温度範囲で且つ前記燃料の熱分解温度以下になるように前記反応室の温度を調整して、メタン、水素及び一酸化炭素を含む改質ガスを製造する改質ガス製造装置の運転方法。   Reaction chamber containing a reforming catalyst, using a fluid containing at least one of steam and carbon dioxide-containing gas, a fuel containing hydrocarbons having 2 or more carbon atoms, and an oxygen-containing gas as a fluid to be reformed The temperature of the reaction chamber is adjusted so that the maximum temperature of the fluid to be reformed in contact with the reforming catalyst is within a temperature range of 200 to 800 ° C. and equal to or lower than the thermal decomposition temperature of the fuel. An operating method of a reformed gas producing apparatus for producing a reformed gas containing methane, hydrogen and carbon monoxide. 前記反応室に供給する前記酸素含有ガス、前記水蒸気及び前記二酸化炭素含有ガスのうちの少なくとも1つの前記燃料に対する供給量比を変化させて、前記反応室の温度を調整する請求項1記載の改質ガス製造装置の運転方法。   2. The modification according to claim 1, wherein a temperature of the reaction chamber is adjusted by changing a supply ratio of at least one of the oxygen-containing gas, the water vapor, and the carbon dioxide-containing gas to be supplied to the reaction chamber. Method of operating a high quality gas production system 前記反応室内の温度を検出する温度センサの検出情報に基づいて、前記燃料に対する供給量比を調整する制御を行う請求項2記載の改質ガス製造装置の運転方法。   3. The operating method of the reformed gas production apparatus according to claim 2, wherein control is performed to adjust a supply amount ratio to the fuel based on detection information of a temperature sensor that detects a temperature in the reaction chamber. 前記反応室を冷却または加熱可能な温度調整機構により前記反応室の温度を調整する請求項1〜3のいずれかに記載の改質ガス製造装置の運転方法。   The method according to any one of claims 1 to 3, wherein the temperature of the reaction chamber is adjusted by a temperature adjustment mechanism capable of cooling or heating the reaction chamber. 前記反応室に対して、水素含有ガスを供給する請求項1〜4のいずれかに記載の改質ガス製造装置の運転方法。   The method for operating a reformed gas production apparatus according to any one of claims 1 to 4, wherein a hydrogen-containing gas is supplied to the reaction chamber. 前記反応室の温度が前記燃料の改質に必要な適正運転温度に達するまでは、前記反応室に前記水素含有ガスと酸素含有ガスを供給して水素を燃焼させ、その水素の燃焼熱により前記反応室の温度を前記適正運転温度に上昇させる請求項5記載の改質ガス製造装置の運転方法。   Until the temperature of the reaction chamber reaches a proper operating temperature required for the reforming of the fuel, the hydrogen-containing gas and the oxygen-containing gas are supplied to the reaction chamber to burn hydrogen, and the combustion heat of the hydrogen causes the heat of combustion. The method according to claim 5, wherein the temperature of the reaction chamber is raised to the proper operating temperature. 前記改質用触媒が、水蒸気改質性能を有する金属を主成分とする触媒である請求項1〜6のいずれかに記載の改質ガス製造装置の運転方法。   The method for operating a reformed gas producing apparatus according to any one of claims 1 to 6, wherein the reforming catalyst is a catalyst containing a metal having steam reforming performance as a main component. 前記反応室の前に備えた脱硫装置によって、前記反応室に供給する前記燃料、前記各ガス及び前記水蒸気のうちの少なくとも1つに対して脱硫処理を行う請求項1〜7のいずれかに記載の改質ガス製造装置の運転方法。   The desulfurization device provided in front of the reaction chamber performs desulfurization processing on at least one of the fuel, each of the gases, and the steam supplied to the reaction chamber. Method for operating a reformed gas production apparatus of the present invention. 前記反応室に供給する総ガス中の硫黄濃度が5vol.ppb以下になるように前記脱硫装置を作動させる請求項8記載の改質ガス製造装置の運転方法。   When the sulfur concentration in the total gas supplied to the reaction chamber is 5 vol. The method for operating a reformed gas production apparatus according to claim 8, wherein the desulfurization apparatus is operated so as to be ppb or less. 酸素含有ガス及び前記反応室にて生成した前記改質ガスを含む流体を第二被改質流体として、改質用第二触媒を内蔵した第二反応室に供給し、前記改質用第二触媒に接する前記第二被改質流体の最高温度が400〜1200℃の温度範囲に維持され、且つ前記第二反応室の出口温度が前記反応室の出口温度よりも高くなるように前記第二反応室の温度を調整して、水素及び一酸化炭素を含む第二改質ガスを製造する請求項1〜9のいずれかに記載の改質ガス製造装置の運転方法。   A fluid containing an oxygen-containing gas and the reformed gas generated in the reaction chamber is supplied to a second reaction chamber containing a second reforming catalyst as a second fluid to be reformed, The second temperature is set such that the maximum temperature of the second fluid to be reformed in contact with the catalyst is maintained in the temperature range of 400 to 1200 ° C., and the outlet temperature of the second reaction chamber is higher than the outlet temperature of the reaction chamber. The method for operating a reformed gas producing apparatus according to any one of claims 1 to 9, wherein the temperature of the reaction chamber is adjusted to produce a second reformed gas containing hydrogen and carbon monoxide. 前記第二反応室に対して、水蒸気及び二酸化炭素含有ガスのうちの少なくとも1つを供給する請求項10記載の改質ガス製造装置の運転方法。   The method according to claim 10, wherein at least one of steam and a carbon dioxide-containing gas is supplied to the second reaction chamber. 前記第二反応室に供給する前記酸素含有ガス、前記水蒸気及び前記二酸化炭素含有ガスのうちの少なくとも1つの前記改質ガスに対する供給量比を変化させて、前記第二反応室の温度を調整する請求項11記載の改質ガス製造装置の運転方法。   The temperature of the second reaction chamber is adjusted by changing a supply ratio of at least one of the oxygen-containing gas, the water vapor, and the carbon dioxide-containing gas to the reformed gas to be supplied to the second reaction chamber. An operation method of the reformed gas production apparatus according to claim 11. 前記第二反応室内の温度を検出する温度センサの検出情報に基づいて、前記改質ガスに対する供給量比を調整する制御を行う請求項12記載の改質ガス製造装置の運転方法。   13. The operating method of the reformed gas production apparatus according to claim 12, wherein control for adjusting a supply amount ratio to the reformed gas is performed based on detection information of a temperature sensor that detects a temperature in the second reaction chamber. 前記第二反応室を冷却または加熱可能な第二温度調整機構により前記第二反応室の温度を調整する請求項10〜13のいずれかに記載の改質ガス製造装置の運転方法。   The method for operating a reformed gas production apparatus according to any one of claims 10 to 13, wherein the temperature of the second reaction chamber is adjusted by a second temperature adjustment mechanism capable of cooling or heating the second reaction chamber. 前記第二反応室の前に備えた脱硫装置によって、前記第二反応室に供給する前記各ガスのうちの少なくとも1つに対して脱硫処理を行う請求項10〜14のいずれかに記載の改質ガス製造装置の運転方法。   15. The modification according to claim 10, wherein at least one of the gases supplied to the second reaction chamber is subjected to a desulfurization treatment by a desulfurization device provided in front of the second reaction chamber. Method of operating a high quality gas production device. 前記第二反応室に供給する総ガス中の硫黄濃度が5vol.ppb以下になるように前記脱硫装置を作動させる請求項15記載の改質ガス製造装置の運転方法。   The sulfur concentration in the total gas supplied to the second reaction chamber is 5 vol. The method for operating a reformed gas production apparatus according to claim 15, wherein the desulfurization apparatus is operated so as to be ppb or less. 前記改質用第二触媒が、水蒸気改質性能を有する金属を主成分とする触媒である請求項10〜16のいずれかに記載の改質ガス製造装置の運転方法。   The method for operating a reformed gas producing apparatus according to any one of claims 10 to 16, wherein the second catalyst for reforming is a catalyst containing a metal having steam reforming performance as a main component. 前記反応室に供給する総ガス流量を時間当たりの気体空間速度で750h−1〜300000h−1の範囲とする請求項1〜17のいずれかに記載の改質ガス製造装置の運転方法。 How the operation of the reformed gas manufacturing apparatus according to any one of claims 1 to 17 in the range of the reaction chamber to supply the total gas flow rate 750h -1 ~300000h -1 at a gas hourly space velocity. 移動体用あるいは定置用に用いられる請求項1〜18のいずれかに記載の改質ガス製造装置の運転方法。   The method for operating a reformed gas production apparatus according to any one of claims 1 to 18, wherein the method is used for a moving object or a stationary object.
JP2003295408A 2002-12-25 2003-08-19 Operation method of reformed gas production equipment Expired - Fee Related JP4304025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295408A JP4304025B2 (en) 2002-12-25 2003-08-19 Operation method of reformed gas production equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002375132 2002-12-25
JP2003295408A JP4304025B2 (en) 2002-12-25 2003-08-19 Operation method of reformed gas production equipment

Publications (2)

Publication Number Publication Date
JP2004217505A true JP2004217505A (en) 2004-08-05
JP4304025B2 JP4304025B2 (en) 2009-07-29

Family

ID=32911089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295408A Expired - Fee Related JP4304025B2 (en) 2002-12-25 2003-08-19 Operation method of reformed gas production equipment

Country Status (1)

Country Link
JP (1) JP4304025B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001438A1 (en) * 2004-06-28 2006-01-05 Osaka Gas Co., Ltd. Method and apparatus for producing reformed gas
JP2006273619A (en) * 2005-03-28 2006-10-12 Aisin Seiki Co Ltd Reformer
WO2007116121A1 (en) * 2006-04-10 2007-10-18 Valtion Teknillinen Tutkimuskeskus Multiple stage method of reforming a gas containing tarry impurities employing a zirconium-based catalyst
WO2009123095A1 (en) * 2008-03-31 2009-10-08 独立行政法人石油天然ガス・金属鉱物資源機構 Method for operating synthesis gas reformer in gtl plant
JP2010526759A (en) * 2007-05-11 2010-08-05 ビーエーエスエフ ソシエタス・ヨーロピア Syngas production method
WO2011111554A1 (en) * 2010-03-08 2011-09-15 エア・ウォーター株式会社 Syngas production method
WO2013069635A1 (en) * 2011-11-09 2013-05-16 Jx日鉱日石エネルギー株式会社 Solid-oxide fuel cell system, and method for starting same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486167B2 (en) 2004-06-28 2013-07-16 Osaka Gas Co., Ltd. Reformed gas production method and reformed gas production apparatus
US9162888B2 (en) 2004-06-28 2015-10-20 Osaka Gas Co., Ltd. Reformed gas production method and reformed gas production apparatus
WO2006001438A1 (en) * 2004-06-28 2006-01-05 Osaka Gas Co., Ltd. Method and apparatus for producing reformed gas
JP2006273619A (en) * 2005-03-28 2006-10-12 Aisin Seiki Co Ltd Reformer
WO2007116121A1 (en) * 2006-04-10 2007-10-18 Valtion Teknillinen Tutkimuskeskus Multiple stage method of reforming a gas containing tarry impurities employing a zirconium-based catalyst
JP2009533514A (en) * 2006-04-10 2009-09-17 ヴァルション テクニッリネン トゥトキムスケスクス Method for reforming gas containing tar-like impurities
US8100995B2 (en) 2006-04-10 2012-01-24 Teknologian Tutkimuskeskus Vtt Multiple stage method of reforming a gas containing tarry impurities employing a zirconium-based catalyst
JP2010526759A (en) * 2007-05-11 2010-08-05 ビーエーエスエフ ソシエタス・ヨーロピア Syngas production method
WO2009123095A1 (en) * 2008-03-31 2009-10-08 独立行政法人石油天然ガス・金属鉱物資源機構 Method for operating synthesis gas reformer in gtl plant
JP2009242158A (en) * 2008-03-31 2009-10-22 Japan Oil Gas & Metals National Corp Method for operating synthesis gas reformer in gtl plant
US8303848B2 (en) 2008-03-31 2012-11-06 Japan Oil, Gas And Metals National Corporation Operation method of synthesis gas reformer in GTL plant
EA017674B1 (en) * 2008-03-31 2013-02-28 Джэпэн Ойл, Гэз Энд Металз Нэшнл Корпорейшн Method for operating synthesis gas reformer in gtl (gas to liquid) plant
JP2011207740A (en) * 2010-03-08 2011-10-20 Air Water Inc Syngas production method
WO2011111554A1 (en) * 2010-03-08 2011-09-15 エア・ウォーター株式会社 Syngas production method
WO2013069635A1 (en) * 2011-11-09 2013-05-16 Jx日鉱日石エネルギー株式会社 Solid-oxide fuel cell system, and method for starting same
JPWO2013069635A1 (en) * 2011-11-09 2015-04-02 Jx日鉱日石エネルギー株式会社 Solid oxide fuel cell system and starting method thereof

Also Published As

Publication number Publication date
JP4304025B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP5643871B2 (en) Method for producing reformed gas
EP1819430B1 (en) Method for processing a fuel feedstock for a fuel cell
EP1993719B9 (en) Oxygen removal
CA2592441C (en) Thermo-neutral reforming of petroleum-based liquid hydrocarbons
EP1626033B1 (en) Post-reformer treatment of reformate gas
CA2521278A1 (en) Autothermal reforming in a fuel processor utilizing non-pyrophoric shift catalyst
Villegas et al. A combined thermodynamic/experimental study for the optimisation of hydrogen production by catalytic reforming of isooctane
EP2006947A9 (en) Solid oxide fuel cell system and method of operating the same
JP4304025B2 (en) Operation method of reformed gas production equipment
JP2006111766A (en) Desulfurization apparatus and hydrogen-producing apparatus
JP4537666B2 (en) Fuel for fuel cell system and fuel cell system
WO2021251471A1 (en) Co2 methanation reaction apparatus provided with selective oxidation catalyst for co, and metod for removing co from gas
JPH08295503A (en) Method for removing co in gaseous hydrogen
JP2003277013A (en) Carbon monoxide removing method and polymer electrolyte fuel cell system
JP5809049B2 (en) Method of using steam reforming catalyst for fuel cell and hydrogen production system
US8100994B2 (en) Process for generating electricity and hydrogen that comprises a hybrid reformer
JP5741510B2 (en) Fuel cell power generation system
JP4245340B2 (en) Fuel cell reformer
EP4208409A1 (en) Production of synthesis gas in a plant comprising an electric steam reformer downstream of a heat exchange reformer
WO2023139258A1 (en) Conversion of co2 and h2 to syngas
JP2003212512A (en) Method of removing carbon monoxide and solid polymer fuel cell system
KR20050123340A (en) The method of reforming the natural gas and the reformer of the natural gas.
IIDA et al. Deactivation Analysis of a Cu/ZnO-based Catalyst for Water Gas Shift Reaction at Low Temperature
Krumpelt et al. Fuel Processing for Mobile Fuel Cell Systems
Harrison Assessment of novel catalyst materials for the extraction of hydrogen from commercial fuel feeds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4304025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150501

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees