JPH07191A - Production of highly branched oligosaccharide - Google Patents
Production of highly branched oligosaccharideInfo
- Publication number
- JPH07191A JPH07191A JP6904793A JP6904793A JPH07191A JP H07191 A JPH07191 A JP H07191A JP 6904793 A JP6904793 A JP 6904793A JP 6904793 A JP6904793 A JP 6904793A JP H07191 A JPH07191 A JP H07191A
- Authority
- JP
- Japan
- Prior art keywords
- 4glcα1
- 6glcα1
- highly branched
- substrate
- neopullulanase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は2個以上のα−1,6−
グルコシド結合を有し、且つ1個以上のα−1,4−グ
ルコシド結合を有する分岐オリゴ糖(本願明細書では、
高度分岐オリゴ糖ということとする)の製造法に関す
る。高度分岐オリゴ糖はビフィズス菌の増殖因子あるい
は抗う蝕性を示す機能性オリゴ糖として及び重合度4程
度までの比較的低重合度の分岐オリゴ糖とプルランのよ
うな分岐多糖類との中間的な性質を示す食品素材として
期待できる。図1〜図12に本発明により製造が可能と
なった高度分岐オリゴ糖の構造を示す。The present invention relates to two or more α-1,6-
A branched oligosaccharide having a glucosidic bond and having one or more α-1,4-glucosidic bonds (herein,
It is referred to as a hyperbranched oligosaccharide). Highly branched oligosaccharides are growth factors of bifidobacteria or functional oligosaccharides showing caries resistance, and are intermediate between branched oligosaccharides having a relatively low degree of polymerization of up to about 4 and branched polysaccharides such as pullulan. It can be expected as a food material showing properties. 1 to 12 show the structures of highly branched oligosaccharides that can be produced by the present invention.
【0002】[0002]
【従来の技術及び本発明が解決しようとする課題】高度
分岐オリゴ糖は合成化学により製造できるであろう。し
かし、生化学的に製造されたことはなかった。従来より
分岐オリゴ糖を製造するために用いたα−グルコシダー
ゼは2個以上のα−1,6結合のみを有するオリゴ糖
(イソマルトトリオース(図13にその構造を示す)、
イソマルトテトラオース(図14にその構造を示す)
等)は製造できるが、高度分岐オリゴ糖すなわち、2個
以上のα−1,6結合を有し、且つ一個以上のα−1,
4−グルコシド結合を有する分岐オリゴ糖は製造できな
かった。BACKGROUND OF THE INVENTION Highly branched oligosaccharides could be produced by synthetic chemistry. However, it was never manufactured biochemically. The α-glucosidase conventionally used for producing a branched oligosaccharide is an oligosaccharide having only two or more α-1,6 bonds (isomaltotriose (the structure is shown in FIG. 13),
Isomaltotetraose (Fig. 14 shows its structure)
Etc.), but is highly branched oligosaccharide, that is, it has two or more α-1,6 bonds and one or more α-1,6
A branched oligosaccharide having a 4-glucoside bond could not be produced.
【0003】本発明者らは平成3年9月9日提出の特許
願平成3年第258575号(発明の名称、イソパノー
スを含む甘味料の製造方法)において、基質にネオプル
ラナーゼを作用させることによりイソパノースを含む甘
味料を製造した。しかし、その製法では高度分岐オリゴ
糖を検出しなかった。In the patent application No. 258,575, filed on Sep. 9, 1991, No. 258575 (the title of the invention, a method for producing a sweetener containing isopanose), the present inventors have made neopullulanase act on a substrate. A sweetener containing isopanose was prepared. However, the method did not detect highly branched oligosaccharides.
【0004】[0004]
【課題を解決するための手段】本発明に用いる基質は、
α−1,4−グルコシド結合のみ又はα−1,4及びα
−1,6−グルコシド結合を有する糖質である。例え
ば、澱粉、デキストリン、水飴、各種マルトオリゴ糖で
ある。デキストリンは澱粉を細菌液化型α−アミラーゼ
で液化する又はさらにこれに細菌糖化型又はかび類のα
−アミラーゼで分解するなどにより製造できる。The substrate used in the present invention is
α-1,4-glucosidic bond only or α-1,4 and α
It is a carbohydrate having a -1,6-glucoside bond. For example, starch, dextrin, starch syrup, and various maltooligosaccharides. Dextrins liquefy starch with a bacterial liquefied α-amylase or, in addition, bacterial saccharified or fungal α
-It can be produced by decomposing with amylase.
【0005】本発明に用いるネオプルラナーゼはプルラ
ンを加水分解し主にパノースを製造するとともににα−
1,4及びα−1,6−グリコシド転移反応を触媒する
酵素である。例えば、Bacillus stearo
thermophilusTRS40(微工研菌寄託第
9609号)由来のネオプルラナーゼ(Jour−na
l of Bacteriology第170巻、第1
554頁、1988年刊行に記載あり)、Thermo
actinomyces vulgalis由来のα−
アミラーゼ(Agricultural and Bi
ologi−cal Chemistry、第42巻、
第1681頁、1978年刊行に記載あり)、Baci
llus stearothermophilus K
P1064のプルラン加水分解酵素(Applied
Microbiology and Biotechn
ology、第21巻、第20頁、1985年刊行に記
載あり)及びBacteroides thetaio
taomicron95−1のネオプルラナーゼ(Jo
urnal of Bacteriology、第17
3巻、第2962頁、1991年刊行に記載あり)、な
どがこれに当たる。The neopullulanase used in the present invention hydrolyzes pullulan to mainly produce panose, and α-
It is an enzyme that catalyzes 1,4 and α-1,6-glycosidyl transfer reactions. For example, Bacillus stearo
neopullulanase (Jour-na) derived from thermophilus TRS40 (Deposit No. 9609 of the Institute of Microbiology and Biotechnology)
l of Bacteriology Volume 170, Volume 1
554, described in 1988), Thermo
α-derived from actinomyces vulgalis
Amylase (Agricultural and Bi)
Logi-cal Chemistry, Volume 42,
(Pp. 1681, published in 1978), Baci
llus stearothermophilus K
P1064 pullulan hydrolase (Applied
Microbiology and Biotechn
biology, vol. 21, p. 20, published in 1985) and Bacteroides theatio.
taomicron 95-1 neopullulanase (Jo
urinal of Bacteriology, No. 17
Volume 3, page 2962, published in 1991), and so on.
【0006】本発明に用いるα−アミラーゼは特別のも
のではない。市販されているものでよい。酵素を作用さ
せるとき及び2種類の酵素を併用して作用させるときに
格別の手段を必要としない。通常のpH及び温度でよ
い。酵素は固定化しなくてもよい。The α-amylase used in the present invention is not special. A commercially available product may be used. No special means is required for the action of the enzyme and the action of the two types of enzymes in combination. Normal pH and temperature may be used. The enzyme does not have to be immobilized.
【0007】作用させた後の液は、必要に応じて活性炭
で脱色し又はイオン交換樹脂により精製し製品とする。
更に、必要に応じてエタノールによる沈殿又は活性炭カ
ラムクロマトグラフィー等により分画し濃縮した製品も
製造できる。The liquid after the reaction is decolorized with activated carbon or purified with an ion exchange resin as required to obtain a product.
Further, if necessary, a product obtained by fractionating and concentrating by precipitation with ethanol or activated carbon column chromatography can be produced.
【0008】[0008]
【作用】ネオプルラナーゼの特徴はグルコシル基のみを
α−1,6転移するだけでなく、マルトシル基以上もα
−1,6転移することである。これはα−グルコシダー
ゼの特徴がグルコシル基のみをα−1,6転移すること
と異なる。高度分岐オリゴ糖の製造は、ネオプルラナー
ゼの転移反応及び縮合反応を利用している。これらの反
応は高濃度の基質と高濃度酵素を必要とする。[Function] Neopullulanase is characterized by not only transferring only glucosyl group to α-1,6, but also more than maltosyl group by α
-1,6 transition. This is different from the characteristic of α-glucosidase in that only a glucosyl group is transferred by α-1,6. The production of highly branched oligosaccharides utilizes the transfer reaction and condensation reaction of neopullulanase. These reactions require high concentration of substrate and high concentration of enzyme.
【0009】(実験1)いろいろな濃度のコーンスター
チ糖化液(DE10)に、ネオプルラナーゼを25U/
g−基質の割合で混ぜ、50℃、pH6.0で32時間
反応させた。コーンスターチ糖化液(基質)の濃度によ
り、全生成物の中の高度分岐オリゴ糖の生成割合がどの
よう変わるかを表1に示した。(Experiment 1) To the saccharified cornstarch solution (DE10) having various concentrations, 25 U of neopullulanase was added.
The mixture was mixed at a ratio of g-substrate and reacted at 50 ° C. and pH 6.0 for 32 hours. Table 1 shows how the production ratio of hyperbranched oligosaccharides in all the products changes depending on the concentration of the corn starch saccharified solution (substrate).
【表1】 [Table 1]
【0010】(実験2)30%の濃度のコーンスターチ
糖化液(DE10)に、いろいろな基質に対する割合の
ネオプルラナーゼを混ぜ、50℃、pH6.0で32時
間反応させた。ネオプルラナーゼ(酵素)の基質に対す
る割合により、全生成物の中の高度分岐オリゴ糖の生成
割合がどのよう変わるかを表2に示した。(Experiment 2) A cornstarch saccharified solution (DE10) having a concentration of 30% was mixed with neopullulanase in various ratios to various substrates and reacted at 50 ° C. and pH 6.0 for 32 hours. Table 2 shows how the production ratio of hyperbranched oligosaccharides in all products changes depending on the ratio of neopullulanase (enzyme) to the substrate.
【表2】 [Table 2]
【0011】[0011]
(実施例1)コーンスターチの糖化液(DE10)30
%溶液に25U/g−基質のネオプルラナーゼを加え
て、50℃で48時間反応させた。反応生成物を高速液
体クロマトグラフィーで定量した結果、表3に示す高度
分岐オリゴ糖を含むシラップを得た。(Example 1) Corn starch saccharification liquid (DE10) 30
25 U / g-substrate neopullulanase was added to the 50% solution and reacted at 50 ° C. for 48 hours. As a result of quantifying the reaction product by high performance liquid chromatography, syrup containing highly branched oligosaccharide shown in Table 3 was obtained.
【表3】 [Table 3]
【0012】(実施例2)30%のデキストリン溶液に
25U/g−基質のネオプルラナーゼと5U/g−基質
の細菌由来液化型α−アミラーゼを加えて、50℃で4
8時間反応させた。反応生成物を高速液体クロマトグラ
フィーで定量した結果、表4に示す高度分岐オリゴ糖を
含むシラップを得たExample 2 25 U / g-substrate neopullulanase and 5 U / g-substrate liquefied α-amylase derived from bacteria were added to a 30% dextrin solution, and the mixture was allowed to stand at 50 ° C. for 4 hours.
The reaction was carried out for 8 hours. As a result of quantifying the reaction product by high performance liquid chromatography, syrup containing highly branched oligosaccharide shown in Table 4 was obtained.
【表4】 [Table 4]
【0013】[0013]
【効果】本発明により生化学合成及び従来の酵素反応で
は製造できなかった高度分岐オリゴ糖が製造できた。[Effect] According to the present invention, highly branched oligosaccharides that could not be produced by biochemical synthesis and conventional enzymatic reactions could be produced.
【図1】 Glcα1−6Glcα1−4Glcα1
−6Glcの構造FIG. 1 Glcα1-6Glcα1-4Glcα1
-6Glc structure
【図2】 Glcα1−4Glcα1−6Glcα1
−4Glcα1−6Glcの構造FIG. 2 Glcα1-4Glcα1-6Glcα1
-4Glcα1-6Glc structure
【図3】 Glcα1−6Glcα1−4Glcα1
−6Glcα1−4Glcの構造FIG. 3 Glcα1-6Glcα1-4Glcα1
Structure of -6Glcα1-4Glc
【図4】 Glcα1−4Glcα1−6Glcα1
−4Glcα1−6Glcα1−4Glcの構造FIG. 4 Glcα1-4Glcα1-6Glcα1
Structure of -4Glcα1-6Glcα1-4Glc
【図5】 Glcα1−6Glcα1−4Glcα1
−4Glcα1−6Glcα1−4Glcの構造FIG. 5: Glcα1-6Glcα1-4Glcα1
Structure of -4Glcα1-6Glcα1-4Glc
【図6】 Glcα1−4Glcα1−4Glcα1
−6Glcα1−4Glcα1−6Glcの構造FIG. 6 Glcα1-4Glcα1-4Glcα1
Structure of -6Glcα1-4Glcα1-6Glc
【図7】 Glcα1−6Glcα1−4Glcα1
−6Glcα1−4Glcα1−6Glcの構造FIG. 7: Glcα1-6Glcα1-4Glcα1
Structure of -6Glcα1-4Glcα1-6Glc
【図8】 Glcα1−4Glcα1−6Glcα1
−4Glcα1,6Glcα1−4Glcα1−6Gl
cの構造FIG. 8 Glcα1-4Glcα1-6Glcα1
-4Glcα1, 6Glcα1-4Glcα1-6Gl
structure of c
【図9】 Glcα1−6Glcα1−4Glcα1
−6Glcα1−4Glcα1−6Glcα1−4Gl
cの構造FIG. 9: Glcα1-6Glcα1-4Glcα1
-6Glcα1-4Glcα1-6Glcα1-4Gl
structure of c
【図10】 Glcα1−4Glcα1−4Glcα1
−6Glcα1−4Glcα1−6Glcα1−4Gl
cの構造FIG. 10: Glcα1-4Glcα1-4Glcα1
-6Glcα1-4Glcα1-6Glcα1-4Gl
structure of c
【図11】 Glcα1−4Glcα1−6Glcα
1,4Glcα1−4Glcα1−6Glcα1−4G
lcの構造FIG. 11: Glcα1-4Glcα1-6Glcα
1,4Glcα1-4Glcα1-6Glcα1-4G
structure of lc
【図12】 Glcα1−4Glcα1−6Glcα1
−4Glcα1−6Glcα1−4Glcα1−4Gl
cの構造FIG. 12: Glcα1-4Glcα1-6Glcα1
-4Glcα1-6Glcα1-4Glcα1-4Gl
structure of c
【図13】 イソマルトトリオースの構造FIG. 13 Structure of Isomaltotriose
【図14】 イソマルトテトラオースの構造FIG. 14: Structure of isomalttetraose
1 グルコース 2 α−1,4−結合 3 α−1,6−結合 4 還元末端グルコース 1 glucose 2 α-1,4-bond 3 α-1,6-bond 4 reducing terminal glucose
Claims (2)
−基質以上のネオプルラナーゼを作用させることを特徴
とする高度分岐オリゴ糖の製造法1. 25 U / g for a substrate having a sugar concentration of 20% or more
-A method for producing highly branched oligosaccharides, characterized in that neopullulanases above the substrate are allowed to act
ーゼと25U/g−基質以上のネオプルラナーゼとを併
用して作用させることを特徴とする高度分岐オリゴ糖の
製造法2. A method for producing a highly branched oligosaccharide, which comprises allowing a substrate having a sugar concentration of 20% or more to act in combination with α-amylase and 25 U / g-substrate or more of neopullulanase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6904793A JPH07191A (en) | 1993-02-17 | 1993-02-17 | Production of highly branched oligosaccharide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6904793A JPH07191A (en) | 1993-02-17 | 1993-02-17 | Production of highly branched oligosaccharide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07191A true JPH07191A (en) | 1995-01-06 |
Family
ID=13391282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6904793A Pending JPH07191A (en) | 1993-02-17 | 1993-02-17 | Production of highly branched oligosaccharide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07191A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9868969B2 (en) | 2006-01-25 | 2018-01-16 | Tate & Lyle Ingredients Americas Llc | Fiber-containing carbohydrate composition |
US11540549B2 (en) | 2019-11-28 | 2023-01-03 | Tate & Lyle Solutions Usa Llc | High-fiber, low-sugar soluble dietary fibers, products including them and methods for using them |
JPWO2023277041A1 (en) * | 2021-06-28 | 2023-01-05 |
-
1993
- 1993-02-17 JP JP6904793A patent/JPH07191A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9868969B2 (en) | 2006-01-25 | 2018-01-16 | Tate & Lyle Ingredients Americas Llc | Fiber-containing carbohydrate composition |
US9957537B2 (en) | 2006-01-25 | 2018-05-01 | Tate & Lyle Ingredients Americas Llc | Fiber-containing carbohydrate composition |
US9963726B2 (en) | 2006-01-25 | 2018-05-08 | Tate & Lyle Ingredients Americas Llc | Fiber-containing carbohydrate composition |
US10344308B2 (en) | 2006-01-25 | 2019-07-09 | Tate & Lyle Ingredients Americas Llc | Fiber-containing carbohydrate composition |
US11540549B2 (en) | 2019-11-28 | 2023-01-03 | Tate & Lyle Solutions Usa Llc | High-fiber, low-sugar soluble dietary fibers, products including them and methods for using them |
JPWO2023277041A1 (en) * | 2021-06-28 | 2023-01-05 | ||
WO2023277041A1 (en) * | 2021-06-28 | 2023-01-05 | 石川県公立大学法人 | Proliferation promoter for lactic acid bacteria and bifidobacteria |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3565765A (en) | Preparation of high maltose conversion products | |
KR20010032497A (en) | Enzymatic starch saccharification including a membrane separation step | |
JPH01199575A (en) | Novel cyclomaltodextrin-glucano transferase and production thereof | |
JP2012016309A (en) | Maltotriose-forming amylase, production method and use thereof | |
JPH0491795A (en) | Production of fructose-containing oligosaccharide | |
EP0405283A2 (en) | Novel thermoduric and aciduric pullulanase enzyme and method for its production | |
JPH0118717B2 (en) | ||
US7981639B2 (en) | Starch-derived products | |
KAINUMA | Starch oligosaccharides: linear, branched, and cyclic | |
JP3490481B2 (en) | Method for producing oligosaccharide | |
JPH07191A (en) | Production of highly branched oligosaccharide | |
JP2001258589A (en) | Method for producing dextran | |
JP2933960B2 (en) | Method for producing branched oligosaccharide | |
JP3905141B2 (en) | Method for producing oligosaccharide | |
JP3064031B2 (en) | New oligosaccharides and their production | |
JPH062071B2 (en) | Saccharide manufacturing method | |
JP3089503B2 (en) | Method for producing sweetener containing isopanose | |
JP2691354B2 (en) | Novel α-amylase, method for producing the same and method for producing saccharide using the same | |
JPH0231685A (en) | Novel production of monosaccharide by enzymatic process | |
JP2002065291A (en) | Method for manufacturing glucan having cyclic structure | |
KR940005661B1 (en) | Process for making maltopentaose | |
JPH04148693A (en) | Production of transfer product of glucose | |
KR100425925B1 (en) | Inulo-oligosaccharides produced by a dual endoinulinase and process for preparation thereof | |
JPH07143892A (en) | Production of isomaltosyl fructoside | |
JPH0336512B2 (en) |