JPH07191236A - Optical circuit and its production - Google Patents

Optical circuit and its production

Info

Publication number
JPH07191236A
JPH07191236A JP33115893A JP33115893A JPH07191236A JP H07191236 A JPH07191236 A JP H07191236A JP 33115893 A JP33115893 A JP 33115893A JP 33115893 A JP33115893 A JP 33115893A JP H07191236 A JPH07191236 A JP H07191236A
Authority
JP
Japan
Prior art keywords
optical
substrate
optical waveguide
reflection mirror
optical circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33115893A
Other languages
Japanese (ja)
Inventor
Yutaka Nishimoto
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33115893A priority Critical patent/JPH07191236A/en
Publication of JPH07191236A publication Critical patent/JPH07191236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To obtain an optical circuit with which optical coupling between an optical waveguide and various respective optical parts with high efficiency and a reduction of the cost of the optical circuit are possible and which has reliability to a temp. fluctuation, vibration impact, etc., CONSTITUTION:The optical waveguide 2 consisting of a quartz member and a reflection mirror 7 which is formed by using the same material as the material of the optical waveguide 2 on the Si substrate l between the optical waveguide 2 and a semiconductor light source and is solid-state element on the Si substrate 1 are formed on the Si substrate 1. And the reflection surface 71 is formed. The reflection mirror consisting of the Si member is otherwise formed on the Si substrate l and the reflection surface is formed by anisotropic etching of Si. The reflection mirror and the Si substrate are respectively provided with recessed and projecting structures which are respectively fittable to each other by anisotropic etching of the Si, by which the mirror and the substrate are fitted and fixed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光回路とその製造方法に
関し、特に光ネットワークシステムに使われ、Si(シ
リコン)基板などの基板上に形成された光導波路を用い
た送信器、受信器などの光デバイスにおいて、光導波路
からの出射光の光軸変換を行う光回路並びに受光素子と
の光学的結合を行う光回路とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical circuit and a method for manufacturing the same, and more particularly to an optical network system, which uses a light guide formed on a substrate such as a Si (silicon) substrate. In the optical device, the present invention relates to an optical circuit for performing optical axis conversion of light emitted from an optical waveguide, an optical circuit for optically coupling with a light receiving element, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】光通信システムの大容量化が進むととも
に多機能の高度なシステムが求められてる一方で、光フ
ァイバネットワークの低コスト化の要求が強い。その中
で光送信器、光受信器等の光デバイスの小型化、高集積
化、低コスト化は必須である。現在、実用に供されてい
る光送信器及び光受信器は、半導体光源及び半導体光検
出器と光ファイバとの間にレンズを設置し空間的に光学
的接続を確保する構造が用いられている。このレンズを
用いて空間的に光学的接続を確保する構造は、マイクロ
オプティックスと呼ばれている。マイクロオプティック
ス構造では、レンズの形状、半導体光源及び半導体光検
出器のパッケージの形状等に制限があるため小型化する
ことは困難である。また、空間を伝搬する光を効率よく
光ファイバや光検出器に結合させるためには、精度の良
い光軸調整が要求され、その作業に多大な工数が必要と
されるためコストが下がらないのが現状である。また、
同一機能または異種機能の高集積化には全く不適である
のは言うまでもない。
2. Description of the Related Art While the capacity of optical communication systems is increasing and the demand for multifunctional advanced systems, there is a strong demand for cost reduction of optical fiber networks. Among them, downsizing, high integration, and cost reduction of optical devices such as optical transmitters and optical receivers are essential. At present, optical transmitters and optical receivers that are practically used have a structure in which a lens is installed between a semiconductor light source and a semiconductor photodetector and an optical fiber to spatially secure optical connection. . The structure that spatially secures the optical connection using this lens is called micro optics. In the micro-optics structure, it is difficult to reduce the size because the shape of the lens and the shape of the package of the semiconductor light source and the semiconductor photodetector are limited. Further, in order to efficiently couple the light propagating in the space to the optical fiber or the photodetector, it is necessary to adjust the optical axis with high accuracy, and a large number of man-hours are required for the work, which does not reduce the cost. Is the current situation. Also,
It goes without saying that it is completely unsuitable for high integration of the same function or different functions.

【0003】最近、双方向の通信システムに必要性が高
まり、また家庭にまでこのシステムを導入することが望
まれている。双方向通信を可能にさせる光デバイスとし
ては光の送信器と受信器とが必要となるが、これを個別
に構成していたのでは光送受信装置が大型化し、システ
ム普及の妨げになる。従って、2つの機能を一体化した
光デバイス(光送受信器)が望まれるがマイクロオプテ
ィックス構造では前述した理由から困難である。この様
な背景から小型化、高集積化、低コスト化を目指す構造
として光導波路を用いたものが検討されている。図4に
この例の光回路の平面図を示す。
Recently, there is an increasing need for a two-way communication system, and it is desired to introduce this system into homes. An optical transmitter and a receiver are required as an optical device that enables bidirectional communication, but if they are individually configured, the optical transmitter / receiver becomes large, which hinders the spread of the system. Therefore, an optical device (optical transceiver) that integrates two functions is desired, but it is difficult to use the micro-optics structure for the above-mentioned reasons. From such a background, a structure using an optical waveguide is being studied as a structure aiming at downsizing, high integration, and cost reduction. FIG. 4 shows a plan view of the optical circuit of this example.

【0004】図4の光回路では、基板9上に光パワー分
岐または光波長分波機能光回路15を含む光導波路10
が形成され、この光導波路10と光ファイバ11、半導
体光源12及び信号検出用の半導体光検出器13aがそ
れぞれ同一の基板9上で直接光学的に結合されている。
図4では半導体光源12の光出力モニター用の半導体光
検出器13bも同一の基板1上に集積され、光導波路1
0と光学的に接続されているが、この半導体光源12の
光出力モニター用の半導体光検出器13bは無くても、
双方向光通信用送受信器の機能確保には影響ない。ま
た、半導体光検出器13a,13bの受信回路電子デバ
イスは同一の基板9上に有ってもなくても双方向光通信
用送受信器の機能確保には影響ない。図4に示した光導
波路10を用いて光送受信器を構成すれば、小型化はも
ちろん容易となるし、また光軸が、リソグラフィプロセ
スで決めることができて一定である光導波路を伝搬する
導波光との結合を行えば良いため、光軸調整も簡易化さ
れ、さらに光導波路自体はリソグラフィプロセスを用い
て一括に多量が生産されるために低コスト化も可能とな
る。
In the optical circuit of FIG. 4, an optical waveguide 10 including an optical power branching or optical wavelength demultiplexing function optical circuit 15 on a substrate 9.
The optical waveguide 10, the optical fiber 11, the semiconductor light source 12, and the semiconductor photodetector 13a for signal detection are optically coupled directly on the same substrate 9.
In FIG. 4, the semiconductor photodetector 13b for monitoring the optical output of the semiconductor light source 12 is also integrated on the same substrate 1, and the optical waveguide 1
Although it is optically connected to 0, even if there is no semiconductor photodetector 13b for monitoring the optical output of the semiconductor light source 12,
It does not affect the function of the transceiver for bidirectional optical communication. Further, whether or not the receiving circuit electronic devices of the semiconductor photodetectors 13a and 13b are provided on the same substrate 9 does not affect the securing of the function of the transceiver for bidirectional optical communication. If an optical transmitter / receiver is configured using the optical waveguide 10 shown in FIG. 4, miniaturization is of course facilitated, and the optical axis propagates through the optical waveguide whose optical axis can be determined by the lithography process and is constant. Since the coupling with the wave light may be performed, the optical axis adjustment is also simplified, and further, the optical waveguide itself is mass-produced in a lump by using the lithography process, so that the cost can be reduced.

【0005】[0005]

【発明が解決しようとする課題】この従来の光回路で
は、光導波路からの出射光を上部に取り出し、裏面また
は表面入射型の半導体検出器などの光学部品に光学的に
効率よく結合させるために、光導波路の出射光を反射さ
せるミラーが必要になる。
In this conventional optical circuit, in order to extract the light emitted from the optical waveguide to the upper part and optically couple it to an optical component such as a back surface or front surface incident type semiconductor detector, etc., in an efficient manner. , A mirror that reflects the light emitted from the optical waveguide is required.

【0006】図5は従来の光回路の構造を示す断面図で
あり、光導波路17の出射端面171に対向して45度
の傾角を有する反射ミラー18がマニュピュレータなど
を用いて光軸の位置調整された後に接着剤などにより基
板16に固定され、反射面181により反射光20を提
供する。反射ミラー18によって上部に取り出された反
射光20は、光ファイバ19を介して図示しない半導体
検出器などの光学部品に結合される。しかしながら、こ
の処理方法では光軸の位置調整などに手間がかかり低コ
スト化の妨げとなるとともに、温度変動や振動衝撃など
に対して容易に信頼性を確保することが困難である。ま
た、個別部品としての反射ミラー18を使用することが
必要であるため、これも亦低コスト化の妨げとなってい
るという問題点があった。
FIG. 5 is a cross-sectional view showing the structure of a conventional optical circuit, in which a reflecting mirror 18 having an inclination angle of 45 degrees facing the emitting end face 171 of the optical waveguide 17 is positioned on the optical axis using a manipulator or the like. After being adjusted, it is fixed to the substrate 16 with an adhesive or the like, and the reflection surface 181 provides the reflected light 20. The reflected light 20 extracted to the upper side by the reflection mirror 18 is coupled to an optical component such as a semiconductor detector (not shown) via an optical fiber 19. However, with this processing method, it is difficult to adjust the position of the optical axis, which hinders cost reduction, and it is difficult to easily secure reliability against temperature fluctuations, vibration shocks, and the like. In addition, since it is necessary to use the reflection mirror 18 as an individual component, this also hinders cost reduction.

【0007】本発明の目的は上述した問題点を解決し、
光導波路からの出射光を反射ミラーにより上部に取り出
し、裏面または表面入射型の半導体検出器などの光学部
品に光学的に効率よく結合させる高効率かつ低コストで
しかも温度変動や振動衝撃などに対しても信頼性が極め
て高い光回路とその製造方法を提供することにある。
The object of the present invention is to solve the above-mentioned problems,
Light emitted from the optical waveguide is extracted to the top by a reflection mirror and optically coupled to optical components such as backside or front-illuminated type semiconductor detectors with high efficiency and low cost, and against temperature fluctuations and vibration shocks. Even so, it is to provide an optical circuit having extremely high reliability and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】本発明の光回路は、Si
基板上に光導波路が形成され前記光導波路からの出射光
を光軸変換する光回路において、前記光導波路からの出
射光を反射する反射ミラーが、Si異方性エッチングに
より形成された反射面に反射膜をコーティングしたSi
部材からなり、かつSi異方性エッチングにより前記S
i部材からなる反射ミラーと前記Si基板のいずれか一
方には凹形状部をまた他方には前記凹形状部と嵌合する
凸形状部を形成し前記反射ミラーと前記Si基板とを前
記凹及び凸形状部を介して嵌入固定した構成を有する。
The optical circuit of the present invention is made of Si.
In an optical circuit in which an optical waveguide is formed on a substrate and the emitted light from the optical waveguide is converted into an optical axis, a reflection mirror for reflecting the emitted light from the optical waveguide is provided on a reflection surface formed by Si anisotropic etching. Si coated with a reflective film
It is composed of a member and is S
A concave portion is formed on one of the reflection mirror formed of the i member and the Si substrate, and a convex portion that fits with the concave portion is formed on the other side, and the reflection mirror and the Si substrate are formed into the concave portion and the concave portion. It has a configuration in which it is fitted and fixed via a convex portion.

【0009】また本発明の別な光回路は、基板上に石英
系光導波路が形成され前記石英系光導波路からの出射光
を光軸変換する光回路において、前記石英系光導波路か
らの出射光を反射する反射ミラーが断面を略梯形として
斜め形状に成型された反射面を有し、かつ前記反射面に
は反射膜をコーティングして前記基板上に前記石英系光
導波路を形成する際に用いた石英系部材を用いて固体素
子化して形成された構成を有する。
Another optical circuit according to the present invention is an optical circuit in which a silica-based optical waveguide is formed on a substrate and the output light from the silica-based optical waveguide is converted into an optical axis. A reflecting mirror that reflects light has a reflecting surface formed in an oblique shape with a substantially trapezoidal cross section, and is used when the reflecting surface is coated with a reflecting film to form the quartz optical waveguide on the substrate. It has a structure formed into a solid element by using the quartz member.

【0010】また本発明の光回路の製造方法は、基板上
に石英系光導波路が形成され前記石英系光導波路からの
出射光を光軸変換する光回路の製造方法において、前記
石英系光導波路からの出射光を反射する反射ミラーが断
面を略梯形として斜め形状に成型された反射面を有し、
かつ前記反射面には反射膜をコーティングして前記基板
上に前記石英系光導波路を形成する際に用いた前記石英
系部材を用いて固体素子化して形成されるとともに前記
反射面を加熱によりリフローすることで形成する工程を
有する。
The optical circuit manufacturing method of the present invention is a method for manufacturing an optical circuit in which a silica-based optical waveguide is formed on a substrate and the light emitted from the silica-based optical waveguide is converted into an optical axis. The reflection mirror that reflects the light emitted from has a reflection surface that is formed in an oblique shape with a cross section of a substantially trapezoidal shape,
The reflective surface is coated with a reflective film to form a solid element by using the quartz member used when forming the quartz optical waveguide on the substrate, and the reflective surface is reflowed by heating. And a step of forming.

【0011】[0011]

【作用】本発明による光導波路からの出射光を反射ミラ
ーにより上部に取り出し、裏面または表面入射型の半導
体検出器などの光学部品に光学的に効率よく結合させる
高効率な光回路とその製造方法では、一つの発明では、
反射ミラーの母材としてSi材を利用し、Si異方性エ
ッチングにより反射面の傾斜角度を高精度に形成し、か
つ傾斜面の平坦性にも優れるものとし、Si異方性エッ
チングによりSi材から形成した反射ミラーとSi基板
上とのどちらか一方には凹形状、他方には凸形状を互い
に嵌入可能な形状として形成し、この凹凸形状を介して
反射ミラーがSi基板上に嵌入されている。従って、光
軸の位置調整の必要がないとともに、Si材よりなる反
射ミラーはリソグラフィプロセスを用いて大量に生産で
きるため低コスト化することができる。また別の発明で
は、反射ミラーの母材として基板上に形成された石英系
光導波路部材を利用し、リソグラフィプロセスを用いて
位置設定、並びに反射ミラー形状の成型を行なってい
る。
A highly efficient optical circuit for extracting light emitted from an optical waveguide according to the present invention to an upper portion by a reflection mirror and optically coupling it efficiently to an optical component such as a backside or front incidence type semiconductor detector, and a method for manufacturing the same. Then, in one invention,
By using Si material as the base material of the reflection mirror, the inclination angle of the reflecting surface is formed with high accuracy by Si anisotropic etching, and the flatness of the inclined surface is also excellent. One of the reflecting mirror and the Si substrate is formed with a concave shape and the other is formed with a convex shape so that they can be fitted into each other. The reflecting mirror is fitted on the Si substrate through the concavo-convex shape. There is. Therefore, it is not necessary to adjust the position of the optical axis, and the reflection mirror made of Si material can be mass-produced by using the lithography process, so that the cost can be reduced. In another invention, a quartz optical waveguide member formed on a substrate is used as a base material of a reflection mirror, and a position is set and a reflection mirror shape is molded by a lithography process.

【0012】従って、光軸の位置調整の必要がないとと
もに、大幅な低コスト化が図れる。以上述べたように、
光導波路からの出射光を反射ミラーにより上部に取り出
し、裏面または表面入射型の半導体検出器などの光学部
品に光学的に効率よく結合させる高効率な光回路を低コ
ストで実現できるとともに、温度変動、振動衝撃などに
対しても信頼性が極めて高い光回路が実現できる。ま
た、石英系光導波路と光部品の間に挿入する反射ミラー
として石英系光導波路を形成する際に基板上に堆積した
石英系部材を用いる別の発明によれば、反射ミラーの反
射面を熱による石英系部材のリフローを利用して成型
し、これにより電子デバイスと同様なプロセス工法でS
i基板上に反射ミラーを形成することができる。
Therefore, it is not necessary to adjust the position of the optical axis, and the cost can be significantly reduced. As mentioned above,
It is possible to realize a highly efficient optical circuit that extracts the light emitted from the optical waveguide to the upper part using a reflection mirror and optically couples it to the optical components such as the back-side or front-illuminated type semiconductor detector at low cost, and at the same time, temperature fluctuation. An optical circuit with extremely high reliability against vibration and shock can be realized. Further, according to another invention, in which a silica-based member deposited on a substrate is used as a reflection mirror to be inserted between a silica-based optical waveguide and an optical component, the reflection surface of the reflection mirror is heated. Molded using the reflow of the quartz-based material by S, by this process S similar to the electronic device
A reflection mirror can be formed on the i substrate.

【0013】[0013]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0014】図1は本発明の第一の実施例の光回路の構
造を示す側面図である。本第一の実施例は、Si部材を
用いたSi基板1と、石英系部材を用いた光導波路2
と、反射ミラー3とを備える。また、光導波路2は、下
層クラッド21−コア22−上層クラッド23の層構造
を有している。反射ミラー3の母材にはSi基板1と同
じSi部材を用いている。Siは(111)面の異方性
エッチングにより反射面31となるべき傾斜面の傾斜角
度を高精度に、本実施例では約54.8度に形成でき、
かつ露出した(111)面からなる反射面31となる傾
斜面の平坦性にも優れることが知られている。反射面3
1には光導波路2からの光波を反射する反射部材とし
て、Au、Alなどをコーティングする。また、反射面
31の形成と同様にSi部材の異方性エッチングを用い
て反射ミラー3のSi基板1との接合面に凸形状部4を
形成し、Si基板1には反射ミラー3を所望の位置に設
置するための凹形状部5を形成する。反射ミラー3をS
i基板1に装着する際には、互いに嵌合し合うように形
成した凸形状部4と凹形状部5の両者の接合面に形成さ
れた凹凸を嵌入し合うこととにより行う。従って、反射
ミラー3を装着する際に光軸の位置調整の必要がないた
め低コスト化が得られるとともに、高精度の位置設定が
容易に実現できる。またSi部材よりなる反射ミラー
3、並びに反射ミラー3とSi基板1に形成する凹,凸
形状部4,5はリソグラフィプロセスを用いて大量かつ
容易に生産できるため低コスト化が得られる。また、反
射ミラー3とSi基板1とは、それぞれに形成された傾
斜角度が高精度の凸形状部4、凹形状部5によって嵌合
状態で固定されているため、温度変動、振動衝撃などに
対しても位置変動は全く発生せず信頼性が極めて高い光
回路が得られる。
FIG. 1 is a side view showing the structure of an optical circuit according to the first embodiment of the present invention. In the first embodiment, a Si substrate 1 using a Si member and an optical waveguide 2 using a quartz member are used.
And a reflection mirror 3. The optical waveguide 2 has a layered structure of a lower clad 21, a core 22 and an upper clad 23. The same Si member as the Si substrate 1 is used as the base material of the reflection mirror 3. Si can form the tilt angle of the tilted surface to be the reflecting surface 31 with high accuracy by anisotropic etching of the (111) plane, to about 54.8 degrees in this embodiment,
In addition, it is known that the flatness of the sloped surface that becomes the reflection surface 31 composed of the exposed (111) surface is also excellent. Reflective surface 3
1 is coated with Au, Al or the like as a reflecting member for reflecting the light wave from the optical waveguide 2. Further, similar to the formation of the reflection surface 31, the convex portion 4 is formed on the joint surface of the reflection mirror 3 with the Si substrate 1 by using anisotropic etching of the Si member, and the reflection mirror 3 is desired on the Si substrate 1. The concave portion 5 is formed to be installed at the position. The reflection mirror 3 is S
When it is mounted on the i substrate 1, it is carried out by fitting the concavities and convexities formed on the joint surface of both the convex shape portion 4 and the concave shape portion 5 which are formed so as to be fitted to each other. Therefore, it is not necessary to adjust the position of the optical axis when the reflection mirror 3 is mounted, so that the cost can be reduced and the highly accurate position setting can be easily realized. Further, since the reflection mirror 3 made of a Si member and the concave and convex portions 4 and 5 formed on the reflection mirror 3 and the Si substrate 1 can be mass-produced easily by using a lithography process, the cost can be reduced. Further, since the reflection mirror 3 and the Si substrate 1 are fixed in a fitted state by the convex portions 4 and the concave portions 5 having high inclination angles formed respectively, the reflection mirror 3 and the Si substrate 1 are protected against temperature fluctuations, vibration shocks, and the like. On the other hand, a position change does not occur at all, and a highly reliable optical circuit can be obtained.

【0015】なお、凹形状部4、凸形状部5の形成は、
図1に示すものと逆で、反射ミラー3のSi基板1との
接合面に凹形状部を形成し、Si基板1には反射ミラー
3を所望の位置に設置できる位置に凸形状部を形成して
もよい。
The concave portion 4 and the convex portion 5 are formed as follows.
Contrary to what is shown in FIG. 1, a concave portion is formed on the bonding surface of the reflection mirror 3 with the Si substrate 1, and a convex portion is formed on the Si substrate 1 at a position where the reflection mirror 3 can be installed at a desired position. You may.

【0016】図2は、本発明の第二の実施例の光回路の
構造を示す側面図である。本第二の実施例は、Si基板
1と、Si基板1の上に石英系部材で形成された光導波
路2と、反射ミラー7とを備える。光導波路2は、下層
クラッド21−コア22−クラッド23の層構造を有し
ている。光導波路2の形成のための石英系部材のSi基
板上への堆積にはCVD法、スパッタリング法、火焔堆
積法などが用いられる。反射ミラー7の母材も光導波路
2を形成する際に基板1に堆積した石英系部材を用いて
いる。反射ミラー7の反射面71には、光波を反射する
材料として、Au、Alなどをコーティングする。所望
の傾斜角度を持たせた反射面71の形成には、リアクテ
ィブイオンビームエッチング(RIBE)法や、イオン
ビームエッチング法などエッチング特性に指向性を有す
るものを利用し、Si基板1をエッチングの指向性に対
して傾けることにより反射面71を形成する。
FIG. 2 is a side view showing the structure of the optical circuit of the second embodiment of the present invention. The second embodiment includes a Si substrate 1, an optical waveguide 2 formed on the Si substrate 1 by a silica-based member, and a reflection mirror 7. The optical waveguide 2 has a layered structure of a lower clad 21, a core 22 and a clad 23. A CVD method, a sputtering method, a flame deposition method, or the like is used for depositing the quartz-based member on the Si substrate for forming the optical waveguide 2. The base material of the reflection mirror 7 also uses the quartz-based member deposited on the substrate 1 when forming the optical waveguide 2. The reflecting surface 71 of the reflecting mirror 7 is coated with Au, Al or the like as a material that reflects light waves. To form the reflecting surface 71 having a desired inclination angle, a reactive ion beam etching (RIBE) method or an ion beam etching method having directivity in etching characteristics is used to etch the Si substrate 1. The reflecting surface 71 is formed by inclining to the directivity.

【0017】このようにして、反射ミラー7に関しては
光軸の位置調整の必要がないため低コスト化が得られる
とともに、高精度の位置設定が容易に実現できる。また
石英系部材よりなる反射ミラー7は、リソグラフィプロ
セスを用いて大量かつ容易に生産できるため低コスト化
が得られる。また反射ミラー7はSi基板1上に固体素
子として形成されるため、図1に示す第一の実施例にも
まして温度変動、振動衝撃などに対しても位置変動は全
く発生せず信頼性が極めて高い光回路が得られる。
In this way, since it is not necessary to adjust the position of the optical axis of the reflecting mirror 7, cost reduction can be obtained and highly accurate position setting can be easily realized. Further, since the reflection mirror 7 made of a quartz-based member can be mass-produced easily by using a lithography process, cost reduction can be obtained. Further, since the reflection mirror 7 is formed as a solid-state element on the Si substrate 1, there is no positional change with respect to temperature fluctuations, vibration shocks, etc., as compared with the first embodiment shown in FIG. An extremely high optical circuit can be obtained.

【0018】図3は本発明の光回路の製造方法の一実施
例を示す工程図である。図3において、Si基板1の上
に形成された光導波路2は、図2と同様に石英系部材か
らなり、下層クラッド21−コア22−上層クラッド2
3の層構造を有している。Si基板上における石英系部
材の堆積はCVD法、スパッタリング法、火焔堆積法な
どが用いられる。反射ミラー7の母材としての反射ミラ
ー形成部材7aには光導波路2を形成する際にSi基板
1上に堆積した石英系部材を用いている(工程a)。反
射面71には、光波を反射する材料として、Au、Al
などをコーティングする(工程c)。図2の第二の実施
例と異なるのは、所望の傾斜角度を与えた反射面71の
形成に石英系部材のリフローを用いていることである
(工程b)。この際、リフロー前形状、リフロー温度、
並びに時間などにより傾斜角度を制御する。但し、図3
に示すように全ての反射面で直線形状を得ることは困難
であり、上面付近、並びに低面付近は若干のだれが生じ
る。リフローは通常850℃以上の温度で行われ、この
とき光導波路2の上層クラッド23の表面はリフローさ
れても光導波路2の特性への影響は少ない。一方、端面
24はリフローにより垂直性が損なわれる場合があるた
め、反射ミラー形成部材7aに限定した加熱が望まし
い。このための局所的な加熱を確保するため、例えばC
2 やArなどの気体レーザ光の照射や、通常のヒータ
を用いて行う。こうして反射ミラー7が形成される。
FIG. 3 is a process chart showing an embodiment of the method for manufacturing an optical circuit of the present invention. In FIG. 3, the optical waveguide 2 formed on the Si substrate 1 is made of a quartz-based member as in FIG. 2, and includes a lower clad 21-core 22-upper clad 2.
It has a three-layer structure. A CVD method, a sputtering method, a flame deposition method, or the like is used to deposit the quartz-based member on the Si substrate. A quartz member deposited on the Si substrate 1 when forming the optical waveguide 2 is used as the reflection mirror forming member 7a as the base material of the reflection mirror 7 (step a). The reflecting surface 71 is made of a material that reflects light waves, such as Au or Al.
Etc. are coated (step c). The difference from the second embodiment of FIG. 2 is that the reflow of a quartz-based member is used to form the reflecting surface 71 having a desired inclination angle (step b). At this time, the shape before reflow, the reflow temperature,
In addition, the tilt angle is controlled depending on the time. However, FIG.
It is difficult to obtain a linear shape on all the reflecting surfaces, as shown in, and some sag occurs near the upper surface and near the lower surface. The reflow is usually performed at a temperature of 850 ° C. or higher, and even if the surface of the upper clad 23 of the optical waveguide 2 is reflowed at this time, the characteristics of the optical waveguide 2 are not significantly affected. On the other hand, since the verticality of the end face 24 may be impaired due to reflow, it is desirable to heat only the reflection mirror forming member 7a. To ensure local heating for this, for example C
Irradiation with a gas laser beam such as O 2 or Ar, or using an ordinary heater. In this way, the reflection mirror 7 is formed.

【0019】このような光回路の製造方法により、反射
ミラー7に関しては光軸の位置調整の必要がないため低
コスト化が得られるとともに、高精度の位置設定が容易
に実現できる。また石英系部材よりなる反射ミラー7
は、リソグラフィプロセスを用いて大量そして容易に生
産できるため低コスト化が得られる。また反射ミラー7
はSi基板1に直に形成されるため、図1の第一の実施
例にもまして温度変動、振動衝撃などに対しても位置変
動は全く発生せず信頼性が極めて高い光回路の製造方法
が確立できる。
According to such a method of manufacturing an optical circuit, it is not necessary to adjust the position of the optical axis of the reflection mirror 7, so that the cost can be reduced, and highly accurate position setting can be easily realized. In addition, the reflection mirror 7 made of a quartz material
Can be produced in large quantities and easily using a lithographic process, resulting in low cost. In addition, the reflection mirror 7
1 is directly formed on the Si substrate 1, and therefore, the position variation does not occur even with respect to temperature variation, vibration impact, etc., as compared with the first embodiment of FIG. Can be established.

【0020】[0020]

【発明の効果】以上説明したように本発明は、Si基板
と同じSi部材をSi異方性エッチングするか、Si基
板上に石英系部材で形成した光導波路と同じ階層構成と
してそれぞれ反射面を配設した反射ミラーを形成し、S
i異方性エッチングの場合はSi基板と反射ミラーに嵌
入可能な凹凸形状を持たせ、階層構成の場合は固体素子
として形成することにより、光導波路からの出射光を反
射ミラーにより上部に取り出し、裏面または表面入射型
の半導体検出器などの光学部品に光学的に効率よく結合
させる高効率な光回路を低コストで実現できるととも
に、温度変動、振動衝撃などに対しても信頼性が極めて
高い光回路が実現できる光回路とその製造方法を実現す
ることができる効果を有する。
As described above, according to the present invention, the same Si member as the Si substrate is anisotropically etched by Si, or the reflecting surface is formed in the same hierarchical structure as the optical waveguide formed of the quartz member on the Si substrate. Form the reflection mirror that has been arranged, S
In the case of i anisotropic etching, the Si substrate and the reflection mirror have a concavo-convex shape that can be fitted, and in the case of a hierarchical structure, the light is emitted from the optical waveguide to the upper portion by the reflection mirror by forming it as a solid element. A highly efficient optical circuit that can be optically coupled to an optical component such as a backside or front-illuminated type semiconductor detector can be realized at low cost, and it is extremely reliable against temperature fluctuations and vibration shock. It has an effect that an optical circuit that can realize a circuit and a manufacturing method thereof can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の光回路の構造を示す側
面図である。
FIG. 1 is a side view showing a structure of an optical circuit according to a first embodiment of the present invention.

【図2】本発明の第二の実施例の光回路の構造を示す側
面図である。
FIG. 2 is a side view showing the structure of an optical circuit according to a second embodiment of the present invention.

【図3】本発明の光回路の製造方法の一実施例の工程図
である。
FIG. 3 is a process drawing of an example of a method for manufacturing an optical circuit of the present invention.

【図4】従来の光回路の構造を示す平面図である。FIG. 4 is a plan view showing the structure of a conventional optical circuit.

【図5】従来の光回路の構造を示す側面図である。FIG. 5 is a side view showing the structure of a conventional optical circuit.

【符号の説明】[Explanation of symbols]

1 Si基板 2 光導波路 3 反射ミラー 4 凸形状部 5 凹形状部 6 反射光 7 反射ミラー 8 反射光 9 基板 10 光導波路 11 光ファイバ 12 半導体光源 13a,13b 半導体光検出器 14a,15b 受信回路電子デバイス 15 光パワー分岐または光波長機能光回路。 DESCRIPTION OF SYMBOLS 1 Si substrate 2 Optical waveguide 3 Reflective mirror 4 Convex shaped portion 5 Concave shaped portion 6 Reflected light 7 Reflective mirror 8 Reflected light 9 Substrate 10 Optical waveguide 11 Optical fiber 12 Semiconductor light source 13a, 13b Semiconductor photodetector 14a, 15b Receiver circuit electron Device 15 Optical power branching or optical wavelength functional optical circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Si基板上に光導波路が形成され前記光
導波路からの出射光を光軸変換する光回路において、前
記光導波路からの出射光を反射する反射ミラーが、Si
異方性エッチングにより形成された反射面に反射膜をコ
ーティングしたSi部材からなり、かつSi異方性エッ
チングにより前記Si部材からなる反射ミラーと前記S
i基板のいずれか一方には凹形状部をまた他方には前記
凹形状部と嵌合する凸形状部を形成し前記反射ミラーと
前記Si基板とを前記凹及び凸形状部を介して嵌入固定
したことを特徴とする光回路。
1. In an optical circuit in which an optical waveguide is formed on a Si substrate and the emitted light from the optical waveguide is converted into an optical axis, a reflection mirror for reflecting the emitted light from the optical waveguide is made of Si.
A reflection mirror formed of a Si member having a reflection surface formed by anisotropic etching coated with a reflection film, and a reflection mirror formed of the Si member by Si anisotropic etching;
A concave portion is formed on one of the i substrates, and a convex portion that fits with the concave portion is formed on the other side, and the reflection mirror and the Si substrate are fitted and fixed through the concave and convex portions. An optical circuit characterized by the above.
【請求項2】 基板上に石英系光導波路が形成され前記
石英系光導波路からの出射光を光軸変換する光回路にお
いて、前記石英系光導波路からの出射光を反射する反射
ミラーが断面を略梯形として斜め形状に成型された反射
面を有し、かつ前記反射面には反射膜をコーティングし
て前記基板上に前記石英系光導波路を形成する際に用い
た石英系部材を用いて固体素子化して形成されたことを
特徴とする光回路。
2. In an optical circuit in which a silica-based optical waveguide is formed on a substrate and the output light from the silica-based optical waveguide is converted into an optical axis, a reflection mirror that reflects the output light from the silica-based optical waveguide has a cross section. It has a reflecting surface formed in an oblique shape as a substantially trapezoidal shape, and is coated with a reflecting film on the reflecting surface to form a solid by using the quartz member used when forming the quartz optical waveguide on the substrate. An optical circuit characterized by being formed into elements.
【請求項3】 基板上に石英系光導波路が形成され前記
石英系光導波路からの出射光を光軸変換する光回路の製
造方法において、前記石英系光導波路からの出射光を反
射する反射ミラーが断面を略梯形として斜め形状に成型
された反射面を有し、かつ前記反射面には反射膜をコー
ティングして前記基板上に前記石英系光導波路を形成す
る際に用いた前記石英系部材を用いて固体素子化して形
成されるとともに前記反射面を加熱によりリフローする
ことで形成することを特徴とする光回路の製造方法。
3. A method of manufacturing an optical circuit in which a silica-based optical waveguide is formed on a substrate and the output light from the silica-based optical waveguide is converted into an optical axis, and a reflection mirror that reflects the output light from the silica-based optical waveguide. Has a reflecting surface formed in an oblique shape with a substantially trapezoidal cross section, and the quartz member used when the reflecting surface is coated with a reflecting film to form the quartz optical waveguide on the substrate. A method for manufacturing an optical circuit, characterized in that the optical element is formed as a solid element by using, and is formed by reflowing the reflecting surface by heating.
JP33115893A 1993-12-27 1993-12-27 Optical circuit and its production Pending JPH07191236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33115893A JPH07191236A (en) 1993-12-27 1993-12-27 Optical circuit and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33115893A JPH07191236A (en) 1993-12-27 1993-12-27 Optical circuit and its production

Publications (1)

Publication Number Publication Date
JPH07191236A true JPH07191236A (en) 1995-07-28

Family

ID=18240527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33115893A Pending JPH07191236A (en) 1993-12-27 1993-12-27 Optical circuit and its production

Country Status (1)

Country Link
JP (1) JPH07191236A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326662A (en) * 1998-05-18 1999-11-26 Nec Corp Optical planar circuit
JPWO2002073256A1 (en) * 2001-02-28 2004-07-02 日本電気株式会社 Optical circuit element, method of manufacturing the same, arrayed optical circuit element, and optical circuit device using the same
US20110052118A1 (en) * 2008-02-08 2011-03-03 Hitachi Chemical Company, Ltd. Fabrication Method of Optical Wiring Board and Optical Printed Circuit Board
JP2011096349A (en) * 2009-09-30 2011-05-12 Seiko Instruments Inc Head gimbal assembly
JP2012514768A (en) * 2009-01-09 2012-06-28 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical engine for point-to-point communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370806A (en) * 1986-09-13 1988-03-31 Fujikura Ltd Non-break changeover connector for optical transmission line, and non-break changeover method for optical transmission line using same
JPS6370805A (en) * 1986-09-13 1988-03-31 Fujikura Ltd Non-break changeover connector for optical transmission line
JPS63191111A (en) * 1987-02-04 1988-08-08 Nippon Telegr & Teleph Corp <Ntt> Optical coupler
JPH0213913A (en) * 1988-04-29 1990-01-18 American Teleph & Telegr Co <Att> Photocoupler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370806A (en) * 1986-09-13 1988-03-31 Fujikura Ltd Non-break changeover connector for optical transmission line, and non-break changeover method for optical transmission line using same
JPS6370805A (en) * 1986-09-13 1988-03-31 Fujikura Ltd Non-break changeover connector for optical transmission line
JPS63191111A (en) * 1987-02-04 1988-08-08 Nippon Telegr & Teleph Corp <Ntt> Optical coupler
JPH0213913A (en) * 1988-04-29 1990-01-18 American Teleph & Telegr Co <Att> Photocoupler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326662A (en) * 1998-05-18 1999-11-26 Nec Corp Optical planar circuit
JPWO2002073256A1 (en) * 2001-02-28 2004-07-02 日本電気株式会社 Optical circuit element, method of manufacturing the same, arrayed optical circuit element, and optical circuit device using the same
US20110052118A1 (en) * 2008-02-08 2011-03-03 Hitachi Chemical Company, Ltd. Fabrication Method of Optical Wiring Board and Optical Printed Circuit Board
US8639067B2 (en) * 2008-02-08 2014-01-28 Hitachi Chemical Company, Ltd. Fabrication method of optical wiring board and optical printed circuit board
JP2012514768A (en) * 2009-01-09 2012-06-28 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical engine for point-to-point communication
JP2011096349A (en) * 2009-09-30 2011-05-12 Seiko Instruments Inc Head gimbal assembly

Similar Documents

Publication Publication Date Title
US6115521A (en) Fiber/waveguide-mirror-lens alignment device
US5771322A (en) Light-receiving structure for wave-guide type optical devices
US6580858B2 (en) Micro-opto-electro-mechanical system (MOEMS)
US6187515B1 (en) Optical integrated circuit microbench system
CN104656206A (en) Optical Receiver Module And Optical Transmitter Module
JPH08204288A (en) Optical semiconductor device
JPH06347665A (en) Production of optical device
WO2012032769A1 (en) Optical module
JPH11153719A (en) Optical integrated circuit having planar waveguide turning mirror
US6832859B1 (en) Free space optical system with multiple function detectors
JP2970519B2 (en) Optical circuit and its manufacturing method
JPH07191236A (en) Optical circuit and its production
JP3125385B2 (en) Optical coupling circuit
US20020071636A1 (en) Method and apparatus for attaching an optical fibre to an optical device
JP3264284B2 (en) Optical receiving module
JP2809267B2 (en) Optical waveguide device and manufacturing method thereof
JP2565093B2 (en) Optical circuit and manufacturing method thereof
JPH09304664A (en) Optical circuit and its production
JP2005134803A (en) Ferrule with optical isolator and optical transmission/reception module equipped with the same
TW200845614A (en) Optical module
JP3003324B2 (en) Optical receiving module
US20190052369A1 (en) Techniques for high speed optoelectronic coupling by redirection of optical path
JP2897742B2 (en) Optical transceiver module
JPH04263206A (en) Optical circuit
JPS60214316A (en) Optical module for two-way transmission

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980331