JPH07191139A - Doppler type vehicle ground speed detecting device - Google Patents

Doppler type vehicle ground speed detecting device

Info

Publication number
JPH07191139A
JPH07191139A JP33326693A JP33326693A JPH07191139A JP H07191139 A JPH07191139 A JP H07191139A JP 33326693 A JP33326693 A JP 33326693A JP 33326693 A JP33326693 A JP 33326693A JP H07191139 A JPH07191139 A JP H07191139A
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
speed
vehicle speed
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33326693A
Other languages
Japanese (ja)
Inventor
Masatoshi Yoneyama
雅利 米山
Masaaki Tsuboi
正昭 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33326693A priority Critical patent/JPH07191139A/en
Publication of JPH07191139A publication Critical patent/JPH07191139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide a Doppler type vehicle ground speed detecting device constituted so that even when an intensity difference between a main beam and a side beam transmitted by an ultrasonic transmitter becomes small only a frequency of the main beam may be detected to accurately find a ground speed. CONSTITUTION:A Doppler type vehicle ground speed detecting device is composed of an ultrasonic sensor unit 4 installed to be positioned between a bottom of a rear luggage compartment 2 and a rear bumper 3 of a vehicle 1 and a control circuit 5. The ultrasonic sensor unit 4 is installed so that orientation of a side beam 11 of a transmission wave may be perpendicular to a ground surface 13. Accordingly, since a Doppler shift of the side beam 11 becomes zero, a ground speed is calculated based on a frequency of a receiving wave of a reflected wave of a main beam 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はドップラ式対地車速検出
装置に係り、特に車両の対地速度をより正確に検出でき
るよう構成したドップラ式対地車速検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Doppler type ground vehicle speed detecting device, and more particularly to a Doppler type ground vehicle speed detecting device configured to detect a vehicle ground speed more accurately.

【0002】[0002]

【従来の技術】例えば、自動車においては、車輪の回転
速度から車速を求めて運転席の速度計に現在の車体速度
を表示している。ところが、雨で濡れた路面あるいは雪
路や凍結した路面のように摩擦(μ)の低い路面を走行
する場合、車輪がスリップしやすくなり、スリップ状態
の車輪の回転速度から求めた車速は実際の車速、即ち対
地速度とずれることになる。
2. Description of the Related Art For example, in an automobile, the vehicle speed is obtained from the rotational speed of the wheels and the current vehicle speed is displayed on a speedometer in the driver's seat. However, when traveling on a road surface with low friction (μ) such as a road surface wet with rain, a snowy road, or a frozen road surface, the wheels easily slip, and the vehicle speed obtained from the rotational speed of the slipped wheel is the actual speed. It will be different from the vehicle speed, that is, the ground speed.

【0003】一方、底摩擦の路面をより安全に走行する
装置として、路面の摩擦が低いとき駆動トルクを制御し
て車輪の空転を防止するトラクション制御装置、あるい
は摩擦が低い路面で制動したときに車輪がロックしない
ように制動力を制御するアンチロックブレーキ装置等が
開発されている。これらのトラクション制御装置又はア
ンチロックブレーキ装置等においては、車輪スリップ時
に正確な車速を得る必要があるため、上記速度計とは別
に地表面に対する車体の速度を検出する対地車速検出装
置が採用されている。
On the other hand, as a device for more safely traveling on a road surface with bottom friction, a traction control device for controlling drive torque when the road surface friction is low to prevent wheels from slipping, or when braking on a road surface with low friction. Anti-lock brake devices and the like have been developed that control the braking force so that the wheels do not lock. In these traction control devices or anti-lock brake devices, it is necessary to obtain an accurate vehicle speed when the wheels slip, so a ground vehicle speed detection device that detects the speed of the vehicle body with respect to the ground surface is adopted separately from the speedometer. There is.

【0004】この種の対地車速検出装置としては、例え
ば特開昭56−141573号公報にみられるように超
音波を地表面に向けて送信した送信波と、地表面で反射
した反射波とが車速に応じて周波数差を生じるといった
ドップラ効果を利用して車体の対地速度を検出する装置
が開発されている。この対地車速検出装置では、車体の
後部に設けられた超音波送信器から送信された超音波が
路面で反射し、この反射波が車体の後部に設けられた超
音波受信器で受信されるようになっている。そして、路
面からの反射波のドップラシフト(周波数変調)を効果
的に得るため、超音波の送信方向が車体後方に約45°
(路面に対する送信角度)傾斜している。
As this type of ground speed detecting device, for example, as shown in Japanese Unexamined Patent Publication No. Sho 56-141573, there are a transmitted wave that transmits an ultrasonic wave toward the ground surface and a reflected wave that is reflected by the ground surface. A device for detecting the ground speed of a vehicle body has been developed by utilizing the Doppler effect that a frequency difference is generated depending on the vehicle speed. In this ground vehicle speed detecting device, the ultrasonic waves transmitted from the ultrasonic transmitter provided in the rear part of the vehicle body are reflected on the road surface, and the reflected wave is received by the ultrasonic receiver provided in the rear part of the vehicle body. It has become. Then, in order to effectively obtain the Doppler shift (frequency modulation) of the reflected wave from the road surface, the transmission direction of the ultrasonic wave is about 45 ° to the rear of the vehicle body.
(Transmission angle with respect to the road surface) It is inclined.

【0005】[0005]

【発明が解決しようとする課題】しかるに、上記超音波
送信器の指向性により送信された超音波は、路面に対し
上記送信角度で進行する主ビームと、路面に対して主ビ
ームと異なる指向角を有するサイドビームとに分かれ
る。つまり、送信波の主ビームは、超音波送信器の軸線
に沿って進行し、サイドビームは超音波送信器の軸線に
対しある角度傾斜した方向に進行する。従って、サイド
ビームは主ビームよりも送信強度が弱いが、路面に対し
て送信角度が大きい分反射率が大きくなり、車両の走行
条件によっては主ビームよりも受信強度が強くなること
がある。
However, the ultrasonic wave transmitted by the directivity of the ultrasonic transmitter has a main beam traveling at the transmission angle with respect to the road surface and a directivity angle different from the main beam with respect to the road surface. With side beams. That is, the main beam of the transmitted wave travels along the axis of the ultrasonic transmitter, and the side beam travels in a direction inclined at an angle with respect to the axis of the ultrasonic transmitter. Therefore, although the side beam has a weaker transmission intensity than the main beam, the larger the transmission angle with respect to the road surface, the larger the reflectance becomes, and the reception intensity may become stronger than the main beam depending on the traveling conditions of the vehicle.

【0006】又、車体が乾燥した路面を走行する際、超
音波送信器から送信された超音波の主ビームは、路面の
表面に形成された細かい凹凸で反射して超音波受信器に
至る。その場合、一部のサイドビームも路面で反射して
超音波受信器で受信されるが、受信強度が微弱なため、
車速演算部に設定された閾値(スレショルドレベル)を
越えることがなく、車速を演算するのに影響しない。
Further, when the vehicle body travels on a dry road surface, the main beam of ultrasonic waves transmitted from the ultrasonic wave transmitter is reflected by the fine irregularities formed on the surface of the road surface and reaches the ultrasonic wave receiver. In that case, some side beams are also reflected by the road surface and received by the ultrasonic receiver, but since the reception intensity is weak,
It does not exceed the threshold value (threshold level) set in the vehicle speed calculation unit and does not affect the calculation of the vehicle speed.

【0007】しかるに、路面が雨により冠水している場
合、あるいは路面が凍結している場合には、超音波が反
射する地表面が凹凸のない鏡面状態となるため、車体後
部に設けられた超音波送信器から送信された超音波の主
ビームは、殆ど車体の後方に反射して超音波受信器に受
信されなくなる。そのため、超音波受信器に受信される
反射波は、主ビームの受信強度が弱まるとともに、相対
的にサイドビームの受信強度が強くなり、両者の差が小
さくなる。
However, when the road surface is submerged by rain or when the road surface is frozen, the ground surface on which ultrasonic waves are reflected becomes a mirror-like surface with no unevenness, so that the super surface provided at the rear of the vehicle body The main beam of ultrasonic waves transmitted from the ultrasonic wave transmitter is reflected almost at the rear of the vehicle body and is not received by the ultrasonic wave receiver. Therefore, in the reflected wave received by the ultrasonic receiver, the reception intensity of the main beam is weakened and the reception intensity of the side beam is relatively strong, and the difference between the two is small.

【0008】又、車両が高速走行しているとき、超音波
が送信されてから反射波が受信されるまでに車両の移動
する距離が大きいため、超音波受信器は比較的遠方から
反射した反射波を受信することになる。この場合も上記
した路面の鏡面状態の場合と同様に超音波受信器に受信
される反射波は、主ビームの受信音波強度が弱まるとと
もに、相対的にサイドビームの受信音波強度が強くな
り、両者の差が小さくなる。
Further, when the vehicle is traveling at a high speed, the distance traveled by the vehicle from the transmission of the ultrasonic wave to the reception of the reflected wave is large. You will receive the waves. Also in this case, as in the case of the above-mentioned mirror surface condition of the road surface, in the reflected wave received by the ultrasonic receiver, the received sound wave intensity of the main beam is weakened, and the received sound wave intensity of the side beam is relatively strengthened. The difference between

【0009】上記周波数差より車速を演算する車速演算
部では、サイドビームの反射波に基づいて車速を演算し
てしまうことがあり、その場合、実際の車速よりも遅い
速度が算出されてしまう。その結果、トラクション制御
装置又はアンチロックブレーキ装置等においては、この
対地速度に基づいてトラクション制御あるいは制動制御
を行うため、制御が遅れたり、車輪のスリップあるいは
車輪のロックを防止するための適切な制御ができなくな
る。
In the vehicle speed calculating section for calculating the vehicle speed from the frequency difference, the vehicle speed may be calculated based on the reflected wave of the side beam, in which case a speed lower than the actual vehicle speed is calculated. As a result, in the traction control device or the anti-lock brake device, the traction control or the braking control is performed based on the ground speed, so that the control is delayed, and the appropriate control for preventing the wheel slip or the wheel lock is performed. Can not be.

【0010】そこで、本発明は上記課題に鑑み、地表面
で反射した主ビームの反射波の受信強度が弱まってもサ
イドビームの反射波による車速が検出されず、主ビーム
による車速のみを正確に演算することを目的とする。
Therefore, in view of the above problems, the present invention does not detect the vehicle speed due to the reflected wave of the side beam even if the reception intensity of the reflected wave of the main beam reflected on the ground surface is weak, and accurately determines only the vehicle speed due to the main beam. The purpose is to calculate.

【0011】[0011]

【課題を解決するための手段】上記請求項1の発明は、
地表面に向けて超音波を送信する超音波送信器と、該地
表面で反射した反射波を受信する超音波受信器と、該超
音波送信器から送信波の周波数と該反射波の周波数との
周波数差に基づいて車両の対地車速を演算する速度演算
器と、を有するドップラ式対地車速検出装置において、
前記送信波のサイドビームが地表面に対して垂直に照射
されるように前記超音波送信器を設けたことを特徴とす
る。
The invention according to claim 1 is
An ultrasonic transmitter that transmits ultrasonic waves toward the ground surface, an ultrasonic receiver that receives the reflected wave reflected by the ground surface, a frequency of the transmitted wave from the ultrasonic transmitter, and a frequency of the reflected wave In a Doppler type ground vehicle speed detection device having a speed calculator that calculates the ground vehicle speed of the vehicle based on the frequency difference of
The ultrasonic transmitter is provided so that the side beam of the transmitted wave is irradiated perpendicularly to the ground surface.

【0012】又、請求項2の発明は、地表面に向けて超
音波を送信する超音波送信器と、該地表面で反射した反
射波を受信する超音波受信器と、該送信波の周波数と予
め設定された閾値以上のレベルで受信した反射波の周波
数との周波数差に基づいて車両の対地車速を演算する速
度演算器と、を有するドップラ式対地車速検出装置にお
いて、所定速度以上の高速走行時は前記超音波受信器か
ら出力された受信強度の閾値を高い値に設定し、所定速
度以下の低速走行時は前記閾値を低い値に設定する閾値
切換手段を前記速度演算器に設けたことを特徴とする。
The invention of claim 2 is an ultrasonic transmitter for transmitting ultrasonic waves toward the ground surface, an ultrasonic receiver for receiving reflected waves reflected by the ground surface, and the frequency of the transmitted waves. In the Doppler type ground vehicle speed detecting device having a speed calculator for calculating the ground vehicle speed of the vehicle based on the frequency difference between the frequency of the reflected wave received at a level equal to or higher than a preset threshold value, The speed calculator is provided with threshold value switching means for setting a high threshold value of the reception intensity output from the ultrasonic receiver during traveling and for setting the threshold value to a low value during low speed traveling at a predetermined speed or less. It is characterized by

【0013】[0013]

【作用】上記請求項1の発明によれば、送信波のサイド
ビームが地表面に対して垂直に照射されるように超音波
送信器を設けることにより、サイドビームの反射波のド
プッラシフトをゼロにする。これにより、サイドビーム
の反射波による車速の演算誤差がなくなる。
According to the first aspect of the present invention, the Doppler shift of the reflected wave of the side beam is reduced to zero by providing the ultrasonic transmitter so that the side beam of the transmitted wave is irradiated perpendicularly to the ground surface. To do. This eliminates the calculation error of the vehicle speed due to the reflected wave of the side beam.

【0014】又、請求項2の発明によれば、所定速度以
上の高速走行時は反射波の閾値を高い値に設定し、所定
速度以下の低速走行時は閾値を低い値に設定することに
より、車両が高速走行しているときは、超音波が送信さ
れてから反射波が受信されるまでに車両が移動する距離
が大きいため、超音波受信器には比較的遠方から反射し
た反射波を受信することになるが、超音波受信器に受信
される反射波の主ビームにより車速を演算でき、正確な
車速が得られる。
According to the second aspect of the present invention, the threshold value of the reflected wave is set to a high value when traveling at a high speed above a predetermined speed, and the threshold value is set to a low value when traveling at a low speed below a predetermined speed. When the vehicle is traveling at high speed, the distance traveled by the vehicle from the transmission of the ultrasonic wave to the reception of the reflected wave is large, so the ultrasonic receiver receives the reflected wave reflected from a relatively distant location. Although it will be received, the vehicle speed can be calculated by the main beam of the reflected wave received by the ultrasonic receiver, and an accurate vehicle speed can be obtained.

【0015】[0015]

【実施例】図1乃至図4に本発明になるドップラ式対地
車速検出装置の第1実施例を示す。各図中、ドップラ式
対地車速検出装置は、大略、車両1の後部トランク2の
底部と後部バンパ3との間に位置するように取り付けら
れた超音波センサユニット4と、制御回路5とよりな
る。
1 to 4 show a first embodiment of a Doppler type ground vehicle speed detecting device according to the present invention. In each of the drawings, the Doppler type vehicle speed detecting device is generally composed of an ultrasonic sensor unit 4 mounted so as to be located between the bottom of the rear trunk 2 of the vehicle 1 and the rear bumper 3, and a control circuit 5. .

【0016】超音波センサユニット4は、筐体6の両側
に取り付けられた支持部材6a,6bが後部トランク2
の底部2aに固定されたブラケット7の傾斜部7aに固
定されており、筐体6の後部からは制御回路5に接続さ
れるコネクタ8を有するケーブル9が引き出されてい
る。又、ブラケット7の両端部7b,7cは後部トラン
ク2の底部2aにねじ止めされている。
In the ultrasonic sensor unit 4, the support members 6a and 6b attached to both sides of the housing 6 are provided in the rear trunk 2.
A cable 9 having a connector 8 that is fixed to the inclined portion 7a of the bracket 7 that is fixed to the bottom portion 2a of the housing 7 and that is connected to the control circuit 5 is pulled out from the rear portion of the housing 6. Both ends 7b and 7c of the bracket 7 are screwed to the bottom 2a of the rear trunk 2.

【0017】従って、超音波センサユニット4は、支持
部材6a,6bのブラケット7に当接する当接面6c,
6dの傾斜角β及びブラケット7の傾斜部7aの傾斜角
γにより進行方向上(Y方向)の傾斜角度θが決まる。
本実施例では、図1に示すように、超音波センサユニッ
ト4から送信される超音波信号は、指向方向の異なる主
ビーム10と、複数のサイドビーム11(111 …11
n )とに分かれる。
Accordingly, the ultrasonic sensor unit 4 has the contact surfaces 6c, 6c, which contact the brackets 7 of the support members 6a, 6b.
The inclination angle β in the traveling direction (Y direction) is determined by the inclination angle β of 6d and the inclination angle γ of the inclined portion 7a of the bracket 7.
In the present embodiment, as shown in FIG. 1, the ultrasonic signal transmitted from the ultrasonic sensor unit 4 includes a main beam 10 having different directing directions and a plurality of side beams 11 (11 1, ... 11).
n ) and divided into.

【0018】即ち、超音波センサユニット4の超音波信
号は、大略、超音波センサユニット4の軸線12に沿っ
て進行する主ビーム10と、主ビーム10に対しある角
度傾斜した方向に進行する1次のサイドビーム111
よりなる。本実施例では、図1に示すように、1次のサ
イドビーム111 の周波数差をゼロにするため、1次の
サイドビーム111 が路面13に対して垂直方向に進行
するように、超音波センサユニット4を後部トランク2
の底部2aに固定する。尚、2次以降のサイドビーム1
2 〜11n は、1次のサイドビーム111 の強度に比
べて微弱なため無視することができる。
That is, the ultrasonic signal of the ultrasonic sensor unit 4 generally travels along the axis 12 of the ultrasonic sensor unit 4 and the main beam 10 in a direction inclined at an angle with respect to the main beam 10. It consists of the next side beam 11 1 . In this embodiment, as shown in FIG. 1, for the frequency difference of the first order side beams 11 1 to zero, so that the primary side beam 11 1 is traveling in a direction perpendicular to the road surface 13, super Attach the sound wave sensor unit 4 to the rear trunk 2
It is fixed to the bottom 2a. In addition, secondary side beam 1
Since 1 2 to 11 n are weaker than the intensity of the primary side beam 11 1 , they can be ignored.

【0019】この場合、主ビーム10の路面13に対す
る送信角度θは、超音波センサユニット4の特性によっ
ても変動するが、およそ50〜70°(好ましくは55
〜65°)になる。又、超音波センサユニット4の筐体
6には、超音波(送信波)を送信する超音波送信器14
と、路面13で反射した反射波(受信波)を受信する超
音波受信器15とを埋設してなる。超音波送信器14及
び超音波受信器15は、構造がほぼ同じであり、内部に
超音波を送受するための振動体(図示せず)が収納され
ている。
In this case, the transmission angle θ of the main beam 10 with respect to the road surface 13 varies depending on the characteristics of the ultrasonic sensor unit 4, but is about 50 to 70 ° (preferably 55).
~ 65 °). The housing 6 of the ultrasonic sensor unit 4 has an ultrasonic transmitter 14 for transmitting ultrasonic waves (transmission waves).
And an ultrasonic receiver 15 for receiving the reflected wave (received wave) reflected by the road surface 13 are embedded. The ultrasonic transmitter 14 and the ultrasonic receiver 15 have substantially the same structure, and a vibrating body (not shown) for transmitting and receiving ultrasonic waves is housed inside.

【0020】尚、超音波送信器14及び超音波受信器1
5は、超音波送信器14から送信された送信波の主ビー
ム10が路面13で反射して超音波受信器15で受信さ
れるようにX方向上、角度α傾斜して取り付けられてい
る。この角度αは、超音波センサユニット4の取り付け
高さ及び超音波送信器14と超音波受信器15との間隔
(X方向の離間距離)により決められる。
The ultrasonic transmitter 14 and the ultrasonic receiver 1
5 is attached at an angle α in the X direction so that the main beam 10 of the transmitted wave transmitted from the ultrasonic transmitter 14 is reflected by the road surface 13 and received by the ultrasonic receiver 15. The angle α is determined by the mounting height of the ultrasonic sensor unit 4 and the distance between the ultrasonic transmitter 14 and the ultrasonic receiver 15 (separation distance in the X direction).

【0021】上記のように、超音波送信器14から送信
される送信波の主ビーム10が車両1の後方に角度θで
送信されるのは、路面13に反射した反射波の周波数が
送信波に対してドップラシフトされるからであり、送信
波と受信波との周波数差により対地速度が演算される。
このドップラシフト周波数fd は次式により求まる。
As described above, the main beam 10 of the transmitted wave transmitted from the ultrasonic transmitter 14 is transmitted to the rear of the vehicle 1 at the angle θ because the frequency of the reflected wave reflected on the road surface 13 is the transmitted wave. This is because the Doppler shift is performed, and the ground speed is calculated from the frequency difference between the transmitted wave and the received wave.
This Doppler shift frequency f d is obtained by the following equation.

【0022】 fd ={Vcosθ/(C−Vcosθ)}×2f0 …(1) 但し、Vは対地速度,f0 は送信周波数,θは路面に対
する送信角,Cは音速である。従って、超音波センサユ
ニット4の取り付け角度を設定する場合、送信角θが小
さいとドップラシフトによる周波数差が大きくなる反
面、路面13からの反射波(受信波)の強度が弱くなっ
てしまう。そのため、従来の送信角θは、通常約45°
に設定されていた。
F d = {Vcos θ / (C−Vcos θ)} × 2f 0 (1) where V is the ground speed, f 0 is the transmission frequency, θ is the transmission angle with respect to the road surface, and C is the speed of sound. Therefore, when the mounting angle of the ultrasonic sensor unit 4 is set, when the transmission angle θ is small, the frequency difference due to the Doppler shift becomes large, but the intensity of the reflected wave (received wave) from the road surface 13 becomes weak. Therefore, the conventional transmission angle θ is usually about 45 °.
Was set to.

【0023】図5に示すように、制御回路5は、送信波
を発生させる送信波発生回路16、送信波発生回路16
から出力された送信信号を増幅して超音波送信器14に
供給する増幅器17、超音波受信器15から出力された
受信信号を増幅する増幅器18、受信信号の受信レベル
が閾値以上となる主ビーム10を検出する主ビーム検出
回路19、主ビーム検出回路19に受信レベルの閾値
(スレショルドレベル)を設定する閾値設定器20、主
ビーム検出回路19から出力された受信波の周波数と送
信波発生回路16から出力された送信波の周波数との差
を検出する周波数差検出回路21、周波数差検出回路2
1より得られた周波数差に基づいて対地速度を演算する
対地速度演算回路22よりなる。
As shown in FIG. 5, the control circuit 5 includes a transmission wave generation circuit 16 for generating a transmission wave and a transmission wave generation circuit 16
An amplifier 17 for amplifying the transmission signal output from the ultrasonic transmitter 14 and supplying it to the ultrasonic transmitter 14, an amplifier 18 for amplifying the reception signal output from the ultrasonic receiver 15, and a main beam with a reception level of the reception signal equal to or higher than a threshold value. 10, a main beam detection circuit 19, a threshold value setter 20 that sets a reception level threshold (threshold level) in the main beam detection circuit 19, a frequency of a reception wave output from the main beam detection circuit 19, and a transmission wave generation circuit Frequency difference detection circuit 21 for detecting the difference between the frequency of the transmission wave output from 16 and frequency difference detection circuit 2
The ground speed calculating circuit 22 calculates the ground speed based on the frequency difference obtained from the above 1.

【0024】従って、制御回路5は、主ビーム検出回路
19により主ビーム10のみ検出して対地速度を演算す
る。しかるに、前述したように超音波送信器14から送
信される送信波には、軸線12方向に進行する主ビーム
10だけでなく、軸線12と異なる角度ずれた方向に進
行するサイドビーム11があるため、例えば路面が雨に
より冠水している場合、あるいは路面が凍結している場
合には、路面の表面が凹凸のない鏡面状態となるため、
超音波送信器14から送信された主ビーム10の反射波
は、殆ど車両1の後方に進行してしまい超音波受信器1
5に受信されない。そのため、超音波受信器15に受信
される受信波は、主ビーム10の受信強度が弱まるとと
もに、相対的にサイドビーム11の受信強度が強くな
り、両者の差が小さくなる。
Therefore, the control circuit 5 detects only the main beam 10 by the main beam detection circuit 19 and calculates the ground speed. However, as described above, the transmission wave transmitted from the ultrasonic transmitter 14 includes not only the main beam 10 traveling in the direction of the axis 12 but also the side beam 11 traveling in a direction deviated from the axis 12 by a different angle. , For example, when the road surface is submerged by rain, or when the road surface is frozen, the surface of the road surface becomes a mirror surface state without unevenness,
The reflected wave of the main beam 10 transmitted from the ultrasonic transmitter 14 almost travels to the rear of the vehicle 1 and the ultrasonic receiver 1
Not received by 5. Therefore, in the reception wave received by the ultrasonic receiver 15, the reception intensity of the main beam 10 is weakened and the reception intensity of the side beam 11 is relatively strong, and the difference between the two is small.

【0025】又、車両1が高速走行しているとき、超音
波が送信されてから反射波が受信されるまでに車両1の
移動する距離が大きいため、超音波受信器15は比較的
遠方から反射した反射波を受信することになる。この場
合も上記した路面13の鏡面状態の場合と同様に超音波
受信器15に受信される反射波は、主ビーム10の受信
強度が弱まるとともに、相対的にサイドビーム11の受
信強度が強くなり、両者の差が小さくなる。
Further, when the vehicle 1 is traveling at a high speed, the distance that the vehicle 1 moves from the transmission of the ultrasonic wave to the reception of the reflected wave is large. The reflected wave reflected will be received. Also in this case, as in the case of the mirror surface state of the road surface 13 described above, the reflected wave received by the ultrasonic receiver 15 has a weakened reception intensity of the main beam 10 and a relatively increased reception intensity of the side beam 11. , The difference between the two becomes smaller.

【0026】図6に受信強度と周波数との関係を求めた
実験結果を示す。同図中、一点鎖線で示すグラフIは路
面13が鏡面状態のときの実験結果であり、実線で示す
グラフIIは車速が所定速度(例えば40Km/h)以下の低
速走行のときの実験結果であり、破線で示すグラフIII
は車速が所定速度(例えば40Km/h)以上の高速走行の
ときの実験結果である。
FIG. 6 shows the experimental results for obtaining the relationship between the reception intensity and the frequency. In the same figure, a graph I shown by a one-dot chain line is an experimental result when the road surface 13 is a mirror surface state, and a graph II shown by a solid line is an experimental result when the vehicle speed is low speed below a predetermined speed (for example, 40 km / h). Yes, graph III shown by dashed line
Is an experimental result when the vehicle is traveling at a high speed of a predetermined speed (for example, 40 km / h) or more.

【0027】同図のグラフIより、路面13が鏡面状態
の場合、周波数が約73KHz で−12dBとピークにな
り、周波数が約74KHz になると−23dBとなるのに対
し、低速走行の場合、周波数が約72KHz で0dBとピー
クになり、周波数が約72KHzになると−20dBとな
る。従って、通常走行のときは、主ビーム10とサイド
ビーム11との強度の差が20dBと大きいのに対し、路
面13が鏡面状態のときは、11dBと小さくなる。この
ことからも路面13が鏡面状態であるときは主ビーム1
0とサイドビーム11との判別がしにくくなり、車速演
算時に誤差が生ずる。
From the graph I in the figure, when the road surface 13 is a mirror surface, the frequency peaks at -12 dB at about 73 KHz, and becomes -23 dB at the frequency of about 74 KHz. Has a peak of 0 dB at about 72 KHz, and becomes -20 dB at a frequency of about 72 KHz. Therefore, the difference in intensity between the main beam 10 and the side beam 11 is as large as 20 dB during normal traveling, whereas it is as small as 11 dB when the road surface 13 is a mirror surface. From this also, when the road surface 13 is a mirror surface state, the main beam 1
It becomes difficult to distinguish between 0 and the side beam 11, and an error occurs when calculating the vehicle speed.

【0028】そこで、本実施例では、図1に示すように
サイドビーム11の進行方向が路面13に対して垂直方
向となるように、超音波センサユニット4を後部トラン
ク2の底部2aに固定する。これにより、前述した
(1)式よりドップラシフト周波数fd がゼロになる。
そのため、サイドビーム11が超音波受信器15により
受信されたとしても周波数差が生じないため、車速を演
算する際に影響せず、サイドビーム11による車速誤差
発生が防止される。
Therefore, in this embodiment, as shown in FIG. 1, the ultrasonic sensor unit 4 is fixed to the bottom portion 2a of the rear trunk 2 so that the traveling direction of the side beam 11 is perpendicular to the road surface 13. . As a result, the Doppler shift frequency f d becomes zero according to the above-mentioned formula (1).
Therefore, even if the side beam 11 is received by the ultrasonic receiver 15, a frequency difference does not occur. Therefore, the side beam 11 has no influence when calculating the vehicle speed, and the occurrence of a vehicle speed error by the side beam 11 is prevented.

【0029】従って、例えばトラクション制御装置又は
アンチロックブレーキ装置等においては、この対地速度
に基づいてトラクション制御あるいは制動制御を行うた
め、制御の遅れが無くなり、車輪のスリップあるいは車
輪のロックを防止するために適切な制御を行うことがで
きる。図8乃至図10に本発明の第2実施例を示す。
Therefore, for example, in the traction control device or the antilock brake device, the traction control or the braking control is performed based on the ground speed, so that the control delay is eliminated and the wheel slip or the wheel lock is prevented. Appropriate control can be performed. 8 to 10 show a second embodiment of the present invention.

【0030】図8中、25は超音波受信器13で受信さ
れたピーク値を検出するピーク値検出回路で、ピーク値
に応じた大きさの信号を出力する。26は閾値切換回路
で、ピーク値検出回路25から出力された車速信号が供
給され、例えば超音波受信器15で受信されたピーク値
が初期設定値L0 以上のときは閾値をL0 に設定し、ピ
ーク値がL0 以下でL1 以上のときは閾値をL1 に設定
し、ピーク値がL1 以下でL2 以上のときは閾値をL2
に設定する。閾値切換回路26は、例えば車速が40Km
/h以下の低速走行のときは受信強度が大のため閾値をL
0 に設定し、車速が40〜80Km/hの中速走行のときは
受信強度が弱いため閾値をL1 に設定し、車速が8Km/h
以上の高速走行のときは受信強度が微弱のため閾値をL
2 に設定する。
In FIG. 8, reference numeral 25 is a peak value detection circuit for detecting the peak value received by the ultrasonic receiver 13, and outputs a signal having a magnitude corresponding to the peak value. A threshold switching circuit 26 is supplied with the vehicle speed signal output from the peak value detection circuit 25. For example, when the peak value received by the ultrasonic receiver 15 is equal to or greater than the initial set value L 0 , the threshold value is set to L 0 . When the peak value is L 0 or less and L 1 or more, the threshold value is set to L 1 , and when the peak value is L 1 or less and L 2 or more, the threshold value is L 2
Set to. The threshold switching circuit 26 has a vehicle speed of 40 km, for example.
When driving at a low speed of less than / h, the threshold is L
When the vehicle speed is set to 0 and the vehicle speed is 40 to 80 km / h, the reception strength is weak, so the threshold value is set to L 1 and the vehicle speed is 8 km / h.
When the vehicle is traveling at a high speed above, the threshold is set to L because the reception intensity is weak.
Set to 2 .

【0031】前述したように、車両1が高速走行してい
るとき、超音波が送信されてから反射波が受信されるま
でに車両1の移動する距離が大きいため、超音波受信器
15は比較的遠方から反射した反射波を受信することに
なる。従って、超音波受信器15に受信される受信波の
強度は、図8に示すように、車速が40Km/h以下の低速
走行のとき、実線で示すように主ビーム10とサイドビ
ーム11との差が大きくなり、車速が高速になるにつれ
て主ビーム10の受信強度が弱まるとともに、相対的に
サイドビーム11の受信強度が強くなり、破線で示すよ
うに主ビーム10とサイドビーム11との強度差が小さ
くなる。
As described above, when the vehicle 1 is traveling at a high speed, the distance traveled by the vehicle 1 from the transmission of the ultrasonic wave to the reception of the reflected wave is large. The reflected wave reflected from a far distance will be received. Therefore, the intensity of the received wave received by the ultrasonic receiver 15 is as shown in FIG. 8 when the vehicle speed is 40 km / h or less and the vehicle is traveling at a low speed. As the difference increases and the vehicle speed increases, the reception intensity of the main beam 10 weakens and the reception intensity of the side beam 11 relatively increases. As shown by the broken line, the intensity difference between the main beam 10 and the side beam 11 Becomes smaller.

【0032】しかるに、車速が高速となっても、閾値を
0 からL1 又はL2 に切り換えることにより主ビーム
10の受信波の周波数のみを検出することができ、対地
車速演算回路22で車速を演算する際にサイドビーム1
1による車速誤差が生ずることが防止される。又、路面
13が鏡面状態となったときも主ビーム10とサイドビ
ーム11との強度差が小さくなるが閾値をL0 からL1
又はL2 に切り換えることにより主ビーム10の受信波
の周波数のみを検出することができ、タイヤがスリップ
しやすい状態でも正確な対地速度を求めることが可能に
なる。
However, even if the vehicle speed becomes high, it is possible to detect only the frequency of the received wave of the main beam 10 by switching the threshold value from L 0 to L 1 or L 2 , and the vehicle speed calculation circuit 22 with respect to ground can detect the vehicle speed. Side beam 1 when calculating
A vehicle speed error due to 1 is prevented. Further, even when the road surface 13 becomes a mirror surface state, the intensity difference between the main beam 10 and the side beam 11 becomes small, but the threshold value is changed from L 0 to L 1.
Alternatively, by switching to L 2 , it is possible to detect only the frequency of the received wave of the main beam 10, and it becomes possible to obtain an accurate ground speed even in the state where the tire is likely to slip.

【0033】図10は閾値切換回路26が実行する処理
のフローチャートである。同図中、ステップS1(以下
「ステップ」を省略する)において、超音波受信器15
に受信された受信波の信号強度が大のときは、S2に進
み、閾値をL0 に設定する。しかし、S1において、超
音波受信器15に受信された受信波の信号強度が小のと
きは、S3に進み、信号強度が小さいことを確認してS
4で、閾値をL1 に設定する。
FIG. 10 is a flowchart of the processing executed by the threshold switching circuit 26. In the figure, in step S1 (hereinafter “step” is omitted), the ultrasonic receiver 15
When the signal strength of the received wave received at is high, the process proceeds to S2, and the threshold value is set to L 0 . However, in S1, when the signal intensity of the received wave received by the ultrasonic receiver 15 is small, the process proceeds to S3, where it is confirmed that the signal intensity is small, and S
At 4, the threshold is set to L 1 .

【0034】又、S3において、超音波受信器15に受
信された受信波の信号強度が微弱のときは、S5に進み
信号強度が微弱であることを確認してS6に進み、閾値
をL 2 に設定する。尚、上記実施例では、閾値を3段階
に切り換えるようにしたが、これに限らず、例えば超音
波受信器15に受信された受信波の信号強度の大きさに
応じて閾値を3段階以上の例えば5段階あるいは6段階
に切り換えるようにしても良い。
In step S3, the ultrasonic receiver 15 receives the signal.
If the signal strength of the received wave received is weak, proceed to S5.
Confirm that the signal strength is weak and proceed to S6
To L 2Set to. In the above embodiment, the threshold value is set to 3 levels.
I switched to, but not limited to this, for example
Signal strength of the received wave received by the wave receiver 15
Depending on the threshold, there are 3 or more levels, for example 5 or 6 levels.
You may make it switch to.

【0035】又、上記各実施例では、超音波送信器11
と超音波受信器13とが同一の筐体6内に収納された一
体型の超音波センサユニット4を使用したが、これに限
らず、超音波送信器14と超音波受信器15とを夫々個
別に取り付ける構成を採用しても良いのは勿論である。
In each of the above embodiments, the ultrasonic transmitter 11
Although the integrated ultrasonic sensor unit 4 in which the ultrasonic wave receiver 13 and the ultrasonic wave receiver 13 are housed in the same housing 6 is used, the invention is not limited to this, and the ultrasonic wave transmitter 14 and the ultrasonic wave receiver 15 are respectively provided. Needless to say, a configuration in which they are individually attached may be adopted.

【0036】[0036]

【発明の効果】上述の如く、上記請求項1によれば、送
信波のサイドビームが地表面に対して垂直に照射される
ように超音波送信器を設けたため、サイドビームの反射
波のドプッラシフトをゼロにすることができ、これによ
り、サイドビームの反射波による車速の演算誤差がなく
なり、より正確な対地速度を得ることができる。
As described above, according to the first aspect, since the ultrasonic transmitter is provided so that the side beam of the transmitted wave is irradiated perpendicularly to the ground surface, the Doppler shift of the reflected wave of the side beam is provided. Can be made zero, and thereby, the calculation error of the vehicle speed due to the reflected wave of the side beam is eliminated, and a more accurate ground speed can be obtained.

【0037】又、請求項2によれば、所定速度以上の高
速走行時は反射波の閾値を高い値に設定し、所定速度以
下の低速走行時は閾値を低い値に設定するため、例えば
車両が高速走行しているときは、超音波が送信されてか
ら反射波が受信されるまでに車両が移動する距離が大き
いため、超音波受信器には比較的遠方から反射した反射
波を受信することになるが、閾値を低い値に設定するこ
とにより高速走行時でも超音波受信器に受信される主ビ
ームの受信信号のみにより車速を演算でき、サイドビー
ムの反射波による車速の演算誤差がなくなり、正確な車
速が得ることができる。
Further, according to claim 2, the threshold value of the reflected wave is set to a high value when the vehicle is traveling at a high speed above a predetermined speed, and the threshold value is set to a low value when the vehicle is traveling at a low speed below a predetermined speed. When the vehicle is traveling at high speed, the distance traveled by the vehicle from the transmission of ultrasonic waves to the reception of reflected waves is large, so the ultrasonic receiver receives the reflected waves reflected from relatively long distances. However, by setting the threshold value to a low value, the vehicle speed can be calculated only by the received signal of the main beam received by the ultrasonic receiver even when traveling at high speed, and the calculation error of the vehicle speed due to the reflected wave of the side beam is eliminated. , Accurate vehicle speed can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になるドップラ式対地車速検出装置の第
1実施例の正面図である。
FIG. 1 is a front view of a first embodiment of a Doppler type ground vehicle speed detecting device according to the present invention.

【図2】車両の背面図である。FIG. 2 is a rear view of the vehicle.

【図3】超音波センサユニットの図である。FIG. 3 is a diagram of an ultrasonic sensor unit.

【図4】超音波センサユニットが車体の後部に取り付け
られた状態を示す斜視図である。
FIG. 4 is a perspective view showing a state in which an ultrasonic sensor unit is attached to a rear portion of a vehicle body.

【図5】制御回路のブロック図である。FIG. 5 is a block diagram of a control circuit.

【図6】受信強度と周波数との関係を求めた実験結果を
示すグラフである。
FIG. 6 is a graph showing an experimental result in which a relationship between reception intensity and frequency is obtained.

【図7】本発明の第2実施例の制御回路のブロック図で
ある。
FIG. 7 is a block diagram of a control circuit according to a second embodiment of the present invention.

【図8】低速走行と高速走行のときの受信信号の強度の
差を示すグラフである。
FIG. 8 is a graph showing the difference in received signal strength between low-speed traveling and high-speed traveling.

【図9】閾値検出回路が実行する処理のフローチャート
である。
FIG. 9 is a flowchart of processing executed by a threshold detection circuit.

【符号の説明】[Explanation of symbols]

1 車両 2 後部トランク 4 超音波センサユニット 5 制御回路 7 ブラケット 10 主ビーム 11 サイドビーム 14 超音波送信器 15 超音波受信器 16 送信波発生回路 19 主ビーム検出回路 20 閾値設定器 21 周波数差検出回路 22 対地速度演算回路 25 ピーク値検出回路 26 閾値切換回路 1 Vehicle 2 Rear Trunk 4 Ultrasonic Sensor Unit 5 Control Circuit 7 Bracket 10 Main Beam 11 Side Beam 14 Ultrasonic Transmitter 15 Ultrasonic Receiver 16 Transmitted Wave Generating Circuit 19 Main Beam Detection Circuit 20 Threshold Setter 21 Frequency Difference Detection Circuit 22 Ground Speed Calculation Circuit 25 Peak Value Detection Circuit 26 Threshold Switching Circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 地表面に向けて超音波を送信する超音波
送信器と、該地表面で反射した反射波を受信する超音波
受信器と、該超音波送信器から送信波の周波数と該反射
波の周波数との周波数差に基づいて車両の対地車速を演
算する速度演算器と、を有するドップラ式対地車速検出
装置において、 前記送信波のサイドビームが地表面に対して垂直に照射
されるように前記超音波送信器を設けたことを特徴とす
るドップラ式対地車速検出装置。
1. An ultrasonic transmitter for transmitting ultrasonic waves toward the ground surface, an ultrasonic receiver for receiving reflected waves reflected by the ground surface, a frequency of a transmitted wave from the ultrasonic transmitter, and In a Doppler type ground vehicle speed detecting device having a speed calculator for calculating the ground vehicle speed of the vehicle based on the frequency difference from the frequency of the reflected wave, the side beam of the transmitted wave is radiated vertically to the ground surface. A Doppler-type ground vehicle speed detecting device, wherein the ultrasonic transmitter is provided as described above.
【請求項2】 地表面に向けて超音波を送信する超音波
送信器と、該地表面で反射した反射波を受信する超音波
受信器と、該送信波の周波数と予め設定された閾値以上
のレベルで受信した反射波の周波数との周波数差に基づ
いて車両の対地車速を演算する速度演算器と、を有する
ドップラ式対地車速検出装置において、 所定速度以上の高速走行時は前記超音波受信器から出力
された受信強度の閾値を高い値に設定し、所定速度以下
の低速走行時は前記閾値を低い値に設定する閾値切換手
段を前記速度演算器に設けたことを特徴とするドップラ
式対地車速検出装置。
2. An ultrasonic transmitter for transmitting ultrasonic waves toward the ground surface, an ultrasonic receiver for receiving reflected waves reflected by the ground surface, and the frequency of the transmitted waves and a preset threshold value or more. In a Doppler type ground vehicle speed detecting device having a speed calculator for calculating the ground vehicle speed of the vehicle based on the frequency difference from the frequency of the reflected wave received at the level of A threshold value switching means for setting the threshold value of the reception intensity output from the device to a high value and setting the threshold value to a low value when traveling at a low speed of a predetermined speed or less is provided in the speed calculator. Ground vehicle speed detector.
JP33326693A 1993-12-27 1993-12-27 Doppler type vehicle ground speed detecting device Pending JPH07191139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33326693A JPH07191139A (en) 1993-12-27 1993-12-27 Doppler type vehicle ground speed detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33326693A JPH07191139A (en) 1993-12-27 1993-12-27 Doppler type vehicle ground speed detecting device

Publications (1)

Publication Number Publication Date
JPH07191139A true JPH07191139A (en) 1995-07-28

Family

ID=18264188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33326693A Pending JPH07191139A (en) 1993-12-27 1993-12-27 Doppler type vehicle ground speed detecting device

Country Status (1)

Country Link
JP (1) JPH07191139A (en)

Similar Documents

Publication Publication Date Title
JP2945230B2 (en) Road surface condition detection device
JP2687066B2 (en) Doppler ground speed detector
JP5694294B2 (en) Laser diode based self-mixing sensor for vehicle electronic stability program
JPH0386619A (en) Road surface sensing system for vehicle running on land
JP3913911B2 (en) Vehicle obstacle detection device
US4373161A (en) Doppler radar mounting structure for motor vehicles
JP3923200B2 (en) Vehicle obstacle detection method
JPH09178857A (en) Device for measuring interval between vehicles
US20030090960A1 (en) Optical axis adjusting device for vehicle headlamp
JPH07191139A (en) Doppler type vehicle ground speed detecting device
JPS59203973A (en) Relative speed detector
JPH0769421B2 (en) On-vehicle multipurpose ultrasonic measuring device
JP2019119375A (en) Tire noise reduction device
JP3094792B2 (en) Ground speed detector
JP3411369B2 (en) Vehicle obstacle detection device and safety device
JPH0645847Y2 (en) Road surface detection device
JPH0424800A (en) Rear monitoring device for vehicle
JP3041548B2 (en) Automotive ultrasonic sensors
JP2001183451A (en) Radar device
JP2958013B2 (en) Vehicle collision warning device
JPH04238286A (en) Method and device for detecting road surface condition to be mounted on vehicle
JP3178329B2 (en) Object detection device
JPH11118918A (en) Position detecting system for car
JPH0592768U (en) Inter-vehicle distance alarm device
JPH02236451A (en) Detector for frictional coefficient of road surface