JPH07190768A - Bearing detecting device for moving body - Google Patents

Bearing detecting device for moving body

Info

Publication number
JPH07190768A
JPH07190768A JP5330406A JP33040693A JPH07190768A JP H07190768 A JPH07190768 A JP H07190768A JP 5330406 A JP5330406 A JP 5330406A JP 33040693 A JP33040693 A JP 33040693A JP H07190768 A JPH07190768 A JP H07190768A
Authority
JP
Japan
Prior art keywords
shape
image pickup
light emitting
moving body
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5330406A
Other languages
Japanese (ja)
Inventor
Masanori Fujiwara
正徳 藤原
Ryozo Kuroiwa
良三 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5330406A priority Critical patent/JPH07190768A/en
Publication of JPH07190768A publication Critical patent/JPH07190768A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the complication of a device without providing any special means on a moving body by detecting the bearing of the moving body on the basis of a difference between a luminous shape on an image pickup screen for a luminous body laid on the moving body and a reference luminous shape. CONSTITUTION:A both-sided automatic tracking device B finds the angles theta a and thetab of a luminous body 20 on the basis of the angle alpha in each image sensor S and the optical axis angle theta s, and transmits information on the angles theta a and theta b to a work vehicle A. Thereafter, the left side device B turns and tracks the sensor S with a slewing amount DELTA theta. The vehicle A calculates the current position on the basis of received information. Then, the left side device B calculates the aspect ratio h/v of the luminous shape of the body 20 and transmits information on the ratio to the vehicle A. As a result, the vehicle A performs adjusting operation for rotating a cover 20b so as to make the luminous shape equal to a specified shape, on the basis of the calculated aspect ratio h/v, and transmits adjusting amount information to the right side device B. The right side device B calculates the bearing of the vehicle A from the angle theta b of the luminous body 20 and the adjusting amount information, when the ratio h/v is equal to 0.5, and transmits information on the bearing to the vehicle A. Thereafter, the right side device B also turns and tracks the sensor S with a slewing amount DELTA theta.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動する移動体の方位
検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an azimuth detecting apparatus for a moving body.

【0002】[0002]

【従来の技術】かかる移動体の方位検出装置では、地上
側に、例えば移動体としての作業車が走行する作業行程
の方向を基準方位に設定するとともに、例えば地磁気利
用の方位センサ等の方位検出手段を移動体に設置し、そ
の方位センサ等の検出情報に基づいて上記基準方位に対
して移動体の方位を検出するようにしていた。因みに、
この方位情報は例えば移動体の誘導制御のために用いら
れる。尚、移動体の誘導制御のためには方位情報ととも
に位置の情報も必要であるが、位置検出については、例
えば、電球等の発光体を移動体側に設けるとともに、こ
の発光体を地上側に設けたイメージセンサ等の撮像手段
で撮像し、その撮像画面内の所定位置(例えば画面中
心)に発光体を捉えるように撮像角度を調節作動させる
追尾制御を行いながら、撮像手段の撮像角度情報と、例
えばレーザー測距計にて測った発光体即ち移動体までの
距離情報とによって移動体の位置を測定していた。
2. Description of the Related Art In such an azimuth detecting device for a moving body, for example, a direction of a work stroke in which a working vehicle as a moving body travels is set as a reference azimuth on the ground side, and an azimuth detecting device such as an azimuth sensor utilizing geomagnetism is used. The means is installed in the moving body, and the azimuth of the moving body is detected with respect to the reference azimuth based on the detection information of the azimuth sensor or the like. By the way,
This azimuth information is used, for example, for guidance control of the moving body. Although position information as well as azimuth information is necessary for guidance control of a moving body, for position detection, for example, a light emitting body such as a light bulb is provided on the moving body side, and this light emitting body is provided on the ground side. Image pickup means such as an image sensor, and while performing the tracking control for adjusting the image pickup angle so that the light emitting body is captured at a predetermined position (for example, the screen center) within the image pickup screen, the image pickup angle information of the image pickup means, For example, the position of the moving body is measured by the light emitting body measured by a laser range finder, that is, the distance information to the moving body.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、移動体の方位検出のために、移動体側に方
位センサ等の特別の検出手段を設ける必要があり、移動
体の装置構成が複雑になるという不具合があった。
However, in the above-mentioned prior art, in order to detect the azimuth of the moving body, it is necessary to provide a special detecting means such as an azimuth sensor on the side of the moving body, which complicates the device structure of the moving body. There was a problem that became.

【0004】本発明は、上記実情に鑑みてなされたもの
であって、その目的は、移動体側に方位センサ等の特別
の検出手段を設けることなく、例えば移動体の誘導制御
等のために備えている前記発光体や撮像手段等を有効活
用し、装置構成の複雑化を極力回避しながら移動体の方
位を検出できるようにすることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide, for example, guidance control of a moving body without providing a special detecting means such as a direction sensor on the moving body side. It is intended to make effective use of the above-mentioned light-emitting body, image pickup means, and the like so that the direction of the moving body can be detected while avoiding complication of the apparatus configuration as much as possible.

【0005】[0005]

【課題を解決するための手段】本発明による移動体の方
位検出装置の第1の特徴構成は、前記移動体に、それを
見る方向が変化するに伴って発光形状が変化する発光体
が設置され、地上側に、前記発光体を撮像する撮像手段
と、その撮像手段の撮像画面内の所定位置に前記発光体
を捉えるように前記撮像手段の撮像角度調節手段を作動
させる追尾制御手段と、前記撮像手段の撮像角度を検出
する撮像角度検出手段と、前記撮像手段の撮像画面にお
ける前記発光体の発光形状と、前記撮像角度検出手段に
て検出される撮像角度に応じて前記移動体が基準方向に
向いている状態のときの形状として求められる基準発光
形状との差に基づいて、前記移動体の方位を検出する方
位検出手段とが設けられている点にある。
According to a first characteristic configuration of an apparatus for detecting a direction of a moving body according to the present invention, a light emitting body whose light emitting shape changes in accordance with a change in a viewing direction is installed in the moving body. An image pickup means for picking up the light emitting body on the ground side, and a tracking control means for operating the image pickup angle adjusting means of the image pickup means so as to catch the light emitting body at a predetermined position within an image pickup screen of the image pickup means, An image capturing angle detecting means for detecting an image capturing angle of the image capturing means, a light emitting shape of the light emitting body on an image capturing screen of the image capturing means, and a moving body as a reference according to an image capturing angle detected by the image capturing angle detecting means. The azimuth detecting means is provided for detecting the azimuth of the moving body based on the difference from the reference light emission shape obtained as the shape in the state of facing the direction.

【0006】又、第2の特徴構成は、前記移動体に、そ
れを特定方向から見たときに発光形状が特定形状にな
り、且つ、見る方向が前記特定方向から変化するに伴っ
て前記発光形状が変化する発光体が設置され、地上側
に、前記発光体を撮像する撮像手段と、その撮像手段の
撮像画面内の所定位置に前記発光体を捉えるように前記
撮像手段の撮像角度調節手段を作動させる追尾制御手段
と、前記撮像手段の撮像角度を検出する撮像角度検出手
段と、前記撮像手段の撮像画面における前記発光体の発
光形状と前記特定形状との差の情報を前記発光体側に向
けて送信する撮像手段側通信手段とが設けられ、前記移
動体に、前記撮像手段側通信手段から送信された前記差
の情報を受信する発光体側通信手段と、その発光体側通
信手段の受信情報に基づいて前記撮像手段の撮像画面に
おける前記発光体の発光形状が前記特定形状になるよう
に、前記特定方向を変更調節する発光形状調節手段と、
その発光形状調節手段の基準調節状態からの調節量を検
出する発光形状調節量検出手段とが設けられ、前記発光
体側通信手段が、前記発光形状調節量検出手段にて検出
された前記調節量情報を前記撮像手段側通信手段に送信
するように構成され、地上側に、前記撮像角度検出手段
の撮像角度情報及び前記撮像手段側通信手段にて受信し
た前記調節量情報に基づいて前記移動体の方位を検出す
る方位検出手段が設けられている点にある。
In a second characteristic configuration, the light emitting shape of the moving body becomes a specific shape when viewed from a specific direction, and the light emitting shape changes as the viewing direction changes from the specific direction. An illuminant whose shape changes is installed, an image pickup means for picking up the illuminant on the ground side, and an image pickup angle adjusting means of the image pickup means so as to catch the illuminant at a predetermined position within an image pickup screen of the image pickup means. Tracking control means for activating, an imaging angle detection means for detecting an imaging angle of the imaging means, and information on a difference between the light emission shape of the light emitter and the specific shape on the image pickup screen of the image pickup means on the light emitter side. An image pickup means side communication means for transmitting toward the light emitting body side communication means for receiving the difference information transmitted from the image pickup means side communication means to the moving body, and information received by the light emitter side communication means. Based on So that the light emission shape of the emitters in the imaging screen of the imaging means have become the predetermined shape, and the light emitting shape adjusting means for adjusting changes the specific direction,
A light emission shape adjustment amount detection means for detecting an adjustment amount of the light emission shape adjustment means from a reference adjustment state is provided, and the light emitter side communication means detects the adjustment amount information detected by the light emission shape adjustment amount detection means. Is transmitted to the image-capturing means-side communication means, and on the ground side of the moving body based on the image-capturing angle information of the image-capturing angle detecting means and the adjustment amount information received by the image-capturing means-side communication means. The azimuth detecting means for detecting the azimuth is provided.

【0007】又、第3の特徴構成は、前記発光体が、球
形の発光部と、その発光部の球形の外周面の横方向の半
分を覆う半球状のカバーとから構成され、前記発光形状
調節手段が、前記特定形状を縦姿勢の半円形状とする状
態で前記カバーを縦軸芯周りに回転させる回転手段にて
構成されている点にある。
In a third characteristic structure, the light emitting body is composed of a spherical light emitting portion and a hemispherical cover that covers a lateral half of the spherical outer peripheral surface of the light emitting portion. The adjusting means is constituted by a rotating means for rotating the cover around the longitudinal axis in a state where the specific shape is a vertical semicircular shape.

【0008】[0008]

【作用】本発明の第1の特徴構成によれば、移動体に設
けた発光体を地上側に設けた撮像手段の撮像画面内の所
定位置に捉えるように撮像手段の撮像角度を調節する追
尾制御が行われる。そして、そのときの撮像手段の撮像
角度に応じて、移動体が基準方向(例えば地上側に設定
された基準方位の方向)に向いている状態の形状として
基準発光形状が求められ、この基準発光形状と撮像手段
の撮像画面における発光体の発光形状との差に基づいて
移動体の方位が例えば上記基準方位に対する角度として
検出される。
According to the first characteristic configuration of the present invention, the tracking for adjusting the image pickup angle of the image pickup means so that the light emitting body provided on the moving body is captured at a predetermined position in the image pickup screen of the image pickup means provided on the ground side. Control is performed. Then, according to the image pickup angle of the image pickup means at that time, the reference light emission shape is obtained as a shape of the state in which the moving body is oriented in the reference direction (for example, the direction of the reference azimuth set on the ground side), and the reference light emission is obtained. The azimuth of the moving body is detected as an angle with respect to the reference azimuth based on the difference between the shape and the light emitting shape of the light emitting body on the image pickup screen of the image pickup means.

【0009】又、第2の特徴構成によれば、移動体に設
けた発光体を地上側に設けた撮像手段の撮像画面内の所
定位置に捉えるように撮像手段の撮像角度を調節する追
尾制御が行われ、その撮像手段の撮像画面における発光
体の発光形状と、発光体を特定方向から見たときの特定
形状との差の情報が発光体即ち移動体側に向けて送信さ
れる。そして、移動体では、上記差の情報に基づいて撮
像手段の撮像画面における発光体の発光形状が上記特定
形状になる即ち上記両形状の差がなくなるように発光形
状調節手段にて上記特定方向が変更調節され、又、その
調節量が基準調節状態からの調節量として検出された調
節量情報が撮像手段側に送信される。そして、地上側で
は、その基準調節状態からの変更調節量情報及び撮像角
度情報に基づいて移動体の方位が検出される。
According to the second characteristic configuration, tracking control for adjusting the image pickup angle of the image pickup means so that the light emitting body provided on the moving body is captured at a predetermined position within the image pickup screen of the image pickup means provided on the ground side. Then, information on the difference between the light emitting shape of the light emitting body on the image pickup screen of the image pickup means and the specific shape when the light emitting body is viewed from the specific direction is transmitted toward the light emitting body, that is, the moving body side. Then, in the moving body, based on the information on the difference, the light emitting shape of the light emitting body on the image pickup screen of the image pickup means becomes the specific shape, that is, the light emitting shape adjusting means sets the specific direction so that there is no difference between the two shapes. The adjustment amount information is changed and adjusted, and the adjustment amount information in which the adjustment amount is detected as the adjustment amount from the reference adjustment state is transmitted to the imaging unit side. Then, on the ground side, the azimuth of the moving body is detected based on the change adjustment amount information from the reference adjustment state and the imaging angle information.

【0010】又、第3の特徴構成によれば、移動体側
で、撮像手段の撮像画面における発光体の発光形状と、
特定形状である縦姿勢の半円形状との差の情報に基づい
て、撮像手段の撮像画面における発光体の発光形状が上
記縦姿勢の半円形状になるように、球形の発光部の球形
の外周面の横方向の半分を覆う半球状のカバーが回転さ
れるるとともに、その回転量が基準調節状態(この場合
は、基準回転位置になる)からの回転量として検出され
る。そして、地上側では、移動体側から送信される上記
基準調節状態からの回転量情報及び撮像角度情報に基づ
いて移動体の方位が検出される。
Further, according to the third characteristic configuration, on the moving body side, the light emitting shape of the light emitting body on the image pickup screen of the image pickup means,
Based on the information on the difference from the semicircular shape in the vertical posture, which is the specific shape, the spherical shape of the spherical light emitting portion is adjusted so that the light emitting shape of the light emitting body in the image pickup screen of the image pickup means becomes the semicircular shape in the vertical posture. The hemispherical cover that covers the lateral half of the outer peripheral surface is rotated, and the amount of rotation is detected as the amount of rotation from the reference adjustment state (in this case, the reference rotation position). Then, on the ground side, the azimuth of the mobile body is detected based on the rotation amount information and the imaging angle information from the reference adjustment state transmitted from the mobile body side.

【0011】[0011]

【発明の効果】本発明の第1の特徴構成によれば、例え
ば移動体の誘導制御等のために移動体側に設置されてい
る発光体の発光形状が見る方向によって変化するよう
に、例えばその発光部の表面を特定形状の光透過部を形
成した遮蔽膜で覆う等の簡単な構成を追加するだけで、
地上側に設けた撮像手段の撮像情報から移動体の方位が
検出できるので、従来のように、例えば移動体側に方位
センサ等の特別の検出手段を設ける必要もなく、装置構
成の複雑化を極力回避しながら移動体の方位検出が可能
になった。
According to the first characteristic configuration of the present invention, for example, the light-emitting shape of the light-emitting body installed on the side of the moving body for guiding control of the moving body is changed depending on the viewing direction. By simply adding a simple configuration such as covering the surface of the light emitting part with a shielding film formed with a light transmitting part of a specific shape,
Since the azimuth of the moving body can be detected from the image pickup information of the image pickup means provided on the ground side, it is not necessary to provide a special detecting means such as an azimuth sensor on the moving body side as in the conventional case, and the complexity of the device configuration is minimized. It became possible to detect the direction of a moving body while avoiding it.

【0012】又、第2の特徴構成によれば、例えば移動
体の誘導制御等のために移動体側に設置されている発光
体の発光形状が見る方向によって特定形状から変化する
とともに、その変化する発光形状を特定形状に維持する
ように調節し、その調節量情報と地上側に設けた撮像手
段の撮像情報とにより移動体の方位が検出できるので、
従来のように、例えば移動体側に方位センサ等の特別の
検出手段を設ける必要もなく、装置構成の複雑化を極力
回避しながら、同時により高い精度で移動体の方位検出
が可能になった。
Further, according to the second characteristic configuration, for example, the light emitting shape of the light emitting body installed on the side of the moving body for guiding control of the moving body and the like changes from the specific shape depending on the viewing direction, and also changes. Since the light emitting shape is adjusted so as to be maintained in a specific shape, and the orientation of the moving body can be detected by the adjustment amount information and the image pickup information of the image pickup means provided on the ground side,
Unlike the conventional case, it is not necessary to provide a special detecting means such as an azimuth sensor on the moving body side, and it is possible to simultaneously detect the azimuth of the moving body with higher accuracy while avoiding complication of the apparatus configuration as much as possible.

【0013】又、第3の特徴構成によれば、上記見る方
向によって特定形状から変化する発光体の発光形状を特
定形状に維持することが、発光体の発光部を覆うカバー
及びそれを移動させる電動モータ等の回転手段にて実現
され、もって、上記第2の特徴構成の好適な手段が得ら
れる。
Further, according to the third characteristic configuration, maintaining the light emitting shape of the light emitting body which changes from the specific shape depending on the viewing direction causes the cover for covering the light emitting portion of the light emitting body and the cover to move. It is realized by rotating means such as an electric motor, and therefore, the preferable means of the second characteristic configuration can be obtained.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1及び図2に示すように、移動体としての自動
走行式の作業車Aに、円形の電球20a等からなる発光
体20が設置される一方、この発光体20を撮像する撮
像手段としてのイメージセンサSが、2個間隔Lsを離
した状態で、地上側に固定設置された2台の自動追尾装
置B夫々に設けられている。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 and 2, a light emitting body 20 including a circular light bulb 20a and the like is installed in an automatic traveling work vehicle A as a moving body, and on the other hand, as an image capturing means for capturing an image of the light emitting body 20. The two image sensors S are provided in each of the two automatic tracking devices B fixedly installed on the ground side in a state in which the two image sensors S are separated by the distance Ls.

【0015】前記発光体20は、球形の発光部としての
電球20aと、その電球20aの球形の外周面の横方向
の半分を覆う半球状のカバー20bとから構成されて、
作業車A上の支柱19の先端部に設置されている。尚、
電球20aは、図示しない電源によって連続点灯されて
いる。そして、その半球状のカバー20aはその下端部
箇所にて縦軸芯周りに回転自在に枢支されるとともに、
その下部外周面に形成した環状のラックギアrが、前記
支柱19に保持されたカバー回転用モータ23にて回転
されるピニオンギアpに係合しており、このモータ23
を作動させることによって、半球状のカバー20bを電
球20aの球形の外周面の横方向の半分を覆う状態で縦
軸芯周りに回転させることができる。尚、前記カバー回
転用モータ23には、その回転量を検出するエンコーダ
23aが設けられている。
The light emitting body 20 is composed of a light bulb 20a as a spherical light emitting portion and a hemispherical cover 20b which covers a lateral half of the spherical outer peripheral surface of the light bulb 20a.
It is installed at the tip of the column 19 on the work vehicle A. still,
The light bulb 20a is continuously lit by a power source (not shown). The hemispherical cover 20a is rotatably supported around the longitudinal axis at the lower end portion thereof,
An annular rack gear r formed on the outer peripheral surface of the lower portion is engaged with a pinion gear p rotated by a cover rotating motor 23 held by the support column 19.
Is operated, it is possible to rotate the hemispherical cover 20b around the longitudinal axis in a state of covering half of the spherical outer peripheral surface of the light bulb 20a in the lateral direction. The cover rotation motor 23 is provided with an encoder 23a for detecting the amount of rotation thereof.

【0016】以上において、カバー回転用モータ23を
作動させて半球状のカバー20bが電球20aの外周面
を覆う位置を移動させることにより、前記発光体20
は、作業車Aを特定方向(例えば正面方向)から見たと
きにその発光形状が特定形状(例えば、図6(a)に示
すように、右半分が隠れた縦姿勢の半円形状)になり、
且つ、見る方向が前記特定方向(例えば正面方向)から
変化するに伴って前記発光形状が変化するように構成さ
れる。尚、上記作業車Aを特定方向(例えば正面方向)
から見たときにその発光形状が特定形状(例えば、縦姿
勢の半円形状)になるようにカバー回転用モータ23が
作動された状態は、後述の発光形状調節手段103によ
る基準調節状態(即ち、基準回転位置)に対応する。
In the above, the cover rotation motor 23 is operated to move the position where the hemispherical cover 20b covers the outer peripheral surface of the light bulb 20a, whereby the luminous body 20 is
When the work vehicle A is viewed from a specific direction (for example, the front direction), its light-emitting shape has a specific shape (for example, a vertical half-circle shape in which the right half is hidden as shown in FIG. 6A). Becomes
Further, the light emitting shape is configured to change as the viewing direction changes from the specific direction (for example, the front direction). In addition, the work vehicle A is directed in a specific direction (for example, in the front direction).
When the cover rotation motor 23 is operated so that the light emission shape becomes a specific shape (for example, a vertical semicircle shape) when viewed from above, a reference adjustment state by the light emission shape adjustment means 103 described later (that is, , Reference rotation position).

【0017】前記自動追尾装置Bには、前記イメージセ
ンサSが台9上に固定設置されるとともに、この台9を
縦軸芯θ周りに旋回させる旋回用モータ11と、台9を
横軸芯φ周りに首振り動作させる首振り用モータ12と
が設けられている。従って、この旋回用モータ11及び
首振り用モータ12によって、前記イメージセンサSの
撮像角度を調節する撮像角度調節手段11,12が構成
される。又、上記旋回用モータ11及び首振り用モータ
12には、夫々エンコーダ11a,12aが内蔵され
(図4参照)、このエンコーダ11a,12aの情報に
基づいてイメージセンサSの光軸の角度、具体的には、
図2に示すように、2個のイメージセンサSを結ぶ直線
に対する角度θsが検出される。
In the automatic tracking device B, the image sensor S is fixedly installed on a table 9, and a turning motor 11 for turning the table 9 around a vertical axis θ and a horizontal axis of the table 9 are provided. A swinging motor 12 that swings around φ is provided. Therefore, the turning motor 11 and the swinging motor 12 constitute imaging angle adjusting means 11 and 12 for adjusting the imaging angle of the image sensor S. Further, the turning motor 11 and the swinging motor 12 respectively have encoders 11a and 12a built therein (see FIG. 4). Based on the information of the encoders 11a and 12a, the angle of the optical axis of the image sensor S, specifically, Specifically,
As shown in FIG. 2, the angle θs with respect to the straight line connecting the two image sensors S is detected.

【0018】前記イメージセンサSは、光学系を構成す
る電動ズームレンズ14、及び、撮像部である電子シャ
ッター搭載の白黒式のCCDセンサ15からなる。図3
に示すように、電動ズームレンズ14には、フォーカス
駆動モータ33と、フォーカス位置検出センサである第
1ポテンショメータ34と、ズーム駆動モータ35と、
ズーム位置検出センサである第2ポテンショメータ36
とが設けられている。そして、電動ズームレンズ14及
びこの後方側に設けられた光学フィルター24を通過し
た発光体20からの光が、CCDセンサ15に設けられ
た撮像素子であるCCD素子27上に結像するように構
成されている。尚、上記光学フィルター24は、電球2
0aの発光波長に対して透過率が大きくなるようにして
ある。
The image sensor S comprises an electric zoom lens 14 constituting an optical system, and a monochrome CCD sensor 15 having an electronic shutter as an image pickup section. Figure 3
As shown in FIG. 3, the electric zoom lens 14 includes a focus drive motor 33, a first potentiometer 34 which is a focus position detection sensor, a zoom drive motor 35,
Second potentiometer 36 which is a zoom position detection sensor
And are provided. Then, the light from the light emitting body 20 that has passed through the electric zoom lens 14 and the optical filter 24 provided on the rear side of the electric zoom lens 14 forms an image on the CCD element 27 which is an image pickup element provided in the CCD sensor 15. Has been done. The optical filter 24 is used for the light bulb 2.
The transmittance is increased with respect to the emission wavelength of 0a.

【0019】次に、図4に基づいて、前記自動追尾装置
B夫々の制御構成について説明すれば、撮像角度コント
ローラ49、イメージセンサコントローラ50、及び、
これらのコントローラ49,50を制御するメインコン
トローラCが設けられている。撮像角度コントローラ4
9には、前記エンコーダ11a,12aからの前記イメ
ージセンサSの光軸の角度情報が入力されるとともに、
前記旋回用モータ11及び首振り用モータ12に対する
駆動信号が出力されている。イメージセンサコントロー
ラ50には、前記CCDセンサ15の撮像情報、前記第
1ポテンショメータ34及び第2ポテンショメータ36
の検出情報が入力されるとともに、前記CCDセンサ1
5、前記フォーカス駆動モータ33及び前記ズーム駆動
モータ35に対する駆動信号が出力されている。
Next, the control configuration of each of the automatic tracking devices B will be described with reference to FIG. 4, and the imaging angle controller 49, the image sensor controller 50, and
A main controller C that controls these controllers 49 and 50 is provided. Imaging angle controller 4
9, the angle information of the optical axis of the image sensor S is input from the encoders 11a and 12a, and
Drive signals for the turning motor 11 and the swinging motor 12 are output. The image sensor controller 50 includes imaging information of the CCD sensor 15, the first potentiometer 34 and the second potentiometer 36.
Detection information is input and the CCD sensor 1
5, drive signals for the focus drive motor 33 and the zoom drive motor 35 are output.

【0020】前記2台の自動追尾装置Bのイメージセン
サコントローラ50を利用して、前記2個のイメージセ
ンサS夫々の撮像情報に基づいて、前記発光体20の前
記2個のイメージセンサS夫々の撮像画面内での位置を
検出する画像処理手段Tが構成されている。即ち、図6
に示すように、イメージセンサSの撮像画面29の中心
点Oを原点として画面横方向をx’軸(右方向をプラ
ス)、画面縦方向をy’軸(上向きをプラス)に設定し
た状態で発光体20の発光形状に対応する領域を抽出
し、その抽出領域から判別した球形の電球20aの中心
を上記領域の代表点Gとして求める。尚、図では球形の
電球20aのちょうど右半分が前記カバー20bにて隠
れた状態である。そして、この代表点Gと画面中心点O
との偏差X,Yを検出して、この偏差X,Yを発光体2
0の撮像画面内での位置情報とする。尚、上記偏差X,
Yによって、イメージセンサSの光軸即ち撮像方向(画
面中心点Oの示す方向)に対する発光体20の位置する
角度αが求められ(図2参照)、この例では、y’軸方
向の偏差Yは殆ど0で、x’軸方向の偏差Xのみであ
り、上記角度αは水平面内での角度を示す。
Using the image sensor controller 50 of the two automatic tracking devices B, based on the image pickup information of each of the two image sensors S, each of the two image sensors S of the light emitter 20 is detected. Image processing means T for detecting the position within the image pickup screen is configured. That is, FIG.
As shown in, with the center point O of the image pickup screen 29 of the image sensor S as the origin, the screen horizontal direction is set to the x'axis (right direction is plus) and the screen vertical direction is set to y'axis (upward is plus). A region corresponding to the light emission shape of the light emitting body 20 is extracted, and the center of the spherical light bulb 20a discriminated from the extracted region is obtained as the representative point G of the region. In the drawing, the right half of the spherical light bulb 20a is hidden by the cover 20b. Then, the representative point G and the screen center point O
Deviations X and Y are detected, and the deviations X and Y are detected by the light emitter 2.
Position information within the image pickup screen of 0 is set. The deviation X,
The angle α at which the light emitting body 20 is located with respect to the optical axis of the image sensor S, that is, the imaging direction (direction indicated by the screen center point O) is obtained from Y (see FIG. 2). In this example, the deviation Y in the y ′ axis direction is obtained. Is almost 0, and there is only the deviation X in the x′-axis direction, and the angle α represents the angle in the horizontal plane.

【0021】以上より、前記エンコーダ11a,12a
及び上記画像処理手段Tによって、前記イメージセンサ
Sの撮像角度(即ち発光体20に対する撮像方向)を検
出する撮像角度検出手段11a,12a,Tが構成され
る。以下、この撮像角度検出手段11a,12a,Tに
よって、前記2個のイメージセンサSの撮像角度即ち夫
々のイメージセンサSに対する前記発光体20の角度を
検出する具体構成について説明する。図2に示すよう
に、前記画像処理手段Tによって求めた夫々のイメージ
センサSの光軸に対する発光体20の角度α、及び、エ
ンコーダ11a,12aによって検出された夫々のイメ
ージセンサSの光軸の角度θsから発光体20の角度を
求める。即ち、図2の左側のイメージセンサSに対する
発光体20の角度がθa=θs−αとして、右側のイメ
ージセンサSに対する発光体20の角度がθb=θs+
αとして算出される。尚、上記発光体20の角度θa,
θbの情報は、2台の自動追尾装置B夫々に設けた撮像
手段側通信手段としての送受信機13から、発光体側通
信手段として作業車A側に設けた送受信機16に向けて
送信される。
From the above, the encoders 11a and 12a are
Also, the image processing means T constitutes imaging angle detection means 11a, 12a, T for detecting the imaging angle of the image sensor S (that is, the imaging direction with respect to the light emitter 20). Hereinafter, a specific configuration will be described in which the imaging angle detection means 11a, 12a, T detect the imaging angles of the two image sensors S, that is, the angles of the light emitter 20 with respect to the respective image sensors S. As shown in FIG. 2, the angle α of the light emitting body 20 with respect to the optical axis of each image sensor S obtained by the image processing means T and the optical axis of each image sensor S detected by the encoders 11a and 12a. The angle of the light emitter 20 is obtained from the angle θs. That is, the angle of the light emitter 20 with respect to the left image sensor S in FIG. 2 is θa = θs−α, and the angle of the light emitter 20 with respect to the right image sensor S is θb = θs +.
Calculated as α. The angle θa of the light emitting body 20 is
The information of θb is transmitted from the transmitter / receiver 13 as the image pickup means side communication means provided in each of the two automatic tracking devices B to the transmitter / receiver 16 provided as the light emitter side communication means on the work vehicle A side.

【0022】又、前記メインコントローラCは、前記イ
メージセンサSの撮像画面内での発光体20の大きさ即
ち電球20aに対応する円形領域の直径ΔG(図6参
照)を設定値に維持するように、イメージセンサSの撮
像倍率を変更するように構成されている。即ち、電球2
0aの画面内での直径ΔGが設定値より小さくなると撮
像倍率を上げる一方、設定値より大きくなると撮像倍率
を下げるように電動ズーム14のレンズ位置を移動させ
ることにより、撮像画面内での発光体20の大きさを適
正な大きさに維持するようにしている。尚、前記発光体
20の撮像画面内での移動方向が遠近方向であるとき、
つまり、撮像画面内での電球20aの位置(代表点G)
はあまり変わらずに直径ΔGだけが変化する場合には、
撮像画面内で発光体20が横方向に移動しながら直径Δ
Gが変化する場合に比べて、撮像画面内での発光体20
の大きさの変化率が大きいと予測されるので、この場合
は、上記電動ズーム14のレンズ位置をより高速に制御
して、追尾制御の遅れを極力小さくするようにしてい
る。
Further, the main controller C keeps the size of the light emitting body 20 in the image pickup screen of the image sensor S, that is, the diameter ΔG (see FIG. 6) of the circular area corresponding to the light bulb 20a at a set value. In addition, the image pickup magnification of the image sensor S is changed. That is, light bulb 2
By moving the lens position of the electric zoom 14 so that the imaging magnification is increased when the diameter ΔG in the screen of 0a is smaller than the set value, and the imaging magnification is decreased when the diameter ΔG is larger than the set value, the light emitting body in the imaging screen is reduced. The size of 20 is maintained at an appropriate size. When the moving direction of the light emitting body 20 within the image pickup screen is the perspective direction,
In other words, the position of the light bulb 20a in the imaging screen (representative point G)
If only the diameter ΔG changes without changing so much,
The light emitting body 20 moves laterally within the imaging screen, and the diameter Δ
Compared to the case where G changes, the light emitting body 20 in the imaging screen
In this case, the lens position of the electric zoom 14 is controlled at a higher speed to minimize the delay of the tracking control.

【0023】又、前記メインコントローラCを利用し
て、前記イメージセンサSの撮像画面内の所定位置、具
体的には前記撮像画面29の中心点Oに前記発光体20
(電球20aの代表点G)を捉えるように、前記旋回用
モータ11及び首振り用モータ12を作動させる追尾制
御手段100が構成されている。
Further, by using the main controller C, the light emitter 20 is located at a predetermined position in the image pickup screen of the image sensor S, specifically, at the center point O of the image pickup screen 29.
The tracking control means 100 for operating the turning motor 11 and the swinging motor 12 is configured so as to capture (the representative point G of the light bulb 20a).

【0024】前記追尾制御手段100について説明すれ
ば、前記画像処理手段Tによる前記角度αの検出には所
定の処理時間を要するので、前記発光体20の角度情報
θa,θbは、一方のイメージセンサSに対して図7に
例示するように、間隔を置いた不連続な検出点で与えら
れる。図では、発光体20が、現在の角度検出時点t0
より2つ前の角度検出時点t2で縦軸芯θ周りの角度θ
2に位置し、現在の角度検出時点t0より1つ前の角度
検出時点t1で縦軸芯θ周りの角度θ1に位置し、現在
の角度検出時点t0で縦軸芯θ周りの角度θ0に位置す
るように軌跡R上を移動しているとする。尚、上記縦軸
芯θ周りの角度は、上から見て右回り(時計回り)をプ
ラスの方向とし、又、発光体20の横軸芯φ周りの角度
位置は変化しないものとする。上記より、現在の角度検
出時点t0より1つ前の角度検出時点t1から現在の角
度検出時点t0までの発光体20の縦軸芯θ周りの角度
位置の変化率θvは次式で与えられる。
Explaining the tracking control means 100, since it takes a predetermined processing time to detect the angle α by the image processing means T, the angle information θa and θb of the light emitter 20 is obtained from one of the image sensors. As shown in FIG. 7 for S, it is given by discrete detection points at intervals. In the figure, the light emitter 20 has the current angle detection time t0.
The angle θ about the vertical axis θ at the angle detection time point t2 two times before
2 is positioned at an angle θ1 around the vertical axis θ at the angle detection time t1 one before the current angle detection time t0, and at an angle θ0 around the vertical axis θ at the current angle detection time t0. It is assumed that the user is moving on the locus R so that It should be noted that the angle about the vertical axis θ is positive in the clockwise direction (clockwise direction) when viewed from above, and the angular position around the horizontal axis φ of the light emitter 20 does not change. From the above, the rate of change θv of the angular position around the vertical axis θ of the light emitting body 20 from the angle detection time t1 immediately before the current angle detection time t0 to the current angle detection time t0 is given by the following equation.

【0025】[0025]

【数1】θv=(θ0−θ1)/(t0−t1)## EQU1 ## θv = (θ0-θ1) / (t0-t1)

【0026】そこで、現在の角度検出時点t0の次の角
度検出時点で発光体20を画面の中心点Oに捉えるよう
にするために、前記画像処理手段Tによって検出した角
度αに対する修正量、及び、上記の縦軸芯θ周りの角度
位置の変化率θvを考慮して縦軸芯θ周りの旋回量Δθ
を次式のように定め、この旋回量Δθで旋回用モータ1
1を作動させるのである。尚、a1,a2は所定のゲイ
ン係数である(a1>0、a2>0)。
Therefore, in order to capture the light emitting body 20 at the center point O of the screen at the angle detection time point next to the current angle detection time point t0, the correction amount for the angle α detected by the image processing means T, and , The turning amount Δθ around the vertical axis θ in consideration of the rate of change θv of the angular position around the vertical axis θ.
Is determined by the following equation, and the turning motor 1 is controlled by the turning amount Δθ.
1 is activated. Note that a1 and a2 are predetermined gain coefficients (a1> 0, a2> 0).

【0027】[0027]

【数2】Δθ=a1・X+a2・θv[Formula 2] Δθ = a1 · X + a2 · θv

【0028】又、前記2台の自動追尾装置Bのうちの右
側自動追尾装置Bの前記メインコントローラCは、前記
イメージセンサSの撮像画面における発光体20の発光
形状と前記特定形状(例えば縦姿勢の半円形状)との差
の情報を、前記送受信機13から発光体20側即ち作業
車A側の送受信機16に向けて送信するように構成され
ている。上記差の情報は、図6に示すように、前記特定
形状から発光形状が変化したときの発光形状の縦横比h
/vの値として求められる。そして、この縦横比h/v
の値は前記縦姿勢の半円形状では0.5であり、この
0.5の値から大側又は小側に外れるほど上記縦姿勢の
半円形状との差が大きくなり、具体的には、三日月状等
の形状になる。
Further, the main controller C of the right side automatic tracking device B of the two automatic tracking devices B has the light emitting shape of the light emitting body 20 on the image pickup screen of the image sensor S and the specific shape (for example, the vertical posture). The information on the difference with the semi-circular shape) is transmitted from the transmitter / receiver 13 to the transmitter / receiver 16 on the light emitter 20 side, that is, the work vehicle A side. As shown in FIG. 6, the information on the difference is the aspect ratio h of the light emitting shape when the light emitting shape is changed from the specific shape.
It is calculated as the value of / v. And this aspect ratio h / v
The value of is 0.5 for the semicircular shape in the vertical posture, and the greater the deviation from the value of 0.5 toward the large side or the smaller side, the greater the difference from the semicircular shape in the vertical posture. , Crescent shape, etc.

【0029】次に、図5に基づいて、前記作業車A側の
制御構成について説明すれば、マイクロコンピュータ利
用の作業車コントローラHが設けられ、この作業車コン
トローラHに、地上側の送受信機13から送信された発
光体20の角度情報θa,θb、及び、前記イメージセ
ンサSの撮像画面における発光体20の発光形状と前記
特定形状(縦姿勢の半円形状)との差の情報を受信した
送受信機16の受信情報が入力され、作業車コントロー
ラHからは、変速装置18を変速操作するための走行用
モータ17、及びステアリング装置22をステアリング
操作するためのステアリング用モータ21に対する駆動
信号が出力されている。又、前記作業車コントローラH
から前記カバー回転用モータ23に対する駆動信号が出
力される一方で、前記エンコーダ23aからの検出情報
が入力されている。
Next, referring to FIG. 5, the control configuration of the work vehicle A side will be described. A work vehicle controller H using a microcomputer is provided, and the work vehicle controller H is provided with a transceiver 13 on the ground side. The angle information θa and θb of the light emitting body 20 transmitted from the device, and the information on the difference between the light emitting shape of the light emitting body 20 on the imaging screen of the image sensor S and the specific shape (vertical posture semicircular shape) are received. The reception information of the transceiver 16 is input, and a drive signal is output from the work vehicle controller H to the traveling motor 17 for shifting the transmission 18 and the steering motor 21 for steering the steering device 22. Has been done. Also, the work vehicle controller H
While the drive signal for the cover rotation motor 23 is output from the encoder 23a, the detection information from the encoder 23a is input.

【0030】そして、前記作業車コントローラHを利用
して、前記送受信機16の受信情報に基づいて前記イメ
ージセンサSの撮像画面における前記発光体20の発光
形状が前記特定形状になるように、前記特定方向を変更
調節する発光形状調節手段103が構成され、具体的に
は、この発光形状調節手段103は、前述のように、前
記特定形状を縦姿勢の半円形状とする状態で前記カバー
20bを縦軸芯周りに回転させる回転手段としての前記
カバー回転用モータ23にて構成されている。そして、
前記エンコーダ23aが、上記発光形状調節手段103
の基準調節状態からの調節量、即ち作業車Aを特定方向
(例えば正面方向)から見たときにその発光形状が前記
特定形状になる調節状態からの調節量を検出する発光形
状調節量検出手段として機能し、そのエンコーダ23a
にて検出された上記調節量情報は、前記送受信機16か
ら右側の自動追尾装置Bの送受信機13に送信される。
図2で示す作業車Aの例では、前記カバー20bは特定
方向(例えば正面方向)から角度φだけ回転しており、
この角度φが上記基準調節状態からの調節量について相
当する。
Then, using the work vehicle controller H, the light emitting shape of the light emitting body 20 on the image pickup screen of the image sensor S is set to the specific shape based on the information received by the transceiver 16. The light emitting shape adjusting means 103 for changing and adjusting the specific direction is configured. Specifically, as described above, the light emitting shape adjusting means 103 has the cover 20b in a state in which the specific shape is a vertical semicircular shape. Is constituted by the cover rotating motor 23 as a rotating means for rotating the shaft around the vertical axis. And
The encoder 23a has the light emitting shape adjusting means 103.
Light emitting shape adjustment amount detecting means for detecting the adjustment amount from the reference adjustment state, that is, the adjustment amount from the adjustment state in which the light emitting shape of the work vehicle A becomes the specific shape when viewed from a specific direction (for example, the front direction). Functioning as its encoder 23a
The adjustment amount information detected in step 1 is transmitted from the transceiver 16 to the transceiver 13 of the automatic tracking device B on the right side.
In the example of the work vehicle A shown in FIG. 2, the cover 20b is rotated by an angle φ from a specific direction (for example, the front direction),
This angle φ corresponds to the adjustment amount from the reference adjustment state.

【0031】そして、前記右側の自動追尾装置Bのメイ
ンコントローラCを利用して、前記撮像角度検出手段1
1a,12a,Tによる撮像角度情報及び前記送受信機
13にて受信した前記調節量情報に基づいて前記作業車
Aの方位を検出する方位検出手段102が構成されてい
る。この方位検出について具体的に説明すれば、図2に
示すように、紙面の上下方向が基準方位J’に沿う基準
方向として設定され、発光体20の角度θbに上記基準
調節状態からの調節量に相当する角度φを加算した角度
が、作業車Aの方位Jとして検出される。図2の実線で
示す作業車Aの例では、作業車Aの方位Jは上記基準方
位J’と同じ方向になり、点線で示す作業車Aの例で
は、作業車Aの方位Jは上記基準方位J’よりも少し傾
いた方向になっている。そして、上記検出された作業車
Aの方位情報は、前記送受信機13から作業車A側の送
受信機16に向けて送信される。
Then, using the main controller C of the automatic tracking device B on the right side, the imaging angle detecting means 1
Azimuth detecting means 102 for detecting the azimuth of the work vehicle A based on the imaging angle information of 1a, 12a, and T and the adjustment amount information received by the transceiver 13 is configured. The direction detection will be described in detail. As shown in FIG. 2, the vertical direction of the paper surface is set as the reference direction along the reference direction J ′, and the angle θb of the light emitter 20 is adjusted by the adjustment amount from the reference adjustment state. The angle obtained by adding the angle φ corresponding to is detected as the direction J of the work vehicle A. In the example of the work vehicle A shown by the solid line in FIG. 2, the direction J of the work vehicle A is the same direction as the reference direction J ′, and in the example of the work vehicle A shown by the dotted line, the direction J of the work vehicle A is the above reference direction. The direction is slightly tilted from the direction J '. Then, the detected direction information of the work vehicle A is transmitted from the transceiver 13 to the transceiver 16 on the side of the work vehicle A.

【0032】又、前記作業車コントローラHは、前記2
個のイメージセンサSの間隔情報(図2のLs)及び前
記発光体20の角度情報θa,θbに基づいて、前記発
光体20の位置を測定するように構成されている。具体
的には、図2に示すように、左側のイメージセンサSの
旋回中心(縦軸芯θ)を原点としてxy座標軸を設定
し、前記発光体20の現在位置(x,y)を下式の計算
式によって求める。
Further, the work vehicle controller H includes the
The position of the light emitter 20 is measured based on the distance information (Ls in FIG. 2) of the individual image sensors S and the angle information θa, θb of the light emitter 20. Specifically, as shown in FIG. 2, the xy coordinate axes are set with the turning center (vertical axis θ) of the left image sensor S as the origin, and the current position (x, y) of the light emitter 20 is expressed by the following equation. Calculated by the formula.

【0033】[0033]

【数3】x・tan(θa)=(Ls−x)・tan
(θb) y・tan(π/2−θa)+y・tan(π/2−θ
b)=Ls であり、上記両式より、 x=(tan(θa)・Ls)/(tan(θa)+t
an(θb)) y=Ls/(cot(θa)+cot(θb))
(3) x · tan (θa) = (Ls−x) · tan
(Θb) y · tan (π / 2−θa) + y · tan (π / 2−θ
b) = Ls, and from the above equations, x = (tan (θa) · Ls) / (tan (θa) + t
an (θb)) y = Ls / (cot (θa) + cot (θb))

【0034】そして、前記作業車コントローラHは、上
記得られた作業車Aの現在位置(x,y)から求まる目
標経路に対する位置ずれ、及び、前記地上側から送信さ
れた作業車Aの方位Jの情報に基づいて、作業車Aが目
標経路に沿って走行するように、前記走行用モータ17
による変速操作、及びステアリング用モータ21による
ステアリング操作を行う。
Then, the work vehicle controller H shifts the position of the work vehicle A with respect to the target route obtained from the current position (x, y) of the work vehicle A, and the direction J of the work vehicle A transmitted from the ground side. Based on the information of the traveling motor 17 so that the work vehicle A travels along the target route.
And the steering motor 21 for steering.

【0035】次に、図8に示すフローチャートに基づい
て自動追尾装置B側及び作業車A側の各コントローラの
制御作動について説明する。先ず、両自動追尾装置B側
で、各イメージセンサS内での発光体20の角度αの算
出及び各イメージセンサSの光軸角度θsの検出に基づ
いて発光体20の角度θa,θbが求められ、この角度
θa,θb情報が作業車A側に送信される。尚、この
後、左側の自動追尾装置B側では、イメージセンサSを
旋回量Δθで旋回操作する追尾操作がなされる。一方、
作業車A側では、上記受信した発光体20の角度θa,
θb情報から現在位置(x,y)を算出する。
Next, the control operation of each controller on the automatic tracking device B side and the work vehicle A side will be described based on the flow chart shown in FIG. First, on both automatic tracking devices B side, the angles θa and θb of the light emitter 20 are obtained based on the calculation of the angle α of the light emitter 20 in each image sensor S and the detection of the optical axis angle θs of each image sensor S. Then, the information on the angles θa and θb is transmitted to the work vehicle A side. After that, on the left side automatic tracking device B side, a tracking operation is performed in which the image sensor S is turned by the turning amount Δθ. on the other hand,
On the side of the work vehicle A, the received angle θa of the light-emitting body 20,
The current position (x, y) is calculated from the θb information.

【0036】次に、右側の自動追尾装置B側で、イメー
ジセンサS内での発光体20の発光形状について縦横比
h/vが算出され、その縦横比h/v情報が作業車A側
に送信される。作業車A側では、上記受信した縦横比h
/v情報に基づいて、発光形状が特定形状(縦姿勢の半
円形状)になるように前記カバー20bを回転させる調
節作動を行うとともに、その調節量情報を右側の自動追
尾装置B側に送信する。一方、右側の自動追尾装置B側
では、上記縦横比h/vが0.5であれば発光体20の
角度θb及び上記受信した調節量情報から作業車Aの方
位Jを算出し、その方位情報を作業車A側に送信する。
尚、上記縦横比h/vが0.5でなければ上記方位の算
出は行わない。尚、この後、右側の自動追尾装置B側で
も、イメージセンサSを旋回量Δθで旋回操作する追尾
操作がなされる。そして、作業車A側では、上記受信し
た方位情報及び前記算出した現在位置(x,y)に基づ
いて、変速及びステアリング操作を行う。
Next, on the right side automatic tracking device B side, the aspect ratio h / v is calculated for the light emitting shape of the light emitting body 20 in the image sensor S, and the aspect ratio h / v information is sent to the work vehicle A side. Sent. On the side of work vehicle A, the aspect ratio h received above is received.
Based on the / v information, an adjustment operation is performed to rotate the cover 20b so that the emission shape becomes a specific shape (vertical semicircle shape), and the adjustment amount information is transmitted to the right side automatic tracking device B side. To do. On the other hand, on the right-hand side automatic tracking device B side, if the aspect ratio h / v is 0.5, the direction J of the work vehicle A is calculated from the angle θb of the light emitter 20 and the received adjustment amount information, and the direction is calculated. Information is transmitted to the work vehicle A side.
If the aspect ratio h / v is not 0.5, the azimuth is not calculated. After this, the tracking operation of turning the image sensor S by the turning amount Δθ is performed on the right side automatic tracking device B side. Then, on the side of the work vehicle A, gear shifting and steering operation are performed based on the received azimuth information and the calculated current position (x, y).

【0037】〔別実施例〕次に別実施例を列記する。 上記実施例では、発光体20の発光部を円形の電球
20aによって構成したが、電球以外に例えばLED発
光器等を用いるようにしてもよい。又、上記実施例で
は、発光体(例えば円形の電球20aを発光部とする)
を移動車の正面方向等の特定方向から見たときの発光形
状を、半球状のカバー20bによって縦姿勢の半円形状
である特定形状にする場合を例示したが、その特定形状
も縦姿勢の半円形状以外に三日月形状等種々変更でき
る。例えば、発光部を円柱状に形成するとともに、その
円柱状の発光部の外周面を覆う状態で移動可能なカバー
をその円柱状の発光部の外周面を覆う円筒を縦方向に半
分に切断したものによって構成して、特定形状を例え
ば、高さが円柱の高さと同じで横幅が円柱の横断面の直
径の半分である長方形にすることが可能である。
[Other Embodiments] Next, other embodiments will be listed. In the above embodiment, the light emitting portion of the light emitting body 20 is constituted by the circular light bulb 20a, but an LED light emitter or the like may be used instead of the light bulb. Further, in the above embodiment, the light emitting body (for example, the circular light bulb 20a is used as the light emitting portion).
The case where the light emitting shape when viewed from a specific direction such as the front direction of the moving vehicle is set to a specific shape which is a semicircular shape in a vertical posture by the hemispherical cover 20b is illustrated, but the specific shape is also in a vertical posture. In addition to the semicircular shape, various modifications such as crescent shape can be made. For example, the light emitting portion is formed in a cylindrical shape, and a movable cover that covers the outer peripheral surface of the cylindrical light emitting portion is cut in half in the vertical direction to cover the outer peripheral surface of the cylindrical light emitting portion. It is possible to construct a specific shape, for example, a rectangle whose height is the same as the height of the cylinder and whose width is half the diameter of the cross section of the cylinder.

【0038】 上記実施例では、撮像手段(イメージ
センサS)の撮像画面における発光体20(例えば発光
部が円形の電球20a)の発光形状が特定形状(例えば
縦姿勢の半円形状)になるように発光体の発光形状を調
節するとともに、その基準調節状態からの調節量情報と
撮像角度(実際は発光体20の角度)情報とから移動体
Aの方位を検出する方位検出手段102について示した
が、これ以外に、上記撮像画面における発光体20の発
光形状と、上記撮像角度に応じて移動体Aが基準方向に
向いている状態のときの形状として求められる基準発光
形状との差に基づいて、移動体Aの方位を検出する方位
検出手段101の構成が可能である。以下、この方位検
出手段101について図9及び図10に基づいて説明す
る。
In the above-described embodiment, the light-emitting shape of the light-emitting body 20 (for example, the light bulb 20a having a circular light-emitting portion) on the image pickup screen of the image pickup means (image sensor S) has a specific shape (for example, a semicircular shape in a vertical posture). The azimuth detecting means 102 for adjusting the light emitting shape of the light emitting body and detecting the azimuth of the moving body A from the adjustment amount information from the reference adjustment state and the imaging angle (actually, the angle of the light emitting body 20) information has been described above. In addition to this, based on the difference between the light emitting shape of the light emitting body 20 on the imaging screen and the reference light emitting shape obtained as the shape when the moving body A is oriented in the reference direction according to the imaging angle. The azimuth detecting means 101 for detecting the azimuth of the moving body A can be configured. The azimuth detecting means 101 will be described below with reference to FIGS. 9 and 10.

【0039】図9に示すように、この例の発光体20
は、例えば、球形の電球20aの球形の外周面上に、そ
の横方向の右半分を覆う半球状の光遮蔽膜20cが形成
されたもので構成され、移動体Aを正面方向から見たと
きに上記電球20aの発光形状が縦姿勢の半円形状にな
り、見る方向が正面方向から変化するに伴ってその発光
形状が変化するように構成される。又、紙面の上下方向
が基準方位J’に沿う基準方向として設定されている。
図の実線で示すように移動体Aが基準方向に向いている
状態A1〜A5のときの形状として、例えばA2につい
ては図10(a)に、A3については図10(b)に、
A4については図10(c)に夫々示す形状が基準発光
形状となる。ところが、A2について点線で示すように
移動体Aが基準方向に向いていない状態の発光形状は、
図10(a)に点線で示すように基準発光形状からずれ
る。そして、その形状のずれの向き及びそのずれ量から
移動体Aの上記基準方向に対する変化の向きとその角度
が判り、移動体Aの方位Jが前記基準方位J’を基準と
して検出できることになる。
As shown in FIG. 9, the luminous body 20 of this example is shown.
Is constituted by, for example, a hemispherical light shielding film 20c that covers the right half in the lateral direction on the spherical outer peripheral surface of the spherical light bulb 20a, and when the moving body A is viewed from the front direction. In addition, the light emitting shape of the light bulb 20a is a vertical semicircular shape, and the light emitting shape changes as the viewing direction changes from the front direction. Further, the vertical direction of the paper surface is set as the reference direction along the reference azimuth J '.
As shown by the solid line in the figure, the moving body A is oriented in the reference direction in the states A1 to A5. For example, A2 is shown in FIG. 10A, A3 is shown in FIG.
For A4, the shapes shown in FIG. 10C are the reference light emission shapes. However, the light emitting shape in a state where the moving body A is not oriented in the reference direction as indicated by the dotted line for A2 is as follows:
As shown by the dotted line in FIG. 10A, it deviates from the reference light emission shape. Then, the direction and the angle of the change of the moving body A with respect to the reference direction can be known from the direction of the deviation of the shape and the amount of the deviation, and the azimuth J of the moving body A can be detected with the reference azimuth J'as a reference.

【0040】尚、上記別実施例においても、前記方位検
出手段102のときと同様に、発光体20についても電
球以外に例えばLED発光器等を用いたり、又、発光体
20を特定方向から見たときの発光形状も、縦姿勢の半
円形状以外に三日月形状等に変更したり、あるいは、円
柱状の発光部の外周面に対してその横方向の半分を覆う
遮蔽膜を形成し、特定形状を高さが円柱の高さと同じで
横幅が円柱の横断面の直径の半分である長方形にするよ
うにしてもよい。
Also in the above-mentioned other embodiment, as in the case of the azimuth detecting means 102, an LED light emitter or the like may be used for the light emitting body 20 other than the light bulb, or the light emitting body 20 is viewed from a specific direction. The shape of the light emitted when the light is emitted is changed to a crescent shape other than the vertical semicircular shape, or a shielding film that covers half of the horizontal direction of the outer peripheral surface of the cylindrical light emitting part is formed to identify it. The shape may be a rectangle whose height is the same as the height of the cylinder and whose width is half the diameter of the cross section of the cylinder.

【0041】 上記実施例では、撮像手段Sとして、
白黒式のCCDセンサを用いるイメージセンサの場合を
例示したが、CCDセンサ以外に、例えば、PSDセン
サ等を用いてもよく、又、白黒式ではなく、カラー式の
センサを用いるようにしてもよい。
In the above embodiment, as the image pickup means S,
Although the case of the image sensor using the monochrome CCD sensor has been illustrated, for example, a PSD sensor or the like may be used in addition to the CCD sensor, and a color sensor may be used instead of the monochrome sensor. .

【0042】 上記実施例では、撮像手段Sの角度調
節手段を電動モータ11,12によって構成したものを
例示したが、モータ以外に、他のアクチュエータを用い
ることができる。又、上記実施例では、撮像手段Sの撮
像角度検出手段を、モータ11,12に内蔵したエンコ
ーダ11a,12aと画像処理手段Tとによって構成し
たが、自動追尾の精度が高くて撮像画面の中心点Oに発
光体20を捉えることができる場合には、上記エンコー
ダ11a,12aの情報のみにて撮像角度が検出でき
る。尚、上記エンコーダ11a,12aに代えて、例え
ば、モータ11,12とは別体のポテンショメータ等の
角度検出手段を用いることも可能である。
In the above embodiment, the angle adjusting means of the image pickup means S is constituted by the electric motors 11 and 12, but other actuators can be used in addition to the motors. Further, in the above embodiment, the image pickup angle detection means of the image pickup means S is constituted by the encoders 11a and 12a built in the motors 11 and 12 and the image processing means T, but the accuracy of automatic tracking is high and the center of the image pickup screen is high. When the light emitting body 20 can be caught at the point O, the imaging angle can be detected only by the information of the encoders 11a and 12a. Instead of the encoders 11a and 12a, it is possible to use an angle detecting means such as a potentiometer which is separate from the motors 11 and 12, for example.

【0043】 上記実施例では、追尾制御手段100
が、発光体20を撮像画面の中心点Oに捉えるように制
御する場合を例示したが、これ以外に、画面の中心点O
を含む所定範囲、例えば図6の近傍領域K内に捉えるよ
うにすることもできる。又、追尾制御手段100が、追
尾のための情報として発光体20の撮像画面内での位置
(中心点Oからの偏差X,Y)及び発光体20の移動速
度の両情報を使用した場合を示したが、発光体20の撮
像画面内での位置情報にのみ基づくようにして制御の簡
略化を図ることもできる。
In the above embodiment, the tracking control means 100
Exemplifies a case in which the light emitting body 20 is controlled so as to be captured at the center point O of the image pickup screen.
It is also possible to capture within a predetermined range including, for example, the vicinity area K in FIG. Further, in the case where the tracking control means 100 uses both the information on the position (deviation X, Y from the center point O) of the light emitter 20 in the imaging screen and the moving speed of the light emitter 20 as information for tracking. Although shown, the control can be simplified by being based only on the position information of the light emitting body 20 within the imaging screen.

【0044】 上記実施例では、撮像手段Sを所定間
隔Lsを離して2個設けて各撮像手段Sから見た発光体
20の角度を求め、三角測量の原理で発光体20の位置
を検出するものを示したが、これ以外に、例えば撮像手
段Sを1個にするとともに発光体20側に反射板を設
け、撮像手段Sの撮像方向を発光体20に向けた状態で
上記反射板に対してレーザ測長器等の距離検出手段の検
出方向を設定した状態で発光体20までの距離を検出
し、この距離情報と撮像手段の撮像方向とから発光体2
0の位置を検出するようにすることも可能である。
In the above embodiment, two image pickup means S are provided at a predetermined interval Ls, the angle of the light emitter 20 viewed from each image pickup means S is obtained, and the position of the light emitter 20 is detected by the principle of triangulation. Other than this, for example, in addition to this, for example, one image pickup means S is provided, a reflector is provided on the light emitting body 20 side, and the image pickup direction of the image pickup means S is directed to the light emitting body 20 with respect to the reflector. The distance to the light emitter 20 is detected with the detection direction of the distance detector such as a laser length measuring device set, and the light emitter 2 is detected from the distance information and the image pickup direction of the image pickup means.
It is also possible to detect the position of 0.

【0045】 上記実施例では、移動する移動体とし
て、自動走行式の作業車Aの場合を例示したが、これ以
外に、運転者が搭乗して手動式に走行させる作業車であ
ってもよい。この場合は、前記求めた現在位置(x,
y)及び方位の情報が表示画面等に表示され、この表示
情報に基づいて手動運転することになる。
In the above-described embodiment, the case where the moving body is the automatic traveling type work vehicle A has been described as an example. However, other than this, a work vehicle on which a driver rides and is manually driven may be used. . In this case, the calculated current position (x,
y) and azimuth information are displayed on a display screen or the like, and manual operation is performed based on this display information.

【0046】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】移動体及び自動追尾装置の全体構成図FIG. 1 is an overall configuration diagram of a moving body and an automatic tracking device.

【図2】移動体の位置検出及び方位検出を説明する平面
FIG. 2 is a plan view illustrating position detection and direction detection of a moving body.

【図3】撮像手段の構成を示す一部断面側面図FIG. 3 is a partial cross-sectional side view showing a configuration of an image pickup unit.

【図4】自動追尾装置の制御構成を示すブロック図FIG. 4 is a block diagram showing a control configuration of an automatic tracking device.

【図5】作業車の制御構成を示すブロック図FIG. 5 is a block diagram showing a control configuration of a work vehicle.

【図6】撮像画面内における発光体の位置及び発光形状
検出の説明図
FIG. 6 is an explanatory view for detecting the position and the light emission shape of a light emitter in the image pickup screen.

【図7】追尾制御の説明図FIG. 7 is an explanatory diagram of tracking control.

【図8】制御作動を説明するタイムチャートFIG. 8 is a time chart explaining a control operation.

【図9】別実施例の移動体の方位検出を説明する平面図FIG. 9 is a plan view for explaining direction detection of a moving body according to another embodiment.

【図10】別実施例の移動体の方位検出における発光形
状の説明図
FIG. 10 is an explanatory diagram of a light emitting shape in detecting the direction of a moving body according to another embodiment.

【符号の説明】[Explanation of symbols]

A 移動体 20 発光体 S 撮像手段 100 追尾制御手段 11,12 撮像角度調節手段 11a,12a,T 撮像角度検出手段 101 方位検出手段 13 撮像手段側通信手段 16 発光体側通信手段 103 発光形状調節手段 23a 発光形状調節量検出手段 102 方位検出手段 20a 発光部 20b カバー 23 回転手段 A moving body 20 luminous body S imaging means 100 tracking control means 11, 12 imaging angle adjusting means 11a, 12a, T imaging angle detecting means 101 azimuth detecting means 13 imaging means side communication means 16 luminous body side communication means 103 luminous shape adjusting means 23a Light emitting shape adjustment amount detecting means 102 Direction detecting means 20a Light emitting part 20b Cover 23 Rotating means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 移動する移動体(A)の方位検出装置で
あって、 前記移動体(A)に、それを見る方向が変化するに伴っ
て発光形状が変化する発光体(20)が設置され、 地上側に、前記発光体(20)を撮像する撮像手段
(S)と、その撮像手段(S)の撮像画面内の所定位置
に前記発光体(20)を捉えるように前記撮像手段
(S)の撮像角度調節手段(11,12)を作動させる
追尾制御手段(100)と、前記撮像手段(S)の撮像
角度を検出する撮像角度検出手段(11a,12a,
T)と、前記撮像手段(S)の撮像画面における前記発
光体(20)の発光形状と、前記撮像角度検出手段(1
1a,12a,T)にて検出される撮像角度に応じて、
前記移動体(A)が基準方向に向いている状態のときの
形状として求められる基準発光形状との差に基づいて、
前記移動体(A)の方位を検出する方位検出手段(10
1)とが設けられている移動体の方位検出装置。
1. An azimuth detecting device for a moving body (A), wherein a light emitting body (20) whose emission shape changes in accordance with a change in a viewing direction is installed on the moving body (A). The image pickup means (S) for picking up the image of the light emitting body (20) on the ground side, and the image pickup means (S) so as to catch the light emitting body (20) at a predetermined position in the image pickup screen of the image pickup means (S). S) tracking control means (100) for activating the imaging angle adjusting means (11, 12) and imaging angle detection means (11a, 12a, 11a, 12a, for detecting the imaging angle of the imaging means (S).
T), the light emitting shape of the light emitting body (20) on the image pickup screen of the image pickup means (S), and the image pickup angle detection means (1).
1a, 12a, T), depending on the imaging angle detected
Based on the difference from the reference light emission shape obtained as the shape when the moving body (A) is oriented in the reference direction,
Direction detecting means (10) for detecting the direction of the moving body (A)
1) An azimuth detecting device for a moving body, which is provided with.
【請求項2】 移動する移動体(A)の方位検出装置で
あって、 前記移動体(A)に、それを特定方向から見たときに発
光形状が特定形状になり、且つ、見る方向が前記特定方
向から変化するに伴って前記発光形状が変化する発光体
(20)が設置され、 地上側に、前記発光体(20)を撮像する撮像手段
(S)と、その撮像手段(S)の撮像画面内の所定位置
に前記発光体(20)を捉えるように前記撮像手段
(S)の撮像角度調節手段(11,12)を作動させる
追尾制御手段(100)と、前記撮像手段(S)の撮像
角度を検出する撮像角度検出手段(11a,12a,
T)と、前記撮像手段(S)の撮像画面における前記発
光体(20)の発光形状と前記特定形状との差の情報を
前記発光体(20)側に向けて送信する撮像手段側通信
手段(13)とが設けられ、 前記移動体(A)に、前記撮像手段側通信手段(13)
から送信された前記差の情報を受信する発光体側通信手
段(16)と、その発光体側通信手段(16)の受信情
報に基づいて前記撮像手段(S)の撮像画面における前
記発光体(20)の発光形状が前記特定形状になるよう
に、前記特定方向を変更調節する発光形状調節手段(1
03)と、その発光形状調節手段(103)の基準調節
状態からの調節量を検出する発光形状調節量検出手段
(23a)とが設けられ、 前記発光体側通信手段(16)が、前記発光形状調節量
検出手段(23a)にて検出された前記調節量情報を前
記撮像手段側通信手段(13)に送信するように構成さ
れ、 地上側に、前記撮像角度検出手段(11a,12a,
T)の撮像角度情報及び前記撮像手段側通信手段(1
3)にて受信した前記調節量情報に基づいて前記移動体
(A)の方位を検出する方位検出手段(102)が設け
られている移動体の方位検出装置。
2. An azimuth detecting device for a moving body (A), wherein the moving body (A) has a light-emitting shape that is a specific shape when viewed from a specific direction, and the viewing direction is An illuminator (20) whose emission shape changes as it changes from the specific direction is installed, and an image pickup means (S) for picking up the image of the illuminant (20) on the ground side, and an image pickup means (S). Tracking control means (100) for operating the imaging angle adjusting means (11, 12) of the imaging means (S) so as to capture the light emitting body (20) at a predetermined position in the imaging screen of (1), and the imaging means (S). ) Imaging angle detection means (11a, 12a,
T) and information about the difference between the light emission shape of the light emitting body (20) and the specific shape on the image pickup screen of the image pickup means (S) toward the light emitting body (20) side. (13) is provided, and the moving body (A) is provided with the image pickup means side communication means (13).
The light emitter side communication means (16) for receiving the difference information transmitted from the light emitter side, and the light emitter (20) on the image pickup screen of the image pickup means (S) based on the received information of the light emitter side communication means (16). The light emission shape adjusting means (1) for changing and adjusting the specific direction so that the light emission shape of the
03) and a light emission shape adjustment amount detection means (23a) for detecting an adjustment amount of the light emission shape adjustment means (103) from a reference adjustment state, and the light emitter side communication means (16) is provided with the light emission shape. The adjustment amount information detected by the adjustment amount detection means (23a) is configured to be transmitted to the imaging means side communication means (13), and the imaging angle detection means (11a, 12a,
T) imaging angle information and the imaging means side communication means (1
An azimuth detecting device for a moving body, which is provided with azimuth detecting means (102) for detecting the azimuth of the moving body (A) based on the adjustment amount information received in 3).
【請求項3】 前記発光体(20)が、球形の発光部
(20a)と、その発光部(20a)の球形の外周面の
横方向の半分を覆う半球状のカバー(20b)とから構
成され、 前記発光形状調節手段(103)が、前記特定形状を縦
姿勢の半円形状とする状態で前記カバー(20b)を縦
軸芯周りに回転させる回転手段(23)にて構成されて
いる請求項2記載の移動体の方位検出装置。
3. The light-emitting body (20) comprises a spherical light-emitting portion (20a) and a hemispherical cover (20b) which covers a lateral half of the spherical outer peripheral surface of the light-emitting portion (20a). The light emitting shape adjusting means (103) is composed of a rotating means (23) for rotating the cover (20b) around the vertical axis in a state where the specific shape is a vertical semicircular shape. The azimuth detecting device for a moving body according to claim 2.
JP5330406A 1993-12-27 1993-12-27 Bearing detecting device for moving body Pending JPH07190768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5330406A JPH07190768A (en) 1993-12-27 1993-12-27 Bearing detecting device for moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5330406A JPH07190768A (en) 1993-12-27 1993-12-27 Bearing detecting device for moving body

Publications (1)

Publication Number Publication Date
JPH07190768A true JPH07190768A (en) 1995-07-28

Family

ID=18232249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5330406A Pending JPH07190768A (en) 1993-12-27 1993-12-27 Bearing detecting device for moving body

Country Status (1)

Country Link
JP (1) JPH07190768A (en)

Similar Documents

Publication Publication Date Title
CN108871265B (en) Measuring system
EP3056857B1 (en) Posture detecting device and data acquiring device
US6992700B1 (en) Apparatus for correction based upon detecting a camera shaking
EP3136050B1 (en) Total station
US20170050555A1 (en) Light control systems and methods
JPH07198383A (en) Surveying instrument
US5049988A (en) Scanning T.V. camera
JPH1020213A (en) Binoculars provided with shake correcting mechanism
JP4206568B2 (en) Automatic survey system
WO2012036593A2 (en) Apparatus and method for remotely setting motion vector for self-propelled toy vehicles
JPH07190768A (en) Bearing detecting device for moving body
EP4063787A1 (en) Surveying system
JPH04352124A (en) Optical axis deflection device for optical equipment
JPH0756633A (en) Automatic tracking type position measuring device for mobile object
JPH08178651A (en) Azimuth detecting device for moving body
JPH0875461A (en) Bearing detecting light emitting device for moving body, and bearing detecting device
JPH09113603A (en) Position detector for mobile
JPH07191124A (en) Automatic moving body tracking device
JPH02260010A (en) Stop position detector for mobile vehicle
WO2016004537A1 (en) Scanning system and methods therefor
JPH08194534A (en) Guidance controller for mobile object
JPH08178615A (en) Position detecting device and guide device of moving body
JP2585103Y2 (en) Mobile lighting device
US11460548B2 (en) Surveying device
JPH09113270A (en) Automatic moving-body-tracking device and position detecting device of tracking type