JPH07190708A - Ceramic lining structure and measuring method for its degree of wear - Google Patents
Ceramic lining structure and measuring method for its degree of wearInfo
- Publication number
- JPH07190708A JPH07190708A JP35476393A JP35476393A JPH07190708A JP H07190708 A JPH07190708 A JP H07190708A JP 35476393 A JP35476393 A JP 35476393A JP 35476393 A JP35476393 A JP 35476393A JP H07190708 A JPH07190708 A JP H07190708A
- Authority
- JP
- Japan
- Prior art keywords
- wear
- ceramics
- resistor
- plug member
- ceramic lining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims description 32
- 239000000853 adhesive Substances 0.000 claims abstract description 14
- 230000001070 adhesive effect Effects 0.000 claims abstract description 14
- 239000010409 thin film Substances 0.000 claims abstract description 13
- 239000000945 filler Substances 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 21
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 238000005299 abrasion Methods 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 abstract description 3
- 239000010953 base metal Substances 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 229910001092 metal group alloy Inorganic materials 0.000 abstract 1
- 229920001296 polysiloxane Polymers 0.000 abstract 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- 239000008187 granular material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、セラミックスライニン
グ構造及びその摩耗度測定方法に関し、更に詳しくはセ
ラミックスを内張りしたボールミル、粉粒体を取り扱う
工程で使用するセラミックスをライニングしたホッパー
やシュート、あるいは粉粒体の輸送配管として使用する
セラミックスライニング管等におけるセラミックスライ
ニング構造及びその摩耗度測定方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramics lining structure and a method of measuring the degree of wear thereof, and more specifically, a ball mill lined with ceramics, a hopper or chute or a powder lined with ceramics used in the step of handling powders and granules. The present invention relates to a ceramics lining structure in a ceramics lining pipe or the like used as a granular material transportation pipe and a method for measuring the degree of wear thereof.
【0002】[0002]
【従来の技術】粉粒体を取り扱う各種プロセスにおい
て、接粒・接粉部に対する耐摩耗対策、あるいは粉粒体
への汚染対策としてセラミックスライニングはよく用い
られる方法である。2. Description of the Related Art Ceramic lining is a method that is often used in various processes for handling powders and granules as a measure for wear resistance of the grain-contacted and powder-contacted parts, or as a countermeasure for contamination of the powders and granules.
【0003】例えば、粉粒体の粉砕プロセスにおいて
は、様々な種類のボールミルや、小径ビーズを装填した
媒体攪拌ミル等が用いられるが、内面の耐摩耗化を計る
為に、内側にセラミックスをライニングしたミルがよく
用いられる。ここで用いられるセラミックスは、一体の
成形物である場合や、大型のミルの場合にはセラミック
スのタイルを張り付けたりするが、どのような場合にお
いても、セラミックスは他の素材に比較して耐摩耗性が
優れているので、ミル内面の摩耗対策として極めて効果
的である。For example, various types of ball mills, medium agitating mills loaded with small-diameter beads, etc. are used in the pulverization process of powder and granules, but in order to measure the abrasion resistance of the inner surface, ceramics is lined inside. Mills are often used. The ceramics used here are one-piece moldings, and in the case of a large mill, ceramic tiles are attached, but in any case, the ceramics are more wear resistant than other materials. Since it has excellent properties, it is extremely effective as a measure against wear on the inner surface of the mill.
【0004】また、粉粒体の輸送や、計量、貯蔵等のプ
ロセスでは、種々のホッパーやシュート類が使用され
る。この場合も、接粒・接粉部に対する耐摩耗対策ある
いは粉粒体への汚染対策は重要であり、上述したような
方法で、セラミックスライニングを施すケースが多い。
更に、粉粒体の輸送配管でも同様な方法がよく用いられ
ている。Further, various hoppers and chutes are used in processes such as transportation of powdery or granular materials, weighing and storage. Also in this case, it is important to take anti-wear measures against the grain-contacting and powder-contacting parts or to prevent contamination of the powdery grains, and in many cases ceramic lining is performed by the above-mentioned method.
Further, a similar method is often used in the transportation pipeline for powder and granules.
【0005】上述した種々のセラミックスライニングを
施した部材は、接粒・接粉部の耐摩耗対策あるいは粉粒
体への汚染対策としてなされるものであるが、日常の保
守管理の面で、以下に述べる問題を有している。The above-mentioned members provided with various ceramics linings are used as a measure against wear of the grain-contacting and powder-contacting parts or as a measure against contamination of the particles. It has the problem described in.
【0006】すなわち、セラミックスライニングされた
種々の部材において、摩耗減肉の程度が把握しにくいと
いう問題がある。例えば、ボールミルは、大型であれ
ば、中に人が入り込み、点検するという方法があるが、
小径のボールミルや通常の媒体攪拌ミルでは、中に人が
入り込むことができないので、セラミックス部の摩耗減
肉を調べるのは極めて難しい。又、先に述べたようにホ
ッパー、シュートでは、それぞれが開放できる構造であ
ればよいが、そうでない場合には、やはり上述と同じよ
うにセラミックス部の摩耗減肉の程度を正確に把握する
ことは難しい。更に、セラミックスライニング管も同様
である。特に、セラミックスライニング管では、調査し
たい部分だけを取り外し、レントゲンを用いて内部の状
況を観察したり、内視鏡を用いて内部を観察する等の方
法があるが、いずれも配管を途中で切り離す作業が必要
である。That is, there is a problem that it is difficult to grasp the degree of wear thinning of various ceramic-lined members. For example, if the ball mill is large, there is a method in which a person enters inside and inspects it.
In a small-diameter ball mill or a normal medium agitation mill, it is extremely difficult to investigate the wear thinning of the ceramics part, because no one can get inside. Also, as mentioned above, the hopper and chute need only be constructed so that they can be opened, but if they are not, the degree of wear thinning of the ceramic part must be accurately ascertained as above. Is difficult Further, the same applies to the ceramic lining pipe. In particular, for ceramic lining pipes, there are methods such as removing only the part you want to investigate, observing the inside condition with X-ray, observing the inside with an endoscope, etc. Work is needed.
【0007】又、仮に人が中に入り込み、例えば、ボー
ルミル中の摩耗状況を観察する場合や、セラミックスラ
イニング管を切り離し、摩耗部位を観察する時には、当
然の事ながら、そのラインは運転を停止しなければなら
ない。このような事から、運転を止める事なく、簡単な
方法で摩耗状況が正確に把握できる方法が、様々な分野
から切に望まれている。Further, if a person enters the inside of the ball mill, for example, when observing the wear condition in the ball mill, or when observing the wear part by disconnecting the ceramic lining pipe, the line naturally stops operation. There must be. Therefore, a method for accurately grasping the wear condition by a simple method without stopping the operation is strongly desired from various fields.
【0008】ところで、一般に知られている簡単な摩耗
減肉の調査方法としては、超音波を用いる方法がある。
この方法は、鋼製のボールミルや、配管に多く採用され
ている方法であり、外側より超音波センサーを当てて厚
さを測定するもので、極めて簡便な作業で正確な測定が
できるが、一般には外皮から内面に到る材料の材質は同
一でかつ連続したものでなければ測定できない。従っ
て、セラミックスライニング部材、すなわち、セラミッ
クス層、接着剤あるいは充填材層、母材の3層からなる
構造では、それぞれの層からの信号が個別に発生してく
るため、厚さ測定は極めて難しい。By the way, as a generally known simple method for investigating wear thinning, there is a method using ultrasonic waves.
This method is often used for steel ball mills and pipes, and it measures the thickness by applying an ultrasonic sensor from the outside, and accurate measurement can be done with extremely simple work. Can be measured only if the materials from the outer skin to the inner surface are the same and continuous. Therefore, in a ceramic lining member, that is, a structure including three layers of a ceramic layer, an adhesive or a filler layer, and a base material, a signal from each layer is individually generated, and thus thickness measurement is extremely difficult.
【0009】[0009]
【発明が解決しようとする課題】上述したように、セラ
ミックスライニングは、部材の長寿命化、あるいは工程
汚染の軽減といった面からは極めて効果的である一方、
正確な寿命予測が極めて難しく、日常の保守管理面で大
きな問題がある。従って、本発明の目的は、摩耗の状況
が把握でき、正確な寿命予測ができるセラミックスライ
ニング構造及びその摩耗度測定方法を提供する事にあ
る。As described above, the ceramic lining is extremely effective in terms of prolonging the service life of members and reducing process contamination, while
Accurate life prediction is extremely difficult, and there is a big problem in daily maintenance management. Therefore, an object of the present invention is to provide a ceramics lining structure capable of grasping the state of wear and accurately predicting the life, and a method of measuring the degree of wear thereof.
【0010】[0010]
【課題を解決するための手段】上述の目的を達成するた
めに、本発明のセラミックスライニング構造によれば、
母材に対して接着剤又は充填材によりセラミックスをラ
イニングしたセラミックスライニング構造において、摩
耗検出体を取付けたプラグ部材をライニングしたセラミ
ックスに対して垂直方向に装着したことを特徴とし、又
本発明の摩耗度測定方法によれば、母材に対して接着剤
又は充填材によりセラミックスをライニングしたセラミ
ックスライニング構造の摩耗度を測定するにあたり、ラ
イニングしたセラミックスに対して垂直方向に装着した
プラグ部材に取付けた摩耗検出体の抵抗値若しくは導電
性の有無を検出することを特徴とする。In order to achieve the above-mentioned object, according to the ceramic lining structure of the present invention,
In a ceramics lining structure in which ceramics are lined with an adhesive or a filling material with respect to a base material, a plug member having a wear detector is attached in a direction perpendicular to the ceramics lined, and the wear of the present invention is also provided. According to the method of measuring the degree of wear, when measuring the degree of wear of a ceramics lining structure in which ceramics are lined with an adhesive or a filler on the base material, the wear attached to the plug member mounted vertically to the lined ceramics is measured. It is characterized in that the resistance value of the detection body or the presence or absence of conductivity is detected.
【0011】[0011]
【作用】上述の構成からなる本発明において、摩耗検出
体を取付けたプラグ部材の摩耗とセラミックスライニン
グ層の摩耗が同時に進行する。摩耗検出体として電気抵
抗体を用いると、摩耗が進行することにより、電気抵抗
体の断面積が減少し、電気抵抗値は増大する。又、摩耗
検出体として電気導電体と用いると、摩耗が電気導電体
に達することにより電気的に絶縁する。従って、電気抵
抗体の抵抗値若しくは電気導電体の導電性の有無を検出
することにより、極めて容易にセラミックスライニング
層の摩耗度を測定することができる。In the present invention having the above-mentioned structure, the wear of the plug member to which the wear detector is attached and the wear of the ceramics lining layer proceed at the same time. When an electric resistor is used as the wear detector, the progress of wear decreases the cross-sectional area of the electric resistor and increases the electric resistance value. When an electric conductor is used as the wear detector, the wear reaches the electric conductor to electrically insulate it. Therefore, the degree of wear of the ceramic lining layer can be measured very easily by detecting the resistance value of the electric resistor or the presence or absence of conductivity of the electric conductor.
【0012】[0012]
【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1〜3は、摩耗検出体として電気抵抗体を用
いた例を示す。図において、この発明のセラミックスラ
イニング構造20は、母材1に対して接着剤又は充填材
2により、セラミックス3をライニングしてなり、この
ライニングしたセラミックス3に対して垂直方向に貫通
孔6を設け、この貫通孔6に、摩耗検出体としての電気
抵抗体4を取付けたプラグ部材5を装着することから主
として構成される。Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show an example in which an electric resistor is used as the wear detector. In the figure, a ceramics lining structure 20 of the present invention is formed by lining a ceramics 3 on a base material 1 with an adhesive or a filler 2, and a through hole 6 is provided in a direction perpendicular to the lining ceramics 3. The through hole 6 is mainly configured by mounting a plug member 5 to which an electric resistor 4 as a wear detector is attached.
【0013】プラグ部材5は、前記ライニングしたセラ
ミックス3と同一の素材のセラミックスを用い、貫通孔
6とわずかなクリアランスを有するよう同一形状にす
る。この場合、貫通孔6及びプラグ部材5は、セラミッ
クス層の内側3aから外側3bに向うほど大きく形成す
る、いわゆる、クサビ状とすることが好ましい。プラグ
部材5の断面形状は丸型、角型いずれでも良い。The plug member 5 is made of the same ceramic material as the lined ceramic 3 and has the same shape as the through hole 6 so as to have a slight clearance. In this case, it is preferable that the through hole 6 and the plug member 5 be formed in a so-called wedge shape, which is formed so as to increase from the inner side 3a to the outer side 3b of the ceramic layer. The cross-sectional shape of the plug member 5 may be round or square.
【0014】電気抵抗体4は、プラグ部材5の外面に取
付けるほか、内面に埋没するように取付けることができ
る。図2は、内側端面5aから外側端面5bに向って径
をゆるやかに大きくした略円柱状のプラグ部材5の外周
面5cに薄膜状の電気抵抗体4を成膜して取付けた例を
示し、図3は、図2と同様な略円柱状のプラグ部材5を
円周方向に2分割し、この分割面5dに薄膜状の電気抵
抗体4を成膜した後、これを再度接着して略円柱状のプ
ラグ部材5の内面に埋没するように電気抵抗体4を取付
けた例を示す。後者は、特に成膜加工しやすい利点があ
る。The electric resistor 4 can be mounted not only on the outer surface of the plug member 5 but also on the inner surface so as to be buried therein. FIG. 2 shows an example in which a thin-film electric resistor 4 is formed on the outer peripheral surface 5c of a substantially cylindrical plug member 5 having a diameter gradually increased from the inner end surface 5a to the outer end surface 5b and attached. In FIG. 3, a substantially cylindrical plug member 5 similar to that in FIG. 2 is divided into two in the circumferential direction, a thin film electric resistor 4 is formed on the divided surface 5d, and the thin film electric resistance 4 is adhered again to form a thin film. An example in which the electric resistor 4 is attached so as to be embedded in the inner surface of the cylindrical plug member 5 is shown. The latter has the advantage that film formation is particularly easy.
【0015】薄膜状の電気抵抗体4は、半導体製造で一
般に用いられている薄膜形成手段、例えば、スクリーン
印刷法、蒸着法、スパッタ法、プラズマ溶射法等各種の
方法を用いて成膜することができる。なお、7は電気抵
抗体4端部に取付けた電極、8は電極7に接続した導線
を示し、電極7も前記同様の成膜手段を用いて形成する
ことができる。The thin-film electric resistor 4 is formed by a thin-film forming means generally used in semiconductor manufacturing, for example, various methods such as a screen printing method, a vapor deposition method, a sputtering method and a plasma spraying method. You can Reference numeral 7 denotes an electrode attached to the end portion of the electric resistor 4, 8 denotes a conducting wire connected to the electrode 7, and the electrode 7 can also be formed by using a film forming means similar to the above.
【0016】ここで用いる電気抵抗体4としては、ニッ
ケル−クロム合金、鉄−クロム合金、鉄−ニッケル−ク
ロム合金など一般に用いられている合金系抵抗体、ある
いは、炭化珪素などのセラミックス系抵抗体などが用い
ることができ、ライニング層との組み合わせ、使用環境
によって選択できるが、硬度が高く、耐蝕性に優れる抵
抗体を採用することが望ましい。当然ではあるが、ライ
ニングに用いられるセラミックスと著しく硬度の異なる
抵抗体を用いると、選択的に摩耗が起こるため好ましく
ない。又、電気抵抗値の変化を把握するには測定する抵
抗値がある程度大きくなければならいない。すなわち、
用いる電気抵抗体4の断面積に対して電極7間距離を大
きくする必要がある。しかしながら、貫通孔6に装入す
る電気抵抗体4を大型化すると、ライニングセラミック
ス3層との硬度差から選択的な摩耗が顕著になり、耐摩
耗ライニング層の厚み測定には不利である。従って、抵
抗体の厚さはできるだけ小さいほうが好ましい。このこ
とから、該電気抵抗体4には前述した薄膜状の電気抵抗
体4を用いることが望ましく、ライニングされているセ
ラミックス3と同一素材のプラグ部材5に薄膜状の電気
抵抗体4を成膜し、ライニング層に装入すれば、セラミ
ックスライニング層と電気抵抗体4の硬度の差による影
響を最小に抑えることができる。The electric resistor 4 used here is a commonly used alloy type resistor such as nickel-chromium alloy, iron-chromium alloy, iron-nickel-chromium alloy, or a ceramic type resistor such as silicon carbide. Etc. can be used and can be selected depending on the combination with the lining layer and the use environment, but it is desirable to adopt a resistor having high hardness and excellent corrosion resistance. As a matter of course, it is not preferable to use a resistor whose hardness is remarkably different from that of the ceramic used for the lining, because it causes selective wear. Also, the resistance value to be measured must be large to some extent in order to grasp the change in the electric resistance value. That is,
It is necessary to increase the distance between the electrodes 7 with respect to the sectional area of the electric resistor 4 used. However, when the size of the electric resistor 4 inserted in the through hole 6 is increased, selective wear becomes remarkable due to the hardness difference with the lining ceramics 3 layer, which is disadvantageous in measuring the thickness of the wear resistant lining layer. Therefore, it is preferable that the thickness of the resistor is as small as possible. For this reason, it is desirable to use the above-mentioned thin-film electric resistor 4 as the electric resistor 4, and the thin-film electric resistor 4 is formed on the plug member 5 made of the same material as the lining ceramics 3. Then, when the ceramic lining layer and the electric resistor 4 are inserted into the lining layer, the influence of the difference in hardness between the ceramic lining layer and the electric resistor 4 can be minimized.
【0017】電気抵抗体4を取付けたプラグ部材5のセ
ラミックスライニング層への固定にはセラミックスライ
ニングに用いたものと同一の接着剤や充填材2を用いる
ことができる。この場合も、プラグ部材4の外周面に設
けた電気抵抗体4とセラミックスライニング層、または
電気抵抗体4を埋没したプラグ部材5とセラミックスラ
イニング層のクリアランスが大きい場合には、両者の隙
間に粉粒体が入り込み、電気抵抗体4装入部における摩
耗の進行状況が定常性を失い、精度の高い摩耗状況を調
べることができなくなるので、クリアランスはできるだ
け小さくする事が好ましい。For fixing the plug member 5 to which the electric resistor 4 is attached to the ceramic lining layer, the same adhesive or filler 2 as that used for the ceramic lining can be used. Also in this case, if the clearance between the electric resistor 4 and the ceramics lining layer provided on the outer peripheral surface of the plug member 4 or the plug member 5 and the ceramics lining layer in which the electric resistor 4 is buried is large, the gap between the two will be It is preferable to make the clearance as small as possible, because particles enter and the progress of wear in the charging portion of the electric resistor 4 loses stability and it becomes impossible to check the wear condition with high accuracy.
【0018】電気抵抗体4の電極7からの導線8は予め
母材1に貫通孔9を設けておき、プラグ部材5を装入す
る場合、貫通孔6、9は予め、セラミックス3及び接着
剤・充填材層2、母材1に設けておき、セラミックスを
施工する際にそれぞれの孔の位置が合うようにすればプ
ラグ部材5は容易に装入できる。又、予め貫通孔6、9
を開けていなくともセラミックスライニングした後、機
械加工によって貫通孔6、9を設ければよい。但し、後
者の場合では、母材1あるいは接着剤・充填材層2に穴
を開けるのは容易であるが、セラミックス層3は加工し
にくいのでできれば前者の方法を採用した方が好まし
い。なお、セラミックス3層がタイルのような張り付け
ライニング構造であれば、プラグ部材5をタイルと同一
形状にし、これをセラミックスタイル間に挟み込むよう
にすることも可能である。The lead wire 8 from the electrode 7 of the electric resistor 4 is provided with a through hole 9 in the base material 1 in advance, and when the plug member 5 is inserted, the through holes 6 and 9 are previously formed in the ceramic 3 and the adhesive. The plug member 5 can be easily inserted by providing the filler layer 2 and the base material 1 so that the respective holes are aligned when the ceramic is applied. In addition, the through holes 6 and 9 are previously formed.
Even if the holes are not opened, the through holes 6 and 9 may be formed by machining after the ceramics lining. In the latter case, however, it is easy to make a hole in the base material 1 or the adhesive / filler layer 2, but the ceramic layer 3 is difficult to process. Therefore, it is preferable to adopt the former method if possible. If the three layers of ceramics have a tile-like sticking lining structure, the plug member 5 may have the same shape as the tile and be sandwiched between the ceramic styles.
【0019】次に、以上説明した構成からなる本発明の
摩耗度測定について説明する。一般に導体の電気抵抗
は、長さに比例し、断面積に反比例する。すなわち、比
抵抗ρ、長さ1、断面積Sの電気抵抗R(Ω)はR=ρ
・1/Sで表される。セラミックスライニング層に装入
した電気抵抗体4の、セラミックスのライニング側にお
ける端面の位置を予めライニングされたセラミックスの
内面と同一のレベルに調整しておくことにより、セラミ
ックスライニング層の摩耗と電気抵抗体4の摩耗が同時
に進行する。従って、摩耗減少が進行すると、セラミッ
クスライニング層に対して垂直な相対する2面に形成し
た電極7間の抵抗体断面積が減少し、電気抵抗体4の電
気抵抗値は増大する。この事から、該電気抵抗体4の端
面に形成した電極7間の電気抵抗値を検出することによ
り、容易に摩耗量を測定することができる。Next, the abrasion degree measurement of the present invention having the above-mentioned constitution will be explained. Generally, the electric resistance of a conductor is proportional to the length and inversely proportional to the cross-sectional area. That is, the specific resistance ρ, the length 1, the electric resistance R (Ω) of the cross-sectional area S is R = ρ
-Represented by 1 / S. By adjusting the position of the end surface of the electric resistor 4 charged in the ceramic lining layer on the ceramic lining side to the same level as that of the inner surface of the lined ceramic, wear of the ceramic lining layer and electric resistance 4 wear progresses at the same time. Therefore, as the wear reduction progresses, the cross-sectional area of the resistor between the electrodes 7 formed on the two opposing surfaces perpendicular to the ceramic lining layer decreases, and the electric resistance value of the electric resistor 4 increases. From this fact, the amount of wear can be easily measured by detecting the electric resistance value between the electrodes 7 formed on the end surface of the electric resistor 4.
【0020】このように、電気抵抗体4を用いた摩耗量
測定方法の特徴は母材1外皮側より簡単に計測できる点
であるが、更に、温度係数の小さい電気抵抗体4を用い
るか、あるいは温度補正ができるように予め温度計測を
行っておけば、高温環境下での抵抗値測定も可能にな
る。例えば、高温の物質の輸送管に本構造のセラミック
スライニング管を適用した場合、装置の運転を停止する
ことなくセラミックスライニングの摩耗量を推定でき
る。As described above, the feature of the wear amount measuring method using the electric resistance body 4 is that it can be easily measured from the outer skin side of the base material 1. Further, whether the electric resistance body 4 having a small temperature coefficient is used, Alternatively, if the temperature is measured in advance so that the temperature can be corrected, the resistance value can be measured in a high temperature environment. For example, when the ceramic lining pipe of the present structure is applied to the high temperature substance transport pipe, the wear amount of the ceramic lining can be estimated without stopping the operation of the apparatus.
【0021】次に摩耗度検出体として電気導電体を用い
た例を説明する。図4及び図5において、この発明のセ
ラミックスライニング構造21は、プラグ部材5を2分
割した分割面5dにコ字状の電気導電体10を取付け、
この電気導電体10に導線8を接続した以外は、先に示
した電気抵抗体4を用いたセラミックスライニング構造
20と同一である。コ字状電気導電体10の屈曲先端部
10aとプラグ部材5の内側端面5aまでの距離をライ
ニングしたセラミックス3の許容摩耗限界に応じて適宜
定めることにより、セラミックスライニング層の摩耗量
を測定することができる。すなわち、セラミックスライ
ニング層の摩耗が電気導電体10の屈曲先端部10aの
位置まで達すると、母材1外部に導いた導線8間は絶縁
するため、テスター等を用いて簡単に摩耗量を推定でき
る。本測定法は前述の電気抵抗体4を用いた測定方法を
更に軽便にしたものであり、セラミックスライニング層
の摩耗の進行が電気伝導体10に達して初めて摩耗量が
検知できる。従って、セラミックスライニング層の使用
限界、交換時期を知るチェッカーとして使用できる。Next, an example in which an electric conductor is used as the wear degree detector will be described. 4 and 5, in the ceramic lining structure 21 of the present invention, a U-shaped electric conductor 10 is attached to a dividing surface 5d obtained by dividing the plug member 5 into two,
The ceramic lining structure 20 is the same as the ceramic lining structure 20 using the electric resistor 4 described above except that the conductor 8 is connected to the electric conductor 10. To measure the wear amount of the ceramic lining layer by appropriately determining the distance between the bent tip portion 10a of the U-shaped electric conductor 10 and the inner end surface 5a of the plug member 5 in accordance with the allowable wear limit of the lined ceramics 3. You can That is, when the wear of the ceramics lining layer reaches the position of the bent tip portion 10a of the electric conductor 10, the conductive wires 8 led to the outside of the base material 1 are insulated, so that the wear amount can be easily estimated using a tester or the like. . This measuring method is a simpler method than the measuring method using the electric resistor 4 described above, and the amount of wear can be detected only after the progress of wear of the ceramic lining layer reaches the electric conductor 10. Therefore, it can be used as a checker that knows the usage limit and replacement time of the ceramic lining layer.
【0022】図6は、電気導電体10を用いて摩耗状況
を連続して測定する例を示すもので、プラグ部材5の分
割面5dにコ字状の電気導電体10を複数形成した以外
は、先の実施例と同一である。セラミックスライニング
層の摩耗が進行し、プラグ部材5aから適宜離間した複
数の電気導電体10の屈曲先端部10a,10b,10
cに摩耗が順次到達し、導線8間も順に絶縁することに
より、連続的に摩耗度を測定することができる。FIG. 6 shows an example of continuously measuring the wear condition using the electric conductor 10. Except that a plurality of U-shaped electric conductors 10 are formed on the dividing surface 5d of the plug member 5. The same as the previous embodiment. The wear of the ceramic lining layer progresses, and the bent tip portions 10a, 10b, 10 of the plurality of electric conductors 10 appropriately separated from the plug member 5a.
The wear gradually reaches c, and the conductors 8 are also insulated in order, so that the wear degree can be continuously measured.
【0023】電気導電体10には通常導線として用いら
れる金属材料でよく、線材を使用することもできるが、
導体薄膜を用いると、製作が行いやすく、前述した電気
抵抗体4薄膜と同様に、セラミックスライニング層との
硬度差を最小に抑えることができる。The electric conductor 10 may be a metal material usually used as a conductive wire, and a wire may be used.
If the conductor thin film is used, it is easy to manufacture, and the hardness difference with the ceramic lining layer can be minimized as in the case of the electric resistor 4 thin film described above.
【0024】更に、電気導電体10の絶縁を検知し、信
号を発する回路を設けることにより、摩耗によるセラミ
ックスライニング層の使用寿命を正確に知ることができ
る。本構造においては電気導電体が絶縁するか否かを判
別するだけなので、検知法が非常に軽便で、かつ温度の
依存性はない。従って、高温域での使用や、装置稼働状
態での計測が可能であり、前述の、絶縁を検知する回路
を組み合わせれば、遠隔地での管理が可能である。例え
ば、化学プラントや発電所等でセラミックスライニング
管を使用する場合、摩耗の最も大きくなる箇所に本構造
のセラミックスライニング管を適用すれば、プラント操
業を継続したまま、摩耗状況を診断し、寿命予測が可能
となるため保守管理が非常に容易になる。Furthermore, by providing a circuit that detects the insulation of the electric conductor 10 and emits a signal, it is possible to accurately know the service life of the ceramic lining layer due to wear. In this structure, since it is merely determined whether or not the electric conductor is insulated, the detection method is very convenient and has no temperature dependence. Therefore, it can be used in a high temperature range and can be measured in an operating state of the device, and can be managed in a remote place by combining the above-mentioned circuit for detecting insulation. For example, when using a ceramic lining pipe in a chemical plant or power plant, if the ceramic lining pipe of this structure is applied to the place where the wear is the largest, the wear situation is diagnosed and the life prediction is performed while the plant operation is continued. Maintenance becomes very easy.
【0025】以下に、この発明の具体的適用例を用いて
更に説明するが、下記の適用例はこの発明を何等限定す
るものではなく、前後の趣旨に徴して設計変更すること
は、いずれもこの発明の技術的範囲に含まれるものであ
る。The present invention will be further described below with reference to specific application examples of the present invention. However, the following application examples do not limit the present invention in any way, and any design changes may be made according to the purpose of the front and rear. It is included in the technical scope of the present invention.
【0026】(適用例1)内径200mm、外径230
mm、曲率90°、曲率半径1000mmのセメント輸
送用の鋼鉄製ベンド輸送管に無機系充填材を用いて厚さ
10mmのアルミナ管をライニングした。この時の無機
系充填材層の厚さは5mmとした。摩耗の最も激しいベ
ンド管端部より30゜の位置の背側に貫通孔を外側から
開けた。貫通孔の直径は内側で20.0mm、外皮側で
25.0mmと傾斜をつけ加工した。また、一方の直径
が19.9mmで他方の直径が25.1mm、長さが1
6mmのライニング管と同一のアルミナ製の円錐台型プ
ラグを作製した。なお、このアルミナ製のプラグの先端
面は、貫通孔の位置するセラミックスライニング層の内
面の形状に合わせて加工した。このアルミナ製の円柱を
円周方向と垂直に2分割し、切断面にプラグの長手方向
に対して平行に10.0mm、またプラグの直径方向に
対して平行に15mmの大きさに、電子ビーム蒸着法を
用いてニッケル−クロム系合金薄膜を成膜した。抵抗体
原料としてはNi:Cr=8:2の真空溶融材(比抵抗
=108μΩcm)を用い、成膜条件はプラグ(基板)
温度200℃、加速電圧6.5kv、5分間の蒸着によ
り約0.025μmの厚さにニッケル−クロム抵抗体を
成膜した。抵抗体の長手方向に平行な辺に沿って厚さ約
0.05μmの金電極をスクリーン印刷し、それぞれの
電極の隅に直径0.5mmの銅線をハンダ付けした。こ
の後、2分割したアルミナ製の円柱を無機系接着材を用
いて接着し、このアルミナ製のプラグをセラミックスラ
イニング管に装入した。この時、プラグの抵抗体先端が
セラミックスライニング管の内側表面の位置になるよう
固定した。更に、セラミックスライニング管を鋼管に無
機系接着材を用いて接着固定した。導線は貫通孔から外
側に引き出し、固定した。固定後、装着した抵抗体の抵
抗値を測定したところ64.8Ωであった。(Application Example 1) Inner diameter 200 mm, outer diameter 230
A 10 mm thick alumina pipe was lined with a steel-made bend transportation pipe for transportation of cement having a diameter of 90 mm, a curvature of 90 ° and a radius of curvature of 1000 mm using an inorganic filler. The thickness of the inorganic filler layer at this time was 5 mm. A through hole was opened from the outside on the back side at a position of 30 ° from the end of the bend pipe where the wear was most severe. The diameter of the through hole was 20.0 mm on the inner side and 25.0 mm on the outer skin side, which were inclined and processed. Also, one diameter is 19.9 mm, the other diameter is 25.1 mm, and the length is 1
A frustoconical plug made of alumina identical to the 6 mm lining tube was produced. The tip surface of this alumina plug was processed according to the shape of the inner surface of the ceramic lining layer in which the through hole was located. This alumina cylinder is divided into two parts perpendicular to the circumferential direction, and the cut surface has an electron beam size of 10.0 mm parallel to the longitudinal direction of the plug and 15 mm parallel to the diametrical direction of the plug. A nickel-chromium alloy thin film was formed using the vapor deposition method. A vacuum melting material (specific resistance = 108 μΩcm) of Ni: Cr = 8: 2 was used as the resistor raw material, and the film forming condition was a plug (substrate).
A nickel-chromium resistor was deposited to a thickness of about 0.025 μm by vapor deposition at a temperature of 200 ° C. and an accelerating voltage of 6.5 kv for 5 minutes. A gold electrode having a thickness of about 0.05 μm was screen-printed along the side parallel to the longitudinal direction of the resistor, and a copper wire having a diameter of 0.5 mm was soldered to the corner of each electrode. Then, the alumina column divided into two was adhered using an inorganic adhesive, and the alumina plug was inserted into the ceramic lining pipe. At this time, the plug was fixed so that the tip of the resistor was located on the inner surface of the ceramic lining tube. Furthermore, the ceramic lining pipe was adhered and fixed to the steel pipe using an inorganic adhesive material. The conducting wire was pulled out from the through hole and fixed. After fixing, the resistance value of the mounted resistor was measured and found to be 64.8Ω.
【0027】セメント工場の空気輸送管に接続し、86
00時間運転した後、抵抗体の抵抗値を測定したとこ
ろ、90.0Ωであり、抵抗値より算出された摩耗減肉
量は2.8mmであった。続いて、このセラミックスラ
イニング管を取り外し、切断してセラミックスライニン
グ層の厚さを計測したところ、最も摩耗の大きい端部よ
り30°の位置のセラミックスライニング層の厚さは1
2.3〜12.8mmであり、摩耗減肉量は2.2〜
2.7mmと算出され、上述の抵抗値から算出された値
2.8mmとよい一致を示した。Connected to the air transportation pipe of the cement factory, 86
After operating for 00 hours, the resistance value of the resistor was measured and found to be 90.0 Ω, and the amount of wear thinning calculated from the resistance value was 2.8 mm. Subsequently, when the ceramic lining pipe was removed and cut to measure the thickness of the ceramic lining layer, the thickness of the ceramic lining layer at a position 30 ° from the end where the wear was greatest was 1
It is 2.3 to 12.8 mm, and the amount of wear reduction is 2.2 to
The calculated value was 2.7 mm, which was in good agreement with the value calculated from the above resistance value of 2.8 mm.
【0028】(適用例2)内径2400mm、外径24
60mm、長さが内寸で3000mmの鋼鉄製ボールミ
ルの円筒部の中央部に直径20mmの穴を外側から開け
た。このボールミルの内側全面にエポキシ樹脂を用いて
100mm角で厚さ40mmのアルミナタイルをライニ
ングした。この時の樹脂層の厚さは5mmとした。ライ
ニングに用いる一つのアルミナタイルの100×40m
mで囲まれるライニング層に対して垂直な端面に、図6
に示すように、0.5mm幅でタイル表面から2mm,
4mm,6mm及び8mmの場所に折り返し先端が位置
するように銀をスクリーン印刷し、導体のそれぞれの両
端に直径0.5mmの導線をハンダ付けした。この後、
無機系接着剤で同形タイルを印刷面で接着し、上記の直
径20mmの穴から銅線が外部に導き出せる位置になる
よう、ボールミル内面にエポキシ樹脂で接着した。(Application Example 2) Inner diameter 2400 mm, outer diameter 24
A hole having a diameter of 20 mm was punched from the outside in the central portion of the cylindrical portion of a steel ball mill having a length of 60 mm and an inner length of 3000 mm. A 100 mm square and 40 mm thick alumina tile was lined on the entire inner surface of this ball mill with an epoxy resin. The thickness of the resin layer at this time was 5 mm. 100x40m of one alumina tile used for lining
The end face perpendicular to the lining layer surrounded by m is shown in FIG.
As shown in, the width of the tile is 2 mm from the tile surface,
Silver was screen-printed so that the folded tip was located at 4 mm, 6 mm, and 8 mm, and a conductor having a diameter of 0.5 mm was soldered to each end of the conductor. After this,
The same-shaped tile was adhered on the printed surface with an inorganic adhesive, and the inner surface of the ball mill was adhered with an epoxy resin so that the copper wire could be led out from the hole having a diameter of 20 mm.
【0029】接着後に珪砂を粉砕した。累計で3800
時間経過後にセラミックスライニング層内面側から2m
mの深さに位置する導体に絶縁が生じた。更に、720
0時間運転した後にセラミックスライニング層内面側か
ら4mmの深さに位置する導体に絶縁が生じた為、ボー
ルミルのマンホールを開け、中に入り込み内径を測定し
たところ2302.2mmであり、摩耗減肉量は半径で
3.9mmと算出され、導体から検出された摩耗減肉量
と良い一致を示した。After bonding, the silica sand was crushed. Cumulative total of 3800
2m from the inner surface of the ceramic lining layer after a lapse of time
Insulation occurred in the conductor located at a depth of m. Furthermore, 720
Since the conductor located at a depth of 4 mm from the inner surface of the ceramic lining layer was insulated after operating for 0 hours, the manhole of the ball mill was opened and the inside diameter was measured to be 2302.2 mm. Was calculated to be 3.9 mm in radius and showed good agreement with the amount of wear thinning detected from the conductor.
【0030】(比較例1)内径2400mm、外径24
60mm、長さが内寸で3000mmの鋼鉄製ボールミ
ルの内側全面のエポキシ樹脂を用いて100mm角で厚
さ40mmのアルミナタイルをライニングした。この時
のエポキシ樹脂層の厚さは5mmとした。このボールミ
ルの円筒部外側に超音波センサーを当て厚さを測定した
ところ、鋼鉄母材、エポキシ接着剤、アルミナタイルの
内外の境界面に起因すると推定される反射波が多数発
生、干渉しあい、全厚みを示す反射波を特定することが
できないため、厚さは測定できなかった。(Comparative Example 1) Inner diameter 2400 mm, outer diameter 24
An alumina tile of 100 mm square and 40 mm thick was lined with epoxy resin on the entire inner surface of a steel ball mill having a length of 60 mm and an inner length of 3000 mm. At this time, the thickness of the epoxy resin layer was 5 mm. When the thickness was measured by applying an ultrasonic sensor to the outside of the cylindrical part of this ball mill, a large number of reflected waves estimated to be caused by the inner and outer boundary surfaces of the steel base material, epoxy adhesive, and alumina tile were generated, interfered with each other, and The thickness could not be measured because the reflected wave indicating the thickness could not be specified.
【0031】[0031]
【発明の効果】この発明のセラミックスライニング構造
及びその摩耗度測定方法のよれば、摩耗減肉の状況が正
確かつ簡便に把握でき、部材の寿命が精度よく予測する
ことができる。According to the ceramic lining structure and the method for measuring the degree of wear of the present invention, the state of wear thinning can be accurately and easily grasped, and the life of the member can be accurately predicted.
【図1】本発明のセラミックスライニング構造を模式的
に示す図である。FIG. 1 is a diagram schematically showing a ceramics lining structure of the present invention.
【図2】電気抵抗体を取付けたプラグ部材を模式的に示
す図である。FIG. 2 is a diagram schematically showing a plug member to which an electric resistor is attached.
【図3】電気抵抗体を取付けたプラグ部材の別の例を模
式的に示す図である。FIG. 3 is a diagram schematically showing another example of the plug member to which the electric resistor is attached.
【図4】本発明のセラミックスライニング構造の別の実
施例を模式的に示す図である。FIG. 4 is a diagram schematically showing another embodiment of the ceramics lining structure of the present invention.
【図5】電気導電体を取付けたプラグ部材を模式的に示
す図である。FIG. 5 is a diagram schematically showing a plug member to which an electric conductor is attached.
【図6】電気導電体を取付けたプラグ部材の別の例を模
式的に示す図である。FIG. 6 is a diagram schematically showing another example of the plug member to which the electric conductor is attached.
1 母材 2 接着剤又は充填材 3 セラミックス 3a 内側 3b 外側 4 電気抵抗体 5 プラグ部材 5a 内側端面 5b 外側端面 5c 外周面 5d 分割面 6 貫通孔 7 電極 8 導線 9 貫通孔 10 電気導電体 10a 屈曲先端部 10b 屈曲先端部 10c 屈曲先端部 20 セラミックスライニング構造 21 セラミックスライニング構造 1 Base Material 2 Adhesive or Filler 3 Ceramics 3a Inner 3b Outer 4 Electric Resistor 5 Plug Member 5a Inner End Face 5b Outer End Face 5c Outer Surface 5d Dividing Surface 6 Through Hole 7 Electrode 8 Conductor 9 Through Hole 10 Electric Conductor 10a Bending Tip part 10b Bending tip part 10c Bending tip part 20 Ceramics lining structure 21 Ceramics lining structure
Claims (8)
ラミックスをライニングしたセラミックスライニング構
造において、摩耗検出体を取付けたプラグ部材をライニ
ングしたセラミックスに対して垂直方向に装着したこと
を特徴とするセラミックスライニング構造。1. A ceramics lining structure in which a base material is lined with ceramics with an adhesive or a filling material, and a plug member having a wear detector attached thereto is mounted vertically to the lined ceramics. Ceramic lining structure.
スと同一素材であることを特徴とする請求項1記載のセ
ラミックスライニング構造。2. The ceramic lining structure according to claim 1, wherein the plug member is made of the same material as the lined ceramic.
面に取付けたことを特徴とする請求項1若しくは2記載
のセラミックスライニング構造。3. The ceramic lining structure according to claim 1, wherein the wear detector is attached to the outer peripheral surface of the substantially cylindrical plug member.
に埋没するように取付けたことを特徴とする請求項1若
しくは2記載のセラミックスライニング構造。4. The ceramic lining structure according to claim 1, wherein the wear detecting body is attached so as to be embedded in the inner surface of the substantially cylindrical plug member.
する請求項1〜4いずれか記載のセラミックスライニン
グ構造。5. The ceramic lining structure according to claim 1, wherein the wear detector is a thin film.
特徴とする請求項1〜5いずれか記載のセラミックスラ
イニング構造。6. The ceramic lining structure according to claim 1, wherein the wear detector is an electric resistor.
特徴とする請求項1〜5いずれか記載のセラミックスラ
イニング構造。7. The ceramic lining structure according to claim 1, wherein the wear detector is made of an electric conductor.
ラミックスをライニングしたセラミックスライニング構
造の摩耗度を測定するにあたり、ライニングしたセラミ
ックスに対して垂直方向に装着したプラグ部材に取付け
た摩耗検出体の抵抗値若しくは導電性の有無を検出する
ことを特徴とするセラミックスライニング構造の摩耗度
測定方法。8. A wear detector attached to a plug member mounted in a direction perpendicular to the lined ceramics when measuring the degree of wear of a ceramics lining structure in which ceramics are lined with an adhesive or a filler to a base material. A method for measuring the degree of wear of a ceramics lining structure, which comprises detecting the resistance value or the presence or absence of conductivity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35476393A JPH07190708A (en) | 1993-12-24 | 1993-12-24 | Ceramic lining structure and measuring method for its degree of wear |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35476393A JPH07190708A (en) | 1993-12-24 | 1993-12-24 | Ceramic lining structure and measuring method for its degree of wear |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07190708A true JPH07190708A (en) | 1995-07-28 |
Family
ID=18439742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35476393A Pending JPH07190708A (en) | 1993-12-24 | 1993-12-24 | Ceramic lining structure and measuring method for its degree of wear |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07190708A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008164377A (en) * | 2006-12-27 | 2008-07-17 | Univ Of Fukui | Wear gauge |
DE10244826B4 (en) * | 2002-09-26 | 2012-06-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Arrangement for monitoring the state of wear of the refractory lining of melting furnaces, in particular glass melting tanks |
WO2021085073A1 (en) * | 2019-10-29 | 2021-05-06 | 京セラ株式会社 | Ceramic structure, adsorption nozzle, cutter, tweezers, wear detection apparatus, powder electric charge elimination device, powder production device, lifting pin, conveying hand, and fiber guide |
-
1993
- 1993-12-24 JP JP35476393A patent/JPH07190708A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10244826B4 (en) * | 2002-09-26 | 2012-06-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Arrangement for monitoring the state of wear of the refractory lining of melting furnaces, in particular glass melting tanks |
JP2008164377A (en) * | 2006-12-27 | 2008-07-17 | Univ Of Fukui | Wear gauge |
WO2021085073A1 (en) * | 2019-10-29 | 2021-05-06 | 京セラ株式会社 | Ceramic structure, adsorption nozzle, cutter, tweezers, wear detection apparatus, powder electric charge elimination device, powder production device, lifting pin, conveying hand, and fiber guide |
CN114630813A (en) * | 2019-10-29 | 2022-06-14 | 京瓷株式会社 | Ceramic structure, suction nozzle, cutter, tweezers, wear detector, powder electricity removing device, powder manufacturing device, knock pin, carrier hand, and fiber guide |
CN114630813B (en) * | 2019-10-29 | 2023-11-21 | 京瓷株式会社 | Ceramic structure, suction nozzle, cutter, tweezers, abrasion detector, powder electricity-removing device, powder manufacturing device, ejector pin, carrying hand, and fiber guide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9541514B2 (en) | Method and apparatus for diagnosing status of parts in real time in plasma processing equipment | |
EP2063243B1 (en) | Smart coating for damage detected information, inspecting device and damage inspecting method using said coating | |
EP2800963B1 (en) | Monitoring a conductive fluid conduit | |
US7270890B2 (en) | Wear monitoring system with embedded conductors | |
EP1957957B1 (en) | Apparatus and method for measuring real-time corrosion | |
JP5296676B2 (en) | Method for detecting plasma unconstrained state and plasma processing system using the method | |
JP5291848B2 (en) | Plasma processing chamber with ground member integrity indicator and method of use | |
US20070193887A1 (en) | Planar multi-electrode array sensor for localized electrochemical corrosion detection | |
US6356097B1 (en) | Capacitive probe for in situ measurement of wafer DC bias voltage | |
TWI493639B (en) | Electrical and optical system and methods for monitoring erosion of electrostatic chuck edge bead materials | |
US9724697B2 (en) | Wear indication devices, and related assemblies and methods | |
NO20140916A1 (en) | Apparatus for measuring strain on a downhole component and method of monitoring a drilling operation | |
AU2003269222A1 (en) | Corrosion sensing microsensors | |
JPH07190708A (en) | Ceramic lining structure and measuring method for its degree of wear | |
EP0895073B1 (en) | Device for measuring a crack in a workpiece | |
WO2012122587A1 (en) | Wear sensor | |
US6693445B1 (en) | Probe device for apparatus for monitoring corrosion of a material | |
CA2372723A1 (en) | Detection of circumferential erosion of a conduit | |
JPH03504743A (en) | Method for detecting that target object erosion has reached a settable depth and target object used therefor | |
US20100037702A1 (en) | Flowmeter | |
US4901583A (en) | Electromagnetic pick-up device for measuring volume flows of thick, highly abrasive suspensions | |
CN112136022A (en) | Metal tube structure with sensor arrangement | |
WO2004024979A9 (en) | Sensor system and methods used to detect material wear and surface deterioration | |
JP2004077252A (en) | Liner wastage detecting rod, liner and machine component with wastage detecting function, and detection apparatus and detection method | |
US20210396334A1 (en) | Pipeline for conveying fluids or solids |