JPH07190540A - Control device of absorption refrigerating machine - Google Patents

Control device of absorption refrigerating machine

Info

Publication number
JPH07190540A
JPH07190540A JP5349063A JP34906393A JPH07190540A JP H07190540 A JPH07190540 A JP H07190540A JP 5349063 A JP5349063 A JP 5349063A JP 34906393 A JP34906393 A JP 34906393A JP H07190540 A JPH07190540 A JP H07190540A
Authority
JP
Japan
Prior art keywords
cold water
temperature
evaporator
flow rate
outlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5349063A
Other languages
Japanese (ja)
Inventor
Tetsuo Kishimoto
哲郎 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5349063A priority Critical patent/JPH07190540A/en
Publication of JPH07190540A publication Critical patent/JPH07190540A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To enable execution of an operation of high energy efficiency by controlling the quantity of heating of a generator on the basis of the temperature on the evaporator outlet side of cold water and by controlling also the flow rate of the cold water on the basis of the temperature on the evaporator inlet side of the cold water. CONSTITUTION:When the temperature on the evaporator 5 outlet side of cold water measured by a temperature sensor 23 falls below 7 deg.C, the quantity of refrigerant regenerated by evaporation and separation in a high-temperature regenerator 1 and a low-temperature regenerator 3 decreases automatically. Since a refrigerant liquid supplied from a refrigerant distributor 6 to an evaporator 5 decreases consequently, the degree of cooling of the cold water by an evaporation latent heat of the refrigerant transferred through the tube wall of a heat transfer tube 18 lowers and the temperature on the evaporator outlet side of the cold water rises and returns to 7 deg.C. When the temperature on the evaporator outlet side of the cold water exceeds 7 deg.C, to the contrary, the quantity of the refrigerant regenerated in the high- temperature regenerator 1 and the low-temperature regenerator 3 increases automatic ally and the temperature on the outlet side returns to 7 deg.C. When the temperature on the evaporator inlet side is lower than 12 deg.C, besides, the number of revolutions of a cold water pump 19 is reduced, while it is increased when the temperature exceeds 12 deg.C, and thus the temperature is kept at 12 deg.C approximately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収冷凍機機の制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controller for an absorption refrigerator.

【0002】[0002]

【従来の技術】吸収冷凍機は、冷媒を圧縮・膨張させる
タイプの冷凍機に比べてエネルギー消費量の削減が図れ
ると云った特長があり、特に大型の冷暖房装置において
近年目覚ましい普及がある。
2. Description of the Related Art Absorption refrigerators have the feature that energy consumption can be reduced as compared with refrigerators of the type that compresses and expands a refrigerant, and in recent years, it has been remarkably popular in large-scale cooling and heating devices.

【0003】従来、このような特長を有する吸収冷凍機
は、蒸発器内部の伝熱管を経由して取り出される冷水の
蒸発器出口側温度T1が所定温度(例えば、7℃)にな
るように、発生器の加熱量が制御されていた(図5参
照)。また、冷房負荷に供給する冷水の流量は通常一定
であり、冷水の流量を制御する場合には、例えば室内ユ
ニットの運転台数に応じて制御されていた。
Conventionally, an absorption refrigerating machine having such a feature is so arranged that the evaporator outlet side temperature T1 of the cold water taken out through the heat transfer tube inside the evaporator becomes a predetermined temperature (for example, 7 ° C.). The heating amount of the generator was controlled (see FIG. 5). Further, the flow rate of the cold water supplied to the cooling load is usually constant, and when controlling the flow rate of the cold water, for example, it was controlled according to the number of operating indoor units.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の制
御方法は、発生器の加熱量制御は冷凍機側で制御され、
冷水ポンプの運転は室内ユニット側で各々独立して制御
されていたので、必ずしも全体的な観点では最適な制御
とはなっておらず、省エネルギー化をさらに図って行く
上での問題点となっており、この点の解決が課題となっ
ていた。
However, in the above conventional control method, the heating amount control of the generator is controlled by the refrigerator side,
Since the operation of the chilled water pump was independently controlled on the indoor unit side, it was not always the optimal control from the overall viewpoint, and it became a problem for further energy saving. However, the solution to this point was an issue.

【0005】[0005]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するため、蒸発器内部の伝熱管を経由して取
り出される冷水の蒸発器出口側温度に基づいて発生器の
加熱量を制御する加熱量制御機能と、冷房作用を終えて
前記伝熱管に還流する前記冷水の蒸発器入口側温度に基
づいて前記冷水の流量を制御する流量制御機能と、を具
備する吸収冷凍機の制御装置であり、
In order to solve the above-mentioned problems of the prior art, the present invention determines the heating amount of the generator based on the evaporator outlet side temperature of the cold water taken out via the heat transfer tube inside the evaporator. Control of an absorption refrigerator having a heating amount control function for controlling, and a flow rate control function for controlling the flow rate of the cold water based on the evaporator inlet side temperature of the cold water that returns to the heat transfer tube after finishing the cooling operation. A device,

【0006】蒸発器内部の伝熱管を経由して取り出され
る冷水の蒸発器出口側温度に基づいて発生器の加熱量を
制御する加熱量制御機能と、冷房作用を終えて前記伝熱
管に還流する前記冷水の蒸発器入口側温度が所定温度未
満である時、前記冷水の流量を減少させ、前記冷水の蒸
発器入口側温度が所定温度を越えている時、この蒸発器
入口側温度に基づいて前記冷水の流量を増加する制御機
能と、冷水流量を下限流量以上に保つ制御機能と、を具
備する吸収冷凍機の制御装置である。
[0006] A heating amount control function for controlling the heating amount of the generator based on the evaporator outlet side temperature of the cold water taken out through the heat transfer pipe inside the evaporator, and the cooling action is returned to the heat transfer pipe. When the temperature on the evaporator inlet side of the cold water is lower than a predetermined temperature, the flow rate of the cold water is decreased, and when the temperature on the evaporator inlet side of the cold water exceeds the predetermined temperature, based on the temperature on the evaporator inlet side. It is an absorption chiller control device having a control function of increasing the flow rate of the cold water and a control function of keeping the flow rate of the cold water at a lower limit flow rate or more.

【0007】[0007]

【作用】冷水の蒸発器出口側温度に基づいて発生器の加
熱量を制御すると共に、冷水の蒸発器入口側温度に基づ
いて冷水の流量を制御する装置であるので、冷水の蒸発
器入口側温度が低下する冷房負荷減少時においては、冷
水の流量を減少させるため冷水ポンプの回転数が低下す
る。これにより、消費電力の大幅な削減が可能となり、
エネルギー効率の高い運転が行われる。
Since the device controls the heating amount of the generator based on the temperature of the cold water on the evaporator outlet side and controls the flow rate of the cold water on the basis of the temperature of the cold water on the evaporator inlet side, the cool water on the evaporator inlet side is controlled. When the cooling load decreases when the temperature decreases, the rotation speed of the cold water pump decreases because the flow rate of the cold water decreases. This makes it possible to significantly reduce power consumption,
Energy efficient operation is performed.

【0008】また、冷水の流量は下限流量以上に保た
れ、冷房負荷が大幅に減少したときにも蒸発器には下限
流量以上の冷水が循環し、蒸発器の凍結は回避される。
Further, the flow rate of the cold water is kept above the lower limit flow rate, and even when the cooling load is significantly reduced, the cold water above the lower limit flow rate circulates in the evaporator, and the freezing of the evaporator is avoided.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面に基づいてさ
らに詳細に説明する。図1は、例えば冷媒に水、吸収液
(溶液)に臭化リチウム(LiBr)溶液を用いた吸収
冷凍機の概略構成図であって、1はガス・灯油などの燃
焼装置2を備え、稀液を加熱することによって冷媒蒸気
を発生させて中間液に濃縮する高温再生器(次に記載の
低温再生器と共に特許請求の範囲で云う発生器に該
当)、3は前記冷媒蒸気により前記中間液を加熱して濃
液にする低温再生器、4は前記低温再生器3から供給さ
れる冷媒蒸気を冷却して凝縮する凝縮器、5は冷媒分配
器6から冷媒液を散布・滴下などして蒸発させる蒸発
器、7はこの蒸発器から流入する冷媒蒸気を前記低温再
生器3から供給される濃液に吸収させて器内を低圧に維
持する吸収器、8は低温熱交換器、9は高温熱交換器で
あり、これらは中間液管10、濃液管11、吸収液ポン
プ12を有する稀液管13、開閉弁14aと14bとを
有する冷媒導管14、冷媒液管15、および冷媒ポンプ
16を有する冷媒循環管17により接続されて、冷媒と
吸収液の循環サイクルを形成しており、
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in more detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an absorption refrigerator using, for example, water as a refrigerant and a lithium bromide (LiBr) solution as an absorbing liquid (solution), where 1 is equipped with a combustion device 2 for gas, kerosene, etc. A high temperature regenerator (corresponding to a generator referred to in the claims together with a low temperature regenerator described below) that generates a refrigerant vapor by heating a liquid and concentrates it into an intermediate liquid, 3 is the intermediate liquid due to the refrigerant vapor Is a low temperature regenerator for heating to a concentrated liquid, 4 is a condenser for cooling and condensing the refrigerant vapor supplied from the low temperature regenerator 3, and 5 is a refrigerant distributor 6 for spraying and dropping the refrigerant liquid. An evaporator for evaporating, 7 is an absorber for absorbing the refrigerant vapor flowing from this evaporator into the concentrated liquid supplied from the low temperature regenerator 3, and maintaining the inside of the container at a low pressure, 8 is a low temperature heat exchanger, and 9 is It is a high temperature heat exchanger, and these are the intermediate liquid pipe 10, the concentrated liquid pipe 11, and the suction pipe. A diluting liquid pipe 13 having a liquid pump 12, a refrigerant conduit 14 having on-off valves 14a and 14b, a refrigerant liquid pipe 15, and a refrigerant circulating pipe 17 having a refrigerant pump 16 are connected to each other to form a circulation cycle of the refrigerant and the absorbing liquid. Has formed,

【0010】前記蒸発器5の内部に配管した伝熱管18
の管壁を介して冷媒の蒸発潜熱によって冷却された冷水
が、冷水ポンプ19を有する冷水管20によって冷房負
荷となる所要の室内熱交換器(図示せず)に供給可能と
なっている。また、21は吸収器7と凝縮器4の内部を
経由して配管した冷却水管であり、これらの装置構成自
体は従来周知である。
A heat transfer tube 18 provided inside the evaporator 5.
The cold water cooled by the latent heat of vaporization of the refrigerant through the pipe wall can be supplied to a required indoor heat exchanger (not shown) serving as a cooling load by the cold water pipe 20 having the cold water pump 19. Further, reference numeral 21 is a cooling water pipe that is piped through the inside of the absorber 7 and the condenser 4, and the device configuration itself of these is well known.

【0011】本発明の制御装置は、記憶・演算・比較機
能など所要の機能を備えた制御器22と、冷水管20の
蒸発器5の出入口部に設置した温度センサ23、24と
から構成され、温度センサ23が計測する冷水の蒸発器
出口側温度T1に基づいて燃料制御弁2aの開度Vを制
御し、温度センサ24が計測する冷水の蒸発器入口側温
度T2に基づいて冷水ポンプ19の回転数Nを制御し、
これにより燃焼装置2の火力と冷水管20を流れて冷房
負荷に供給される冷水の流量とを制御するものである。
The control device of the present invention comprises a controller 22 having necessary functions such as storage, calculation and comparison functions, and temperature sensors 23 and 24 installed at the inlet and outlet of the evaporator 5 of the cold water pipe 20. , The opening V of the fuel control valve 2a is controlled based on the evaporator outlet side temperature T1 of the cold water measured by the temperature sensor 23, and the cold water pump 19 based on the evaporator inlet side temperature T2 of the cold water measured by the temperature sensor 24. Control the rotation speed N of
This controls the thermal power of the combustion device 2 and the flow rate of the cold water that flows through the cold water pipe 20 and is supplied to the cooling load.

【0012】上記本発明になる制御装置の一制御例を具
体的に説明すると、制御器22は温度センサ23が計測
する冷水の蒸発器出口側温度T1が所定の温度、例えば
7℃より低くなると燃料制御弁2aの開度Vを絞って燃
焼装置2の火力を低下させ、7℃より高くなると燃料制
御弁2aの開度Vを大きくして燃焼装置2の火力を増加
させるように設けられている。
A specific example of the control of the control device according to the present invention will be described. When the temperature T1 of the cooler evaporator outlet side T1 measured by the temperature sensor 23 becomes lower than a predetermined temperature, for example, 7 ° C. It is provided so that the opening V of the fuel control valve 2a is reduced to reduce the thermal power of the combustion device 2, and when it becomes higher than 7 ° C., the opening V of the fuel control valve 2a is increased to increase the thermal power of the combustion device 2. There is.

【0013】このため、冷水の蒸発器出口側温度T1が
7℃より低下すると、高温再生器1および低温再生器3
で蒸発分離して生成される冷媒の量が自動的に減少し、
これによって蒸発器5に冷媒分配器6から供給される冷
媒液が減少するので、伝熱管18の管壁を介して冷媒の
蒸発潜熱により冷水が冷却される度合いが低下し、冷水
の蒸発器出口側温度T1は上昇に転じて所定の温度の7
℃に復帰する。
Therefore, when the temperature T1 of the cold water evaporator outlet side falls below 7 ° C., the high temperature regenerator 1 and the low temperature regenerator 3 are placed.
The amount of refrigerant produced by evaporation and separation is automatically reduced,
As a result, the amount of the refrigerant liquid supplied from the refrigerant distributor 6 to the evaporator 5 decreases, so that the degree to which the cold water is cooled by the latent heat of evaporation of the refrigerant via the tube wall of the heat transfer tube 18 decreases, and the cold water evaporator outlet The side temperature T1 starts to rise to a predetermined temperature of 7
Return to ℃.

【0014】逆に、冷水の蒸発器出口側温度T1が7℃
を越えて上昇した時には、高温再生器1および低温再生
器3で生成される冷媒の量が自動的に増加し、これによ
って蒸発器5に冷媒分配器6から供給される冷媒液が増
加するので、冷水が伝熱管18を介して冷却される度合
いが増加し、冷水の蒸発器出口側温度T1は低下に転じ
て所定の温度の7℃に復帰する。
On the contrary, the temperature T1 of the cold water evaporator outlet side is 7 ° C.
When the temperature rises above, the amount of the refrigerant generated in the high temperature regenerator 1 and the low temperature regenerator 3 automatically increases, so that the refrigerant liquid supplied from the refrigerant distributor 6 to the evaporator 5 increases. The degree to which the cold water is cooled via the heat transfer tube 18 increases, and the evaporator outlet side temperature T1 of the cold water starts to decrease and returns to a predetermined temperature of 7 ° C.

【0015】すなわち、微少な変動を無視すれば、温度
センサ23が計測する冷水の蒸発器出口側温度T1に基
づいて制御器22が燃料制御弁2aの開度Vを0〜10
0%の間で制御することにより、燃焼装置2の火力が制
御され、これにより蒸発器5における冷媒の蒸発潜熱の
量が制御されることから、図2に実線で示したように、
冷水の蒸発器出口側温度T1は、冷水の蒸発器入口側温
度T2が所定の12℃より高い冷房開始直後を除いて所
定の温度、この場合は7℃に維持される。
That is, if a slight fluctuation is ignored, the controller 22 sets the opening degree V of the fuel control valve 2a to 0 to 10 based on the evaporator outlet side temperature T1 of the cold water measured by the temperature sensor 23.
By controlling between 0%, the thermal power of the combustion device 2 is controlled, and thereby the amount of latent heat of vaporization of the refrigerant in the evaporator 5 is controlled. Therefore, as shown by the solid line in FIG.
The evaporator outlet side temperature T1 of the cold water is maintained at a predetermined temperature, in this case 7 ° C., except immediately after the start of cooling in which the evaporator side temperature T2 of the cold water is higher than a predetermined 12 ° C.

【0016】なお、冷房開始直後においては、冷房作用
を終えて伝熱管18に還流する冷水の蒸発器入口側温度
T2が、上記したように所定の12℃より高いため、冷
水の蒸発器出口側温度T1も所定の7℃より高く、冷水
の蒸発器入口側温度T2と冷水の蒸発器出口側温度T1
とは共に、この実施例の場合は5℃の温度差を維持しな
がら次第に低下する。
Immediately after the start of cooling, the temperature T2 at the evaporator inlet side of the cold water which has finished the cooling operation and recirculates to the heat transfer tube 18 is higher than the predetermined 12 ° C. as described above. The temperature T1 is also higher than the predetermined temperature of 7 ° C., and the cold water evaporator inlet side temperature T2 and the cold water evaporator outlet side temperature T1.
In addition, in the case of this example, the temperature gradually decreases while maintaining the temperature difference of 5 ° C.

【0017】制御器22はまた冷水ポンプ19の回転数
Nを、冷水の蒸発器入口側温度T2が一定温度(この場
合は12℃)になるように回転数を制御するが、定格の
50%を最低流量とし、これ以下の流量にはならないよ
うにしている。したがって、前記回転数Nが規格の50
%に固定されている状態では、図2に一点鎖線で示した
ように冷水の蒸発器入口側温度T2と燃料制御弁2aの
開度Vとは概ね比例関係にあり、冷水ポンプ19の回転
数Nが50%を越えて運転されている冷房負荷上昇時に
おいても、冷水の蒸発器出口側温度T1が7℃より高い
冷房開始時を除いて、冷水の蒸発器入口側温度T2はほ
ぼ12℃に維持される。
The controller 22 also controls the rotational speed N of the cold water pump 19 so that the cold water evaporator inlet side temperature T2 becomes a constant temperature (12 ° C. in this case), but 50% of the rated value. Is set as the minimum flow rate so that the flow rate does not fall below this. Therefore, the rotation speed N is 50 which is the standard.
In the state of being fixed to%, the temperature T2 of the inlet side of the cold water and the opening degree V of the fuel control valve 2a are substantially proportional to each other as indicated by the one-dot chain line in FIG. Even when the cooling load rises when N exceeds 50%, the temperature T2 of the evaporator inlet side of the cold water is approximately 12 ° C except when the temperature T1 of the evaporator outlet side of the cold water is higher than 7 ° C. Maintained at.

【0018】すなわち、冷房負荷に所定温度の7℃で供
給され、冷房作用を終えて伝熱管18に還流する冷水の
蒸発器入口側温度T2が、冷房負荷が小さいために余り
上がらず、例えば12℃より低く、冷房負荷換算0〜5
0%の範囲にある時には、冷水ポンプ19の回転数Nを
最低の回転数、例えばこの実施例では定格の50%に固
定して、冷水管20を流れる冷水の流量を最少にするの
で、電気エネルギーの大幅な削減が図れる。また、蒸発
器5の伝熱管18を流れる冷水の量を確保して、蒸発器
5での凍結を回避し、部分負荷時の運転を安定すること
ができる。
That is, the evaporator inlet side temperature T2 of the chilled water that is supplied to the cooling load at a predetermined temperature of 7 ° C. and returns to the heat transfer tube 18 after finishing the cooling operation does not rise so much because the cooling load is small. Lower than ℃, 0-5 cooling load conversion
When it is in the range of 0%, the rotation speed N of the cold water pump 19 is fixed to the minimum rotation speed, for example, 50% of the rated value in this embodiment, and the flow rate of the cold water flowing through the cold water pipe 20 is minimized. A large reduction in energy can be achieved. Further, the amount of cold water flowing through the heat transfer tube 18 of the evaporator 5 can be secured, freezing in the evaporator 5 can be avoided, and the operation under partial load can be stabilized.

【0019】冷房負荷が増大し、冷房作用を終えて伝熱
管18に還流する冷水の蒸発器入口側温度T2が12℃
より高い時には冷水ポンプ19の回転数Nが増加し、こ
れにより冷房負荷に供給する冷水の流量が増え、冷水の
蒸発器入口側温度T2が低下し12℃に復帰する。
The temperature T2 at the inlet side of the evaporator is 12 ° C., where the cooling load is increased, the cooling action is finished, and the cold water flowing back to the heat transfer tube 18 is returned.
When the temperature is higher, the rotation speed N of the chilled water pump 19 increases, whereby the flow rate of the chilled water supplied to the cooling load increases, the evaporator inlet side temperature T2 of the chilled water decreases, and the temperature returns to 12 ° C.

【0020】したがって、本発明の制御装置を備えた上
記構成の吸収冷凍機においては、冷水管20を流れて冷
房負荷に供給される冷水の流量は、図3に示したように
冷房負荷が0〜50%(冷水の蒸発器入口側温度T2換
算7〜12℃)の範囲にある時には、冷水ポンプ19の
回転数Nが最低の回転数に固定されて最少となり、冷房
負荷が増えて50%(冷水の蒸発器入口側温度T2換算
12℃)を越えると、冷水ポンプ19の回転数Nが冷房
負荷の増加に対応して比例的に増加し、これにより冷房
負荷に供給される冷水の流量が増加するので、冷房作用
を終えて伝熱管18に還流する冷水の蒸発器入口側温度
T2は、冷房負荷50〜100%の範囲で概ね12℃一
定となる。
Therefore, in the absorption refrigerating machine having the above-mentioned configuration including the control device of the present invention, the flow rate of the cold water flowing through the cold water pipe 20 and supplied to the cooling load is 0 when the cooling load is 0, as shown in FIG. When it is in the range of -50% (cold water evaporator inlet side temperature T2 conversion 7-12 ° C), the rotation speed N of the chilled water pump 19 is fixed to the minimum rotation speed and becomes the minimum, and the cooling load increases to 50%. When (cooling water evaporator inlet side temperature T2 conversion 12 ° C.) is exceeded, the rotation speed N of the cooling water pump 19 increases in proportion to the increase of the cooling load, whereby the flow rate of the cooling water supplied to the cooling load. Therefore, the evaporator inlet side temperature T2 of the chilled water that returns to the heat transfer tube 18 after finishing the cooling operation is approximately 12 ° C. in the cooling load range of 50 to 100%.

【0021】なお、冷房負荷が50〜100%の範囲に
ある時の制御器22による冷水ポンプ19の回転数Nの
制御は、例えば蒸発器入口側温度に基づいてPID制御
しても良い。
The control of the rotation speed N of the chilled water pump 19 by the controller 22 when the cooling load is in the range of 50 to 100% may be carried out by PID control based on the evaporator inlet side temperature, for example.

【0022】また、温度センサ23、24は蒸発器5の
内側に設置することもできる。
The temperature sensors 23 and 24 can also be installed inside the evaporator 5.

【0023】[0023]

【発明の効果】以上説明したように本発明は、蒸発器内
部の伝熱管を経由して取り出される冷水の蒸発器出口側
温度に基づいて発生器の加熱量を制御する加熱量制御機
能と、冷房作用を終えて前記伝熱管に還流する前記冷水
の蒸発器入口側温度に基づいて前記冷水の流量を制御す
る流量制御機能と、を具備する吸収冷凍機の制御装置で
あり、
As described above, the present invention has a heating amount control function for controlling the heating amount of the generator based on the evaporator outlet side temperature of the cold water taken out via the heat transfer tube inside the evaporator. A flow rate control function for controlling the flow rate of the cold water based on the evaporator inlet side temperature of the cold water that returns to the heat transfer tube after finishing the cooling action, and is a control device for an absorption refrigerator.

【0024】蒸発器内部の伝熱管を経由して取り出され
る冷水の蒸発器出口側温度に基づいて発生器の加熱量を
制御する加熱量制御機能と、冷房作用を終えて前記伝熱
管に還流する前記冷水の蒸発器入口側温度が所定温度未
満である時、前記冷水の流量を減少させ、前記冷水の蒸
発器入口側温度が所定温度を越えている時、この蒸発器
入口側温度に基づいて前記冷水の流量を増加する制御機
能と、冷水流量を下限流量以上に保つ制御機能と、を具
備する吸収冷凍機の制御装置であるので、
A heating amount control function of controlling the heating amount of the generator on the basis of the evaporator outlet side temperature of the cold water taken out through the heat transfer pipe inside the evaporator, and the cooling action is returned to the heat transfer pipe. When the temperature on the evaporator inlet side of the cold water is lower than a predetermined temperature, the flow rate of the cold water is decreased, and when the temperature on the evaporator inlet side of the cold water exceeds the predetermined temperature, based on the temperature on the evaporator inlet side. Since it is a control device for an absorption refrigerator having a control function for increasing the flow rate of the cold water and a control function for maintaining the flow rate of the cold water at a lower limit flow rate or more,

【0025】冷水の蒸発器出口側温度に基づいて発生器
の加熱量が制御されると共に、冷水の蒸発器入口側温度
に基づいて冷水の流量が制御されることから、冷水の蒸
発器入口側温度が低下する冷房負荷減少時においては、
冷水の流量が減少するように冷水ポンプの回転数が低下
する。これにより、消費電力の大幅な削減が可能とな
り、エネルギー効率の高い運転が行われる。また、冷水
の流量は下限流量以上に保たれ、冷房負荷が大幅に減少
したときにも、蒸発器に下限流量以上の冷水が循環し、
蒸発器の凍結を回避でき、吸収冷凍機を安定して運転す
ることができる。
Since the heating amount of the generator is controlled on the basis of the temperature of the cold water on the evaporator outlet side and the flow rate of the cold water is controlled on the basis of the temperature of the cold water on the evaporator inlet side, the cold water on the evaporator inlet side is controlled. When the cooling load decreases when the temperature decreases,
The rotation speed of the cold water pump decreases so that the flow rate of cold water decreases. As a result, the power consumption can be significantly reduced, and the operation can be performed with high energy efficiency. In addition, the flow rate of cold water is maintained above the lower limit flow rate, and even when the cooling load is significantly reduced, cold water above the lower limit flow rate circulates in the evaporator,
Freezing of the evaporator can be avoided, and the absorption refrigerator can be operated stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の装置構成を示す説明図である。FIG. 1 is an explanatory diagram showing a device configuration of an embodiment.

【図2】高温再生器における加熱量を制御する説明図で
ある。
FIG. 2 is an explanatory diagram for controlling a heating amount in a high temperature regenerator.

【図3】冷水流量を冷房負荷との観点から見た説明図で
ある。
FIG. 3 is an explanatory diagram in which a flow rate of cold water is viewed from a viewpoint of a cooling load.

【図4】従来技術の説明図である。FIG. 4 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 燃焼装置 3 低温再生器 4 凝縮器 5 蒸発器 6 冷媒分配器 7 吸収器 18 伝熱管 19 冷水ポンプ 20 冷水管 22 制御器 23・24 温度センサ 1 High Temperature Regenerator 2 Combustion Device 3 Low Temperature Regenerator 4 Condenser 5 Evaporator 6 Refrigerant Distributor 7 Absorber 18 Heat Transfer Tube 19 Cold Water Pump 20 Cold Water Pipe 22 Controller 23/24 Temperature Sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器内部の伝熱管を経由して取り出さ
れる冷水の蒸発器出口側温度に基づいて発生器の加熱量
を制御する加熱量制御機能と、冷房作用を終えて前記伝
熱管に還流する前記冷水の蒸発器入口側温度に基づいて
前記冷水の流量を制御する流量制御機能と、を具備する
ことを特徴とする吸収冷凍機の制御装置。
1. A heating amount control function for controlling the heating amount of a generator based on the evaporator outlet side temperature of cold water taken out via a heat transfer pipe inside the evaporator; And a flow rate control function of controlling the flow rate of the cold water based on the evaporator inlet side temperature of the cold water that recirculates.
【請求項2】 蒸発器内部の伝熱管を経由して取り出さ
れる冷水の蒸発器出口側温度に基づいて発生器の加熱量
を制御する加熱量制御機能と、冷房作用を終えて前記伝
熱管に還流する前記冷水の蒸発器入口側温度が所定温度
未満である時、前記冷水の流量を減少させ、前記冷水の
蒸発器入口側温度が所定温度を越えている時、この蒸発
器入口側温度に基づいて前記冷水の流量を増加する制御
機能と、冷水流量を下限流量以上に保つ制御機能と、を
具備することを特徴とする吸収冷凍機の制御装置。
2. A heating amount control function for controlling the heating amount of the generator based on the evaporator outlet side temperature of the cold water taken out via the heat transfer pipe inside the evaporator, and the heat transfer pipe after the cooling operation is completed. When the evaporator inlet side temperature of the circulating cold water is lower than a predetermined temperature, the flow rate of the cold water is reduced, and when the evaporator inlet side temperature of the cold water exceeds a predetermined temperature, the evaporator inlet side temperature is lowered. A control device for an absorption chiller, comprising: a control function for increasing the flow rate of cold water based on the above; and a control function for maintaining the flow rate of cold water at a lower limit flow rate or more.
JP5349063A 1993-12-28 1993-12-28 Control device of absorption refrigerating machine Pending JPH07190540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5349063A JPH07190540A (en) 1993-12-28 1993-12-28 Control device of absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5349063A JPH07190540A (en) 1993-12-28 1993-12-28 Control device of absorption refrigerating machine

Publications (1)

Publication Number Publication Date
JPH07190540A true JPH07190540A (en) 1995-07-28

Family

ID=18401239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5349063A Pending JPH07190540A (en) 1993-12-28 1993-12-28 Control device of absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JPH07190540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163601A (en) * 2010-02-05 2011-08-25 Hitachi Appliances Inc Absorption type heat pump device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163601A (en) * 2010-02-05 2011-08-25 Hitachi Appliances Inc Absorption type heat pump device

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
JP3554858B2 (en) Absorption refrigerator
JPH07190540A (en) Control device of absorption refrigerating machine
CN111397242A (en) Lithium bromide absorption type water chilling unit with cold energy rapid storage and release system
JP2858922B2 (en) Absorption chiller / heater controller
CN212057822U (en) Lithium bromide absorption type water chilling unit with cold energy rapid storage and release system
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
CN101688704A (en) Be used to expand the method and system of the adjusting ratio of absorption chiller
JP3434279B2 (en) Absorption refrigerator and how to start it
JPH11257778A (en) Absorption type cold heat generator
JP3874262B2 (en) Refrigeration system combining absorption and compression
JP3081465B2 (en) Control device for absorption refrigerator
CN1079153C (en) Refrigerant automatic-equilibriuming device for absorption refrigerator
JPH0198865A (en) Absorption refrigerator
JP3874263B2 (en) Refrigeration system combining absorption and compression
JP2023079334A (en) refrigerator
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JPH11211262A (en) Absorption type refrigerating machine system
JP2977999B2 (en) Absorption refrigerator
JP2000161812A (en) Control device of absorption refrigerating machine
JP3902912B2 (en) Control device
JPH0356861Y2 (en)
JP3289236B2 (en) Absorption type cold heat generator
JPH0627591B2 (en) Absorption refrigerator
JP2002364942A (en) Absorption refrigerating unit and its starting method