JPH07190047A - High speed rotating body - Google Patents

High speed rotating body

Info

Publication number
JPH07190047A
JPH07190047A JP35280093A JP35280093A JPH07190047A JP H07190047 A JPH07190047 A JP H07190047A JP 35280093 A JP35280093 A JP 35280093A JP 35280093 A JP35280093 A JP 35280093A JP H07190047 A JPH07190047 A JP H07190047A
Authority
JP
Japan
Prior art keywords
rotating body
ceramic sleeve
speed rotating
rotation
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35280093A
Other languages
Japanese (ja)
Other versions
JP3285269B2 (en
Inventor
Yoichi Kuwayama
洋一 桑山
Hiroyuki Izume
裕之 井爪
Naoyuki Jinbo
直幸 神保
Kazushige Ono
一茂 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18426527&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07190047(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP35280093A priority Critical patent/JP3285269B2/en
Publication of JPH07190047A publication Critical patent/JPH07190047A/en
Application granted granted Critical
Publication of JP3285269B2 publication Critical patent/JP3285269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

PURPOSE:To keep a prescribed rotating speed from the initial stage of rotation and provide stable rotating precision to using environmental temperature by shrinkage-fitting and fixing a metal outer circumferential member to a ceramic sleeve, and then working the bore into a prescribed hand drum form. CONSTITUTION:A sintering assistant and a molding assistant are added to and mixed with high purity alumina powder followed by pressing to provide a compact sleeve, which is then sintered after degreasing to form a high purity alumina sleeve material 11, and its outer diameter is made into a prescribed dimension. A high purity aluminium material 12 having a polygon mirror form whose bore is precisely cut into a prescribed dimension is shrinkage-fitted thereto, the bore is cut into a prescribed hand drum form, and the material 12 is precisely cut into the prescribed polygon mirror form with the bore 14 of the sleeve 3 as the standard to form a high speed rotating body 13. Thus, a precision necessary for general gas bearing is provided in the initial stage of rotation, thereby suppressing the unstable vibration at rotation starting, the bearing precision is enhanced under high speed rotation by the centrifugal stress of the high speed rotating body and the thermal expansion by the friction with the gas, and a stable rotating precision from speed to high speed can be kept.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばポリゴンミラー
のように高速かつ安定回転が要請される気体動圧軸受に
使用する高速回転体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed rotating body used for a gas dynamic pressure bearing, such as a polygon mirror, which requires high-speed and stable rotation.

【0002】[0002]

【従来の技術】気体動圧軸受は、油圧ポンプ等の昇圧機
器を必要とせず、振動や騒音を抑えることができ、安定
した回転と優れた回転精度を獲得でき、更に通常は数万
〜数10万rpmの高速回転が可能であるところから、
例えばポリゴンミラーのように高速かつ安定回転が要請
される機器の軸受として使用されている。
2. Description of the Related Art Gas dynamic bearings do not require a boosting device such as a hydraulic pump, can suppress vibrations and noises, can obtain stable rotation and excellent rotation accuracy, and are normally tens of thousands to several tens. From the fact that high-speed rotation of 100,000 rpm is possible,
For example, it is used as a bearing for equipment such as a polygon mirror that requires high-speed and stable rotation.

【0003】しかしながら、上記気体動圧軸受は、始
動時及び停止時に軸受部に接触が起こる、荷重に制限
がある、安定回転の維持が、固定軸と回転体との間の
すきま(以下「軸受すきま」という)に大きく依存す
る、等の欠点があった。
However, in the above-mentioned gas dynamic pressure bearing, the bearing portion is contacted at the time of starting and stopping, the load is limited, stable rotation is maintained, and the clearance between the fixed shaft and the rotating body (hereinafter referred to as "bearing"). There is a drawback that it depends on "clearance").

【0004】これらの欠点を解決するために、特開昭6
3−266420号公報には、荷重が一定かつ低い量で
あるポリゴンミラーに使用する気体動圧軸受を構成する
にあたり、固定軸と回転体とに動圧発生用溝を設けて安
定回転を維持せしめるとともに、固定部ステータコイル
に対応して回転体にマグネットを配備して始動時及び停
止時に軸受部に接触が起こらないようにし、また、セラ
ミックスリーブと外周部材とからなる回転体を焼きばめ
固着して遠心応力によるラジアル方向の張力を相殺して
クラック発生及び伝播を抑制して安定回転を維持する技
術が開示されている。
In order to solve these drawbacks, Japanese Patent Application Laid-Open No. 6-62
According to Japanese Patent Laid-Open No. 3-266420, in constructing a gas dynamic pressure bearing used for a polygon mirror having a constant and low load, a groove for dynamic pressure generation is provided in a fixed shaft and a rotating body to maintain stable rotation. At the same time, a magnet is provided on the rotating body corresponding to the stator coil of the fixed part to prevent contact with the bearing part at the time of starting and stopping, and the rotating body consisting of the ceramic sleeve and the outer peripheral member is shrink-fitted and fixed. There is disclosed a technique of canceling radial tension due to centrifugal stress to suppress crack generation and propagation and maintain stable rotation.

【0005】ところで気体動圧軸受に使用する高速回転
体は、図2の模式図(a)〜(d)に示すような手順で
製造されていた。初めに図2(a)に示す焼結した高密
度セラミックスリーブ素材20の内外径を所定の寸法に
加工し、図2(b)に示すようなセラミックスリーブ2
0を得る。次いで上記セラミックスリーブ20より熱膨
張係数が大きく内径を所定寸法に加工した金属製外周部
材21を、図2(c)に示すように上記セラミックスリ
ーブ20の外周20bに焼きばめ固着する。
By the way, the high-speed rotating body used for the gas dynamic pressure bearing has been manufactured by the procedure shown in the schematic diagrams (a) to (d) of FIG. First, the sintered high-density ceramic sleeve material 20 shown in FIG. 2A is processed into inner and outer diameters to have a predetermined size, and the ceramic sleeve 2 as shown in FIG.
Get 0. Next, as shown in FIG. 2C, a metal outer peripheral member 21 having a larger coefficient of thermal expansion than that of the ceramic sleeve 20 and having an inner diameter processed into a predetermined dimension is shrink-fitted and fixed to the outer periphery 20b of the ceramic sleeve 20 as shown in FIG.

【0006】そして、図2(c)に示すような上記セラ
ミックスリーブ20の内径22を基準にして、上記焼き
ばめ固着した金属製外周部材21を上記高速回転体の回
転軸23に対し、上記金属製外周部材21の上面21a
下面21bが直角に、外周面21cが平行になるように
加工し高速回転体24を得る。
With reference to the inner diameter 22 of the ceramic sleeve 20 as shown in FIG. 2 (c), the shrink-fitted metal outer peripheral member 21 is attached to the rotary shaft 23 of the high-speed rotating body. Upper surface 21a of metal outer peripheral member 21
The lower surface 21b is processed at a right angle and the outer peripheral surface 21c is processed to be parallel to obtain a high-speed rotating body 24.

【0007】つまり、上記高速回転体24は、焼結した
高密度セラミックスリーブ20の内径20aと外径20
bを仕上げ加工した後、セラミックスリーブ20より熱
膨張係数の大きい上記金属製外周部材21を焼きばめ固
着しているため、上記セラミックスリーブ20の外周2
0bから焼きばめによる圧縮応力が作用し、図2(c)
に示すように、上記セラミックスリーブの内径22を大
きくつづみ形状に変形させている。このため上記高速回
転体24のセラミックスリーブ20と、図示しない表面
に動圧溝を形成したセラミック固定軸との軸受すきまを
不均一なものにする。
That is, the high-speed rotating body 24 has an inner diameter 20a and an outer diameter 20 of the sintered high-density ceramic sleeve 20.
After b is finished, since the metal outer peripheral member 21 having a larger thermal expansion coefficient than the ceramic sleeve 20 is shrink-fitted and fixed, the outer periphery 2 of the ceramic sleeve 20 is fixed.
From 0b, compressive stress due to shrinkage is applied, as shown in FIG.
As shown in FIG. 7, the inner diameter 22 of the ceramic sleeve is largely deformed into a staggered shape. Therefore, the bearing clearance between the ceramic sleeve 20 of the high-speed rotating body 24 and the ceramic fixed shaft having a dynamic pressure groove formed on the surface (not shown) is made nonuniform.

【0008】一般に高速回転体の支持に用いる気体動圧
軸受は、空気、ヘリウムガス、窒素ガス等の粘性係数の
小さい流体を用い、回転にともない軸受すきまに圧力を
発生させ、固定軸に対して高速回転体を非接触で支持す
ることから、回転にともなう摩擦損失が小さく低騒音で
高精度高速回転が可能である等の特徴を有する反面、負
荷能力が小さくかつ耐振性に弱いという欠点をもってい
る。
Generally, a gas dynamic pressure bearing used for supporting a high-speed rotating body uses a fluid having a small viscosity coefficient such as air, helium gas, nitrogen gas, etc., to generate pressure in the bearing clearance with rotation, and Since it supports a high-speed rotating body in a non-contact manner, it has features such as low friction loss due to rotation, low noise and high-accuracy high-speed rotation, but has the drawback of low load capacity and weak vibration resistance. .

【0009】このため、この種の高速回転体に必要な軸
受剛性や回転精度を得るために、軸受すきまは、数μm
以下であることが必要で、かつ真円度、円筒度といった
軸受形状が1〜2μm程度以下の高精度であることを必
要としている。
Therefore, in order to obtain the bearing rigidity and rotation accuracy required for this type of high-speed rotating body, the bearing clearance is several μm.
The bearing shape such as roundness and cylindricity needs to be high accuracy of about 1 to 2 μm or less.

【0010】しかるに、上記従来技術の高速回転体にお
いては、回転の立ち上がり時に上記軸受すきまに不均一
な圧力分布を発生させ易く、上記高速回転体に予測不可
能な不安定振動を発生させたり、定常回転下でのより良
好な回転精度を得ることが困難であった。また上記セラ
ミックスリーブ20のつづみ形状に変形した内径22を
基準にして、上記金属製外周部材21を加工するため、
回転軸23に対する上記金属製外周部材21の加工精度
が低下し、回転振れの原因ともなっていた。
However, in the above-mentioned conventional high-speed rotating body, an uneven pressure distribution is easily generated in the bearing clearance at the start of rotation, and unpredictable unstable vibration is generated in the high-speed rotating body. It was difficult to obtain better rotation accuracy under steady rotation. Further, since the metal outer peripheral member 21 is processed on the basis of the inner diameter 22 of the ceramic sleeve 20 which has been deformed into the hook shape,
The processing accuracy of the metal outer peripheral member 21 with respect to the rotating shaft 23 is reduced, which is also a cause of rotational runout.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記問題に対
処するためになされたもので、その目的は、回転初期か
ら所定の回転数を維持し、使用環境温度まで安定した良
好な回転精度を達成する高速回転体を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its purpose is to maintain a predetermined number of rotations from the initial stage of rotation and to achieve good rotation accuracy that is stable up to the ambient temperature of use. It is to provide a high-speed rotating body to achieve.

【0012】[0012]

【課題を解決するための手段】本発明の要旨は、従来の
セラミックスリーブ及びその外周に焼きばめ固着した金
属製外周部材を構成してなる高速回転体において、前記
セラミックスリーブを前記金属製外周部材を焼きばめ固
着した後に前記セラミックスリーブの内径を所定のつづ
み形状に加工するところにある。また、高速回転体の使
用回転数により作用するラジアル方向の遠心応力及び摩
擦による熱膨張により緩和する焼きばめ圧縮応力に応じ
て、セラミック製固定軸とセラミックスリーブとのすき
まが一様になるように、上記セラミックスリーブ内径の
所定のつづみ形状を決めたところにもある。
SUMMARY OF THE INVENTION The main object of the present invention is to provide a conventional ceramic sleeve and a high-speed rotating body comprising a metal outer peripheral member fixed by shrink fitting to the outer periphery of the ceramic sleeve. After the member is shrink-fitted and fixed, the inner diameter of the ceramic sleeve is processed into a predetermined step shape. In addition, the clearance between the ceramic fixed shaft and the ceramic sleeve should be uniform according to the radial centrifugal force that acts depending on the rotational speed of the high-speed rotating body and the shrink-fit compressive stress that is relaxed by thermal expansion due to friction. In addition, there is also a place where a predetermined step shape of the inner diameter of the ceramic sleeve is determined.

【0013】ここで上記金属製回転体の内径、外径、ポ
アソン数、ヤング率をR1 、R2 、m1 、E1 とし、上
記セラミックスリーブの内径、外径、ポアソン数、ヤン
グ率をR3 、R4 、m2 、E2 、また上記焼きばめ代を
δとすると、上記焼きばめ圧縮応力Pは式1に従い、こ
のときの上記セラミックスリーブ内径の圧縮変形量χは
式2に従う。
Here, the inner diameter, outer diameter, Poisson's number, and Young's modulus of the metal rotating body are R 1 , R 2 , m 1 , E 1, and the inner diameter, outer diameter, Poisson's number, Young's modulus of the ceramic sleeve are When R 3 , R 4 , m 2 , E 2 and the shrink fit allowance are δ, the shrink fit compressive stress P follows Equation 1, and the compressive deformation amount χ of the ceramic sleeve inner diameter at this time is Equation 2. Follow

【0014】 [0014]

【0015】上記セラミックスリーブの所定のつづみ形
状は、上記高速回転体の使用回転数に基づくラジアル方
向の遠心応力に応じて変化する。そこで本発明において
は、上記遠心応力で相殺されるような圧縮変形量χで決
まる形状にする。
The predetermined shape of the ceramic sleeve changes according to the centrifugal stress in the radial direction based on the rotational speed of the high-speed rotating body. Therefore, in the present invention, the shape is determined by the amount of compressive deformation χ that is canceled by the centrifugal stress.

【0016】本発明においては、上記高速回転体の回転
にともなう気体との摩擦で発生する熱による上記金属製
外周部材の熱膨張により上記焼きばめ代δが減少する
が、上記セラミックスリーブに作用させた上記焼きばめ
圧縮応力Pは、上記セラミックスリーブと上記金属製回
転体の固定がゆるみ回動することなく緩和するように焼
きばめ代δを求めることができる。更に本発明において
は、摩擦による熱膨張により緩和する焼きばめ圧縮応力
Pで相殺されるような圧縮変形量χで決まる形状にす
る。
In the present invention, the shrinkage allowance δ is reduced by the thermal expansion of the metal outer peripheral member due to the heat generated by the friction with the gas due to the rotation of the high-speed rotating body, but it acts on the ceramic sleeve. The shrink fit compressive stress P thus obtained can be obtained by a shrink fit allowance δ so that the fixing of the ceramic sleeve and the metal rotating body is relaxed without loosening and rotating. Further, in the present invention, the shape is determined by the compressive deformation amount χ that is offset by the shrink fit compressive stress P that is relaxed by thermal expansion due to friction.

【0017】すなわち上記の所定のつづみ形状は、上記
所定のつづみ形状がより良好な円筒となり上記軸受すき
まを一様にするように、上記遠心応力及び上記焼きばめ
圧縮応力Pに応じて生じる変形を相殺する形状となって
いる。
That is, according to the centrifugal stress and the shrinkage-compressive stress P, the predetermined zigzag shape becomes a better cylinder so that the bearing clearance is uniform. It has a shape that offsets the deformation that occurs.

【0018】[0018]

【作用】本発明高速回転体は、表面に動圧溝を形成した
セラミック製固定軸の外側に配置され、気体動圧軸受機
構により回転自在に支持されたラジアル方向に一様な厚
さを有するセラミックスリーブの外周にセラミックスリ
ーブより熱膨張係数の大きい金属製外周部材を焼きばめ
固着して上記セラミックスリーブの外周から焼きばめ圧
縮応力Pを作用させ、上記セラミックスリーブを圧縮変
形させる。次いで、上記焼きばめ圧縮応力下にある上記
セラミックスリーブの内径を加工し、使用回転数と使用
環境温度での上記焼きばめ応力Pの緩和に応じた上記式
2に従う圧縮変形量に等しいつづみ形状にし、初期の軸
受すきまを均一な方向に改善する。さらに高速回転下で
は、ラジアル方向の遠心応力により上記焼きばめ圧縮応
力Pが緩和され、上記セラミックスリーブの内径のつつ
み形状をより改善し、定常回転下で良好な円筒精度とな
る。
The high-speed rotating body of the present invention is arranged outside a ceramic fixed shaft having a dynamic pressure groove formed on the surface thereof, and is rotatably supported by a gas dynamic pressure bearing mechanism and has a uniform thickness in the radial direction. A metal outer peripheral member having a thermal expansion coefficient larger than that of the ceramic sleeve is shrink-fitted and fixed to the outer periphery of the ceramic sleeve, and shrink fit compressive stress P is applied from the outer periphery of the ceramic sleeve to compressively deform the ceramic sleeve. Then, the inner diameter of the ceramic sleeve under the shrinkage-fitting compression stress is processed to be equal to the amount of compressive deformation according to the above equation 2 in accordance with the relaxation of the shrinkage-fitting stress P at the operating speed and the operating environment temperature. Only the shape of the bearing will improve the initial bearing clearance in a uniform direction. Further, under high-speed rotation, the shrinkage compressive stress P is relaxed by centrifugal stress in the radial direction, the wrapping shape of the inner diameter of the ceramic sleeve is further improved, and good cylindrical accuracy is obtained under steady rotation.

【0019】[0019]

【実施例】以下、本発明の一実施例を図面を用いて説明
する。図3は実施例に係る高速回転ポリゴンミラー装置
の概略断面図を示す。また図1は同高速回転ポリゴンミ
ラー回転体の概略製造工程と、高速回転下での上記セラ
ミックスリーブの形状の変化を説明するための模式図を
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a schematic sectional view of a high speed rotating polygon mirror device according to the embodiment. Further, FIG. 1 is a schematic diagram for explaining a schematic manufacturing process of the same high-speed rotating polygon mirror rotating body and a change in the shape of the ceramic sleeve under high-speed rotation.

【0020】図1に示すように、高純度アルミナ(Al
2 3 )粉末に焼結助剤と成形助剤を加え混合し顆粒化
した粉末をプレス成形金型に充填し、500kg/cm
2 の圧力でプレスすることでアルミナ製成形体スリーブ
を得た。上記成形体を、常法に従い脱脂した後、165
0℃の酸化雰囲気で焼結し、高密度アルミナスリーブ素
材11(図1(a))を得た。
As shown in FIG. 1, high purity alumina (Al
2 O 3 ) Powder is mixed with a sintering aid and a molding aid and mixed, and the granulated powder is filled into a press molding die, and 500 kg / cm
By pressing at a pressure of 2 , an alumina molded body sleeve was obtained. 165 after degreasing the molded body according to a conventional method
Sintering was performed in an oxidizing atmosphere at 0 ° C. to obtain a high density alumina sleeve material 11 (FIG. 1 (a)).

【0021】焼結した高密度アルミナスリーブ素材11
は、そのままでは高速回転体13を構成するセラミック
スリーブ11として用いることができないためダイヤモ
ンド砥石やダイヤモンド砥粒を用いて所定の形状に研削
加工する必要がある。図1(a)に示すこのセラミック
スリーブ素材11は、外径をセンタレス研削盤又は円筒
研削盤によって図1(b)に示すように所定寸法に加工
した。このとき上記セラミックスリーブ11の外径11
aの形状精度は、真円度1μm、円筒度2.0μmであ
った。
Sintered high density alumina sleeve material 11
Cannot be used as it is as the ceramic sleeve 11 that constitutes the high-speed rotating body 13, so it must be ground into a predetermined shape using a diamond grindstone or diamond abrasive grains. The ceramic sleeve material 11 shown in FIG. 1 (a) was processed to have a predetermined outer diameter by a centerless grinder or a cylindrical grinder as shown in FIG. 1 (b). At this time, the outer diameter 11 of the ceramic sleeve 11 is
The shape accuracy of a was 1 μm in circularity and 2.0 μm in cylindricity.

【0022】次いで、図1(b)に示すように、上記外
径11aを加工したセラミックスリーブ11に、予め内
径を所定の寸法に精密切削加工したポリゴンミラー形状
に加工した高純度アルミ素材12を焼きばめした(図1
(c))。このときの焼きばめ代(焼きばめ代=金属製
回転体の内径−セラミックスリーブの外径)は16〜2
4μmで、焼きばめ温度は170〜180℃であった。
常温下で、上記高純度アルミ製ポリゴンミラー素材12
は、上記セラミックスリーブ11に外周から圧縮応力を
作用させセラミックスリーブ11の内径11bを2〜3
μm圧縮変形させた。
Then, as shown in FIG. 1 (b), a ceramic sleeve 11 having the outer diameter 11a machined therein is provided with a high-purity aluminum material 12 which has been machined in advance into a polygon mirror shape by precision cutting the inner diameter to a predetermined dimension. Shrink fit (Fig. 1
(C)). The shrinkage allowance at this time (shrinkage allowance = inner diameter of metal rotating body−outer diameter of ceramic sleeve) is 16 to 2.
The shrink fitting temperature was 170 to 180 ° C.
At room temperature, the above high-purity aluminum polygon mirror material 12
Applies a compressive stress to the ceramic sleeve 11 from the outer circumference so that the inner diameter 11b of the ceramic sleeve 11 becomes 2 to 3
It was compressed and deformed by μm.

【0023】そして、図1(C)のように上記高純度ア
ルミ製ポリゴンミラー用素材12を上記セラミックスリ
ーブ11の外周に焼きばめした高速回転体13は、内径
を円筒内径研削盤とホーニング研削盤によって図1
(d)のように所定つづみ形状に研削加工した。この
時、上記内径の形状精度は、真円度0.6μm、円筒度
2μmでゆるやかなつづみ状であった。この後、上記セ
ラミックスリーブ11の内径14を基準にして、上記高
純度アルミ製ポリゴンミラー用素材12を所定のポリゴ
ンミラー形状に精密切削加工し高速回転体13(図1
(d))とした。
As shown in FIG. 1 (C), the high-purity aluminum polygon mirror material 12 is shrink-fitted onto the outer periphery of the ceramic sleeve 11, and the high-speed rotating body 13 has an inner diameter of a cylindrical inner diameter grinder and honing grinding. Figure 1 by the board
As shown in (d), it was ground into a predetermined step shape. At this time, the shape accuracy of the inner diameter was a rounded shape with a roundness of 0.6 μm and a cylindricity of 2 μm. Thereafter, the high-purity aluminum polygon mirror material 12 is precision-cut into a predetermined polygon mirror shape based on the inner diameter 14 of the ceramic sleeve 11, and the high-speed rotating body 13 (see FIG. 1).
(D)).

【0024】上記のように製作された高速回転ポリゴン
ミラーには、図3に示すように回転体の下部にマグネッ
ト31、そして表面にヘリングボーン動圧溝を形成した
セラミック固定軸32を立設するアルミ製の基台33に
コイル34と回路基盤35を設けることでモータを構成
し、図示しない回転制御装置により上記高速回転ポリゴ
ンミラー36を30000rpmで回転させた。この結
果、定常回転において上記高速回転体の内径は図1
(e)に示すように上記つづみ形状が解消され、定常回
転に達するまでに従来発生することがあった回転体の不
安定振動が解消されるとともに、定常回転下での回転体
の振れ精度0.03μmを安定して達成することができ
た。
As shown in FIG. 3, the high-speed rotating polygon mirror manufactured as described above is provided with a magnet 31 at the lower part of the rotating body and a ceramic fixed shaft 32 having herringbone dynamic pressure grooves formed on the surface thereof. A motor is configured by providing a coil 34 and a circuit board 35 on an aluminum base 33, and the high-speed rotating polygon mirror 36 is rotated at 30,000 rpm by a rotation control device (not shown). As a result, the inner diameter of the high-speed rotating body in the steady rotation is as shown in FIG.
As shown in (e), the above-mentioned jagged shape is eliminated, unstable vibration of the rotating body that has been conventionally generated before reaching steady rotation is eliminated, and runout accuracy of the rotating body under steady rotation is eliminated. It was possible to stably achieve 0.03 μm.

【0025】[0025]

【発明の効果】本発明によれば、回転初期は通常の気体
軸受に必要な軸受精度を加工で得ることにより、回転の
立ち上がり時に発生し易い不安定振動を抑制する。ま
た、高速回転下においては、高速回転体の遠心応力、気
体との摩擦による熱膨張が上記高速回転体の軸受精度を
より高精度にする。このことで、上記高速回転体を低速
から高速まで安定した回転精度を維持することができる
ようになった。
According to the present invention, in the initial stage of rotation, the bearing precision required for a normal gas bearing is obtained by machining, thereby suppressing unstable vibration that tends to occur at the start of rotation. Further, under high speed rotation, centrifugal stress of the high speed rotating body and thermal expansion due to friction with gas make the bearing accuracy of the high speed rotating body more accurate. As a result, stable rotation accuracy of the high-speed rotating body can be maintained from low speed to high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】同高速回転ポリゴンミラー回転体の概略製造工
程と、高速回転下での上記セラミックスリーブの形状の
変化を説明するための模式図である。
FIG. 1 is a schematic diagram for explaining a schematic manufacturing process of the high-speed rotating polygon mirror rotating body and a change in shape of the ceramic sleeve under high-speed rotation.

【図2】従来技術に係る高速回転ポリゴンミラー装置の
概略製造工程を示す模式図である。
FIG. 2 is a schematic view showing a schematic manufacturing process of a high-speed rotating polygon mirror device according to a conventional technique.

【図3】実施例に係る高速回転ポリゴンミラー装置の概
略断面図である。
FIG. 3 is a schematic sectional view of a high-speed rotating polygon mirror device according to an embodiment.

【符号の説明】[Explanation of symbols]

11 セラミックスリーブ 12 外周部材 13 高速回転体 14 セラミックスリーブの内径 20 セラミックスリーブ 21 外周部材 22 セラミックスリーブの内径 24 高速回転体 11 ceramic sleeve 12 outer peripheral member 13 high-speed rotating body 14 inner diameter of ceramic sleeve 20 ceramic sleeve 21 outer peripheral member 22 inner diameter of ceramic sleeve 24 high-speed rotating body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大野 一茂 岐阜県揖斐郡揖斐川町北方1丁目1番地 イビデン株式会社大垣北工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazushige Ohno 1-1, Kitagata, Ibikawa-cho, Ibi-gun, Gifu Prefecture Ibiden Co., Ltd. Ogakikita Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミック製固定軸の外側にあって前記
セラミック製固定軸とともに気体動圧軸受を構成する高
速回転体であって、ラジアル方向に一定の厚さを有する
セラミックスリーブ及びその外周に焼きばめ固着し前記
セラミックスリーブより熱膨張係数の大きい金属製外周
部材により構成される高速回転体において、前記セラミ
ックスリーブは前記金属製外周部材を焼きばめ固着した
後にその内径を所定のつづみ形状に加工したことを特徴
とする高速回転体。
1. A high-speed rotating body outside a ceramic fixed shaft that constitutes a gas dynamic pressure bearing together with the ceramic fixed shaft, wherein a ceramic sleeve having a constant thickness in the radial direction and an outer periphery thereof are baked. In a high-speed rotating body formed by a metal outer peripheral member having a larger coefficient of thermal expansion than the ceramic sleeve by fit-fitting, the ceramic sleeve is shrink-fitted and fixed to the metal outer peripheral member, and then the inner diameter of the ceramic sleeve is a predetermined step shape. High-speed rotating body characterized by being processed into.
【請求項2】 前記所定のつづみ形状は、高速回転体の
使用回転数により作用するラジアル方向の遠心応力及び
回転摩擦による熱膨張により緩和する焼きばめ圧縮応力
に応じて、セラミック製固定軸とセラミックスリーブと
のすきまが一様になるように決められたものであること
を特徴とする請求項1記載の高速回転体。
2. A ceramic fixed shaft according to claim 2, wherein the predetermined stepped shape is in accordance with centrifugal stress in a radial direction that acts depending on the rotational speed of the high-speed rotating body and shrink-fit compressive stress that is relaxed by thermal expansion due to rotational friction. The high-speed rotating body according to claim 1, wherein a clearance between the ceramic sleeve and the ceramic sleeve is determined to be uniform.
JP35280093A 1993-12-27 1993-12-27 High-speed rotating body Expired - Lifetime JP3285269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35280093A JP3285269B2 (en) 1993-12-27 1993-12-27 High-speed rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35280093A JP3285269B2 (en) 1993-12-27 1993-12-27 High-speed rotating body

Publications (2)

Publication Number Publication Date
JPH07190047A true JPH07190047A (en) 1995-07-28
JP3285269B2 JP3285269B2 (en) 2002-05-27

Family

ID=18426527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35280093A Expired - Lifetime JP3285269B2 (en) 1993-12-27 1993-12-27 High-speed rotating body

Country Status (1)

Country Link
JP (1) JP3285269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113213A (en) * 2004-10-13 2006-04-27 Ricoh Co Ltd Optical deflector, optical scanner, and image forming apparatus
WO2011040164A1 (en) * 2009-09-29 2011-04-07 Ntn株式会社 Fluid dynamic bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113213A (en) * 2004-10-13 2006-04-27 Ricoh Co Ltd Optical deflector, optical scanner, and image forming apparatus
JP4488862B2 (en) * 2004-10-13 2010-06-23 株式会社リコー Optical deflector, optical scanning device, and image forming apparatus
WO2011040164A1 (en) * 2009-09-29 2011-04-07 Ntn株式会社 Fluid dynamic bearing device

Also Published As

Publication number Publication date
JP3285269B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
EP0633406B1 (en) Combination bearing construction
EP0528274A1 (en) Composite bearing structure
EP0381336B1 (en) Ceramic bearing
WO1990004113A1 (en) Bearing retainer structure for electric motors
JP2000314421A (en) Radial/axial combined bearing structure and spindle motor having the same
US20110299806A1 (en) Spindle, shaft supporting device and method of supporting a rotatable shaft
US5731831A (en) Dynamic-pressure gas bearing structure and optical deflection scanning apparatus
EP0837257B1 (en) Dynamic-pressure gas bearing structure, method of producing the same and method of using it
KR100952627B1 (en) Method for manufacturing hydro dynamic bearing device
JPH07190047A (en) High speed rotating body
JP2002295470A (en) Gas bearing spindle
US20080211334A1 (en) Spindle motor
JP2973651B2 (en) Composite bearing structure
US6064130A (en) Motor having dynamic pressure bearing, and rotator device having the motor as driving source
JP4693677B2 (en) Hydrodynamic bearing and motor using the same
EP3473875B1 (en) Tilting pad journal bearing manufacturing method, tilting pad journal bearing, and compressor
JP2807103B2 (en) Ceramic turbocharger rotor and processing method thereof
JP4182169B2 (en) Method of attaching spindle body to rotor and processing device
JP2000348429A (en) Work mounting table using porous static-pressure gas bearing
JP2006077861A (en) Shaft member for dynamic pressure type bearing device and manufacturing method thereof
JP2000024918A (en) Wafer polishing device
JPH06241222A (en) Spindle
JPH07174135A (en) Dynamic pressure air bearing device and its manufacture
JPH07259844A (en) Bearing mechanism for high speed rotary body
JP2002095212A (en) Vibration-proof structure of spindle motor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090308

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100308

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20140308

EXPY Cancellation because of completion of term