JPH0718851B2 - High performance liquid chromatograph - Google Patents

High performance liquid chromatograph

Info

Publication number
JPH0718851B2
JPH0718851B2 JP61237698A JP23769886A JPH0718851B2 JP H0718851 B2 JPH0718851 B2 JP H0718851B2 JP 61237698 A JP61237698 A JP 61237698A JP 23769886 A JP23769886 A JP 23769886A JP H0718851 B2 JPH0718851 B2 JP H0718851B2
Authority
JP
Japan
Prior art keywords
column
suppressor
eluent
suppressor column
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61237698A
Other languages
Japanese (ja)
Other versions
JPS6391558A (en
Inventor
健 村山
智子 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61237698A priority Critical patent/JPH0718851B2/en
Publication of JPS6391558A publication Critical patent/JPS6391558A/en
Publication of JPH0718851B2 publication Critical patent/JPH0718851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、試料中の被測定イオンをクロマトグラフィッ
クに分離して分析する高速液体クロマトグラフに関す
る。
TECHNICAL FIELD The present invention relates to a high performance liquid chromatograph for chromatographically separating and analyzing ions to be measured in a sample.

<従来の技術> 従来の高速液体クロマトグラフは、試料採取弁で採取さ
れた一定量の試料が溶離液で分離カラムに搬送され、該
カラムで試料中の被測定イオンをクロマトグラフィック
に分離してのち、該イオンの導電率を検出器(導電率
計)で検出するように構成されている。また、分離カラ
ムと検出器の間には、溶離液の導電率バックグランドを
低下させるため、交換容量の大きい例えば陰イオン交換
樹脂が充電されたサプレッサカラムが装着されることが
多い。上記溶離液として硝酸(HNO3)溶液を用いた場
合、サプレッサカラム内の陰イオン交換樹脂は時間が経
つにつれてOH-型からNO3 -型へ変化するようになる。OH-
型だと上記硝酸溶液はサプレッサカラムを通ることによ
って水(H2O)に変化し溶離液の導電率バックグランド
が低下するが、NO3 -型だと上記硝酸溶液は水へ変化せず
溶離液の導電率バックグランド低下もみられない。この
ため、サプレッサカラム内の陰イオン交換樹脂をOH-
に保つべく、該カラムに例えば水酸化ナトリウム(NaO
H)等の再生液を流す再生操作が行なわれていた。
<Prior Art> In a conventional high performance liquid chromatograph, a certain amount of sample collected by a sample collection valve is conveyed to a separation column by an eluent, and the ion to be measured in the sample is chromatographically separated by the column. After that, the conductivity of the ion is detected by a detector (conductivity meter). Further, a suppressor column having a large exchange capacity, for example, a suppressor column charged with an anion exchange resin is often mounted between the separation column and the detector in order to reduce the conductivity background of the eluent. When a nitric acid (HNO 3 ) solution is used as the eluent, the anion exchange resin in the suppressor column changes from OH type to NO 3 type over time. OH -
Although it's mold the nitric acid solution conductivity background changed eluant to water (H 2 O) by passing through the suppressor column is lowered, NO 3 - the nitric acid solution and it the mold does not change to the water elution Liquid conductivity background is not reduced. For this reason, in order to keep the anion exchange resin in the suppressor column in the OH - form, the column is treated with, for example, sodium hydroxide (NaO).
Regeneration operation was performed by flowing the regenerant such as H).

<発明が解決しようとする問題点> 然し乍ら、上記従来例においては、サプレッサカラムが
使用不能となるか或いは一定期間使用して導電率バック
グランドを低下させる機能が劣化してのち上述の再生操
作を行なうようにしていた。このため、該再生操作を行
なうのに分析を中断しなければならず、長期間の連続分
析が困難になる等の大きな欠点があった。本発明はかか
る従来例の欠点に鑑みてなされたものであり、その目的
は、分析を中断することなくサプレッサカラムの再生操
作を行なえるような高速液体クロマトグラフを提供する
ことにある。
<Problems to be Solved by the Invention> However, in the above-mentioned conventional example, the above-described regeneration operation is performed after the suppressor column becomes unusable or the function of lowering the conductivity background after being used for a certain period is deteriorated. I was going to do it. For this reason, the analysis had to be interrupted to perform the regeneration operation, and there were major drawbacks such as long-term continuous analysis becoming difficult. The present invention has been made in view of the drawbacks of the conventional example, and an object thereof is to provide a high-performance liquid chromatograph capable of performing a regeneration operation of a suppressor column without interrupting the analysis.

<問題点を解決するための手段> このような目的を達成するために、本発明は、 分離カラムで溶離液をもちいて分離した試料をサプレサ
カラムを介して検出器に導き、試料中のイオンを検出す
る高速液体クロマトグラフにおいて、 前記サプレサカラムに充填されているイオン交換樹脂を
再生するのに必要にして十分な再生液を計量する計量管
と、 前記分離カラムと前記サプレサカラムとの間に設けられ
ていて、前記分離カラムと前記サプレサカラムの流路を
前記計量管を介するように接続する流路切換弁と、 を設け、再生時には、前記流路切換弁を切り換え、前記
溶離液で前記計量管の再生液を前記サプレサカラムに流
した後、溶離液で所定の期間洗浄し、前記イオン交換樹
脂を再生するようにしたことを特徴としている。
<Means for Solving Problems> In order to achieve such an object, the present invention introduces a sample separated by using an eluent in a separation column to a detector through a suppressor column to remove ions in the sample. In the high-performance liquid chromatograph for detecting, a measuring pipe for measuring a regenerant necessary and sufficient for regenerating the ion exchange resin packed in the suppressor column, and provided between the separation column and the suppressor column. And a flow path switching valve that connects the flow paths of the separation column and the suppressor column via the measuring tube. During regeneration, the flow path switching valve is switched to regenerate the measuring tube with the eluent. After flowing the liquid through the suppressor column, the liquid is washed with an eluent for a predetermined period to regenerate the ion exchange resin.

<実施例> 以下、本発明について図を用いて詳しく説明する。第1
図は本発明実施例の構成説明図であり、図中、1aは例え
ば5mN硝酸(HNO3)溶液でなる溶離液を貯留する槽、1c
は例えば0.1N水酸化ナトリウム(NaOH)溶液でなる再生
液を貯留する槽、1b,1dは廃液槽、2a,2bは送液ポンプ、
3は例えば第1〜第6の接続口3a〜3fと例えば内容積10
0μを有する計量管3gを備え内部流路が第1図の実線
接続状態と破線接続状態に交互に切換えられる試料採取
弁、4は例えば陽イオン交換樹脂が充填されてなる分離
カラム、5は例えば第1〜第6の接続口5a〜5fと例えば
内容積10mlを有する計量管5gを備え内部流路が実線接続
状態と破線接続状態に交互に切換えられる流路切換弁、
6はイオン交換容量が極めて大きな例えば陰イオン交換
樹脂が充填されてなるサプレッサカラム、7は例えば導
電率計でなる検出器、8は分離カラム4,サプレッサカラ
ム6,および検出器7を収容しこれらを所定温度(例えば
45℃)に保つ恒温槽である。
<Example> Hereinafter, the present invention will be described in detail with reference to the drawings. First
FIG. 1 is a diagram illustrating the configuration of an embodiment of the present invention, in which 1a is a tank for storing an eluent composed of, for example, a 5mN nitric acid (HNO 3 ) solution, 1c
Is a tank for storing a regenerant liquid consisting of 0.1N sodium hydroxide (NaOH) solution, 1b and 1d are waste liquid tanks, 2a and 2b are liquid transfer pumps,
3 is, for example, the first to sixth connection ports 3a to 3f and, for example, the internal volume 10
A sampling valve 4 provided with a measuring tube 3g having 0 μm and whose internal flow path is alternately switched between a solid line connection state and a broken line connection state in FIG. 1 is, for example, 4 is a separation column filled with a cation exchange resin and 5 is, for example, A flow path switching valve including first to sixth connection ports 5a to 5f and a measuring pipe 5g having an internal volume of 10 ml, for example, and the internal flow path is alternately switched between a solid line connection state and a broken line connection state,
6 is a suppressor column having an extremely large ion exchange capacity, for example, a suppressor column packed with anion exchange resin, 7 is a detector such as a conductivity meter, 8 is a separation column 4, a suppressor column 6, and a detector 7 At a given temperature (eg
It is a constant temperature bath kept at 45 ℃.

このような構成からなる本発明の実施例において、ポン
プ2aが駆動すると、槽1a内の溶離液は、例えば2ml/min.
の流量で、ポンプ2a→試料採取弁3の第1および第2接
続口3a,3b→分離カラム4→流路切換弁5の第1および
第2接続口5a,5b→サプレッサカラム6→検出器7を経
て、槽1bに導かれる。また、必要に応じてポンプ2bが駆
動させられると、槽1c内の再生液は、例えば1ml/min.の
流量で、ポンプ2b→流路切換弁5の第5および第6接続
口5e,5f→計量管5g→第3および第4接続口5c,5dを経て
槽1dに導びかれ、計量管5g内を満たす。このような状態
で、試料採取弁3の第5接続口3eから例えばシリンジを
用いて試料を注入すると、該試料は、第6接続口3f→計
量管3g→第3接続口3c→第4接続口3dの径路で流れ、計
量管3g内を満たす。その後、試料採取弁3をオンにする
と、その内部流路が第1図の実線接続状態から破線接続
状態に切換えられる。このため、計量管3g内の試料は溶
離液に搬送されて分離カラム4に至り、ここで、該試料
中の陽イオンがクロマトグラフィックに分離される。該
カラム4の溶出液は、サプレッサカラム6を経由して検
出器7に至って導電率が検出される。ところで、溶離液
は前述の如くサプレッサカラム6で導電率バックグラン
ドが低下させられるが、溶離液を流し続けるとサプレッ
サカラム6の機能が低下してくる。そこで、例えば試料
採取弁3をオンにしてから8.5分後に流路切換弁5をオ
ンにすると、該切換弁5の内部流路が第1図の実線接続
状態から破線接続状態に切換えられる。このため、計量
管5g内の再生液がサプレッサカラム6に搬入され該カラ
ム6内の陰イオン交換樹脂を再生させる。従って、流路
切換弁5のオンオフ操作により、サプレッサカラム6内
に定期的に再生液を導入するようにすれば、サプレッサ
カラム6の導電率バックグランド低下機能を長期間安定
的に維持できるようになる。
In the embodiment of the present invention having such a configuration, when the pump 2a is driven, the eluent in the tank 1a is, for example, 2 ml / min.
Flow rate of pump 2a → first and second connection ports 3a, 3b of sampling valve 3 → separation column 4 → first and second connection ports 5a, 5b of flow path switching valve 5 → suppressor column 6 → detector It is led to the tank 1b via 7. When the pump 2b is driven as needed, the regenerant in the tank 1c flows at a flow rate of, for example, 1 ml / min. From the pump 2b to the fifth and sixth connection ports 5e and 5f of the flow path switching valve 5. → Measurement pipe 5g → Through the third and fourth connection ports 5c and 5d, it is guided to the tank 1d to fill the inside of the measurement pipe 5g. In this state, when a sample is injected from the fifth connection port 3e of the sample collection valve 3 using, for example, a syringe, the sample is connected to the sixth connection port 3f → the measuring pipe 3g → the third connection port 3c → the fourth connection port. It flows in the path of the mouth 3d and fills the inside of the measuring tube 3g. Then, when the sampling valve 3 is turned on, the internal flow path is switched from the solid line connection state in FIG. 1 to the broken line connection state. Therefore, the sample in the measuring tube 3g is transported to the eluent and reaches the separation column 4, where the cations in the sample are chromatographically separated. The eluate of the column 4 reaches the detector 7 via the suppressor column 6 and the conductivity is detected. By the way, the conductivity background of the eluent is lowered in the suppressor column 6 as described above, but the function of the suppressor column 6 is lowered if the eluent is kept flowing. Therefore, for example, when the flow path switching valve 5 is turned on 8.5 minutes after the sampling valve 3 is turned on, the internal flow path of the switching valve 5 is switched from the solid line connection state in FIG. 1 to the broken line connection state. Therefore, the regenerant in the measuring tube 5g is carried into the suppressor column 6 to regenerate the anion exchange resin in the column 6. Therefore, if the regeneration liquid is regularly introduced into the suppressor column 6 by turning on / off the flow path switching valve 5, the conductivity background lowering function of the suppressor column 6 can be stably maintained for a long period of time. Become.

第2図は上述のような一連の動作を行なう本発明実施例
において検出器7の出力を図示しない記録計に導いて描
かせたクロマトグラムであり、図中、横軸は時間T(単
位は分)を示し縦軸は導電率(単位はμs/cm)を示し
ている。また、破線は、試料採取弁3と流路切換弁5の
オン/オフに伴う系の圧力変動を示している。
FIG. 2 is a chromatogram drawn by drawing the output of the detector 7 to a recorder (not shown) in the embodiment of the present invention which performs a series of operations as described above. In the figure, the horizontal axis represents time T (unit: unit). Minutes) and the vertical axis represents the conductivity (unit: μs / cm). Also, the broken line shows the pressure fluctuation of the system due to ON / OFF of the sampling valve 3 and the flow path switching valve 5.

尚、本発明は上述の実施例に限定されることなく種々の
変形が可能であり、例えば次の(イ)〜(ニ)のような
変形を施して試料中の陰イオンを分析するようにしても
よいものとする。(イ)槽1a内の溶離液をNa2CO3/NaHCO
3混合溶液とする、(ロ)槽1c内の再生液を硫酸(H2S
O4)溶液とする、(ハ)分離カラム4に陰イオン交換樹
脂を充填する、(ニ)サプレッサカラム6に交換容量の
大きな陽イオン交換樹脂を充填する。
The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the following modifications (a) to (d) are applied to analyze anions in a sample. May be. (A) The eluent in the tank 1a is Na 2 CO 3 / NaHCO
3 ) The regenerated liquid in the (b) tank 1c to be mixed solution is mixed with sulfuric acid (H 2 S
O 4 ) solution, (c) the separation column 4 is filled with an anion exchange resin, and (d) the suppressor column 6 is filled with a cation exchange resin having a large exchange capacity.

<発明の効果> 以上詳しく説明したような本発明によれば、分析を中断
することなくサプレッサカラムの再生操作を行なえるよ
うな高速液体クロマトグラフが実現する。このような高
速液体クロマトグラフを使用すれば、前記従来例のよう
に分析を中断させて特別な再生操作を行なわなくともサ
プレッサカラムの機能が低下する心配がなく、例えばプ
ロセス用として24時間分析体制を組める等連続分析に大
きく貢献できる利点がある。また、サプレッサカラム6
に導入される再生液の量は、流路切換弁5の計量管5g内
容積分だけであるため、ベースラインが早期に安定し次
の分析に短時間で入れる利点もある。
<Effects of the Invention> According to the present invention described in detail above, a high-performance liquid chromatograph is realized in which the suppressor column can be regenerated without interrupting the analysis. If such a high-performance liquid chromatograph is used, there is no concern that the function of the suppressor column will deteriorate without interrupting the analysis and performing a special regeneration operation as in the conventional example, and for example, a 24-hour analysis system for process It has the advantage that it can make a large contribution to continuous analysis. Also, suppressor column 6
Since the amount of the regenerant liquid introduced into (1) is only the content integration of the measuring pipe 5g of the flow path switching valve 5, there is also an advantage that the baseline is stabilized early and put into the next analysis in a short time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例の構成説明図、第2図は本発明実
施例を用いて作成したクロマトグラムである。 1a〜1d……槽、2a,2b……ポンプ、3……試料採取弁、
4……分離カラム、5……流路切換弁、6……サプレッ
サカラム、7……検出器。
FIG. 1 is a structural explanatory view of an embodiment of the present invention, and FIG. 2 is a chromatogram prepared by using the embodiment of the present invention. 1a to 1d ... Tank, 2a, 2b ... Pump, 3 ... Sampling valve,
4 ... Separation column, 5 ... Flow path switching valve, 6 ... Suppressor column, 7 ... Detector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】分離カラムで溶離液をもちいて分離した試
料をサプレサカラムを介して検出器に導き、試料中のイ
オンを検出する高速液体クロマトグラフにおいて、 前記サプレサカラムに充填されているイオン交換樹脂を
再生するのに必要にして十分な再生液を計量する計量管
と、 前記分離カラムと前記サプレサカラムとの間に設けられ
ていて、前記分離カラムと前記サプレサカラムの流路を
前記計量管を介するように切り換えて接続する流路切換
弁と、 を設け、再生時には、前記流路切換弁を切り換え、前記
溶離液で前記計量管の再生液を前記サプレサカラムに流
した後、溶離液で所定の期間洗浄し、前記イオン交換樹
脂を再生するようにした高速液体クロマトグラフ。
1. A high performance liquid chromatograph in which a sample separated by using an eluent in a separation column is introduced to a detector through a suppressor column to detect ions in the sample, wherein an ion exchange resin packed in the suppressor column is used. A metering tube for measuring a regenerant necessary and sufficient for regeneration, and provided between the separation column and the suppressor column so that the flow paths of the separation column and the suppressor column are routed through the metering tube. A flow path switching valve that is switched and connected is provided, and during regeneration, the flow path switching valve is switched, and the regenerant liquid of the measuring pipe is caused to flow through the suppressor column with the eluent and then washed with the eluent for a predetermined period. A high performance liquid chromatograph adapted to regenerate the ion exchange resin.
JP61237698A 1986-10-06 1986-10-06 High performance liquid chromatograph Expired - Lifetime JPH0718851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61237698A JPH0718851B2 (en) 1986-10-06 1986-10-06 High performance liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61237698A JPH0718851B2 (en) 1986-10-06 1986-10-06 High performance liquid chromatograph

Publications (2)

Publication Number Publication Date
JPS6391558A JPS6391558A (en) 1988-04-22
JPH0718851B2 true JPH0718851B2 (en) 1995-03-06

Family

ID=17019182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61237698A Expired - Lifetime JPH0718851B2 (en) 1986-10-06 1986-10-06 High performance liquid chromatograph

Country Status (1)

Country Link
JP (1) JPH0718851B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006246A1 (en) * 1993-08-27 1995-03-02 Dionex Corporation Ion chromatography using frequent regeneration of batch-type suppressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201063A (en) * 1982-05-19 1983-11-22 Showa Denko Kk Regeneration apparatus of elimination column for liquid chromatograph

Also Published As

Publication number Publication date
JPS6391558A (en) 1988-04-22

Similar Documents

Publication Publication Date Title
JPH09511839A (en) Intermittent regeneration of electrolyte packed bed suppressors for ion chromatography
US5567307A (en) System and a method for using a small suppressor column in performing liquid chromatography
JP4277433B2 (en) Ion chromatograph system and suppressor means for exchanging ion exchange material in suppressor
JPH0718851B2 (en) High performance liquid chromatograph
US3915642A (en) Quantitative analysis of single ion species
CN205506166U (en) Critical interface autoalarm of ion chromatograph leachate
JPH0329747Y2 (en)
JPS61223555A (en) Analysis of ion species and apparatus using the same
JPS59133459A (en) Ion chromatograph
JPS62255865A (en) Liquid chromatograph
JPH07181173A (en) Method and apparatus for gradient analysis of liquid chromatography
JPH0225146B2 (en)
JPH0310057B2 (en)
JPS60190859A (en) Method and apparatus for analyzing ion seed
JPH0451800B2 (en)
JPH0587789A (en) Measuring method of positive ions
JPH0439908B2 (en)
JPH0439907B2 (en)
JPS61266954A (en) Method and instrument for liquid analysis
JPS63225167A (en) Ion chromatograph analytical method
JPH0219425B2 (en)
JPS6246258A (en) Pretreatment filter for ion chromatography
JPS59195154A (en) Method and device for quantitative analysis of electrolyte component
JPH0587787A (en) Measuring method of negative ions
JPH0439906B2 (en)