JPH07188082A - Production of phenol - Google Patents

Production of phenol

Info

Publication number
JPH07188082A
JPH07188082A JP5337653A JP33765393A JPH07188082A JP H07188082 A JPH07188082 A JP H07188082A JP 5337653 A JP5337653 A JP 5337653A JP 33765393 A JP33765393 A JP 33765393A JP H07188082 A JPH07188082 A JP H07188082A
Authority
JP
Japan
Prior art keywords
catalyst
magnesium oxide
palladium
phenol
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5337653A
Other languages
Japanese (ja)
Other versions
JP3237365B2 (en
Inventor
Mikito Kashima
幹人 加島
Yumitatsu Noda
結実樹 野田
Takashi Atoguchi
隆 後口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP33765393A priority Critical patent/JP3237365B2/en
Publication of JPH07188082A publication Critical patent/JPH07188082A/en
Application granted granted Critical
Publication of JP3237365B2 publication Critical patent/JP3237365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a method for producing phenol in a high yield using a catalyst having high activity and selectivity. CONSTITUTION:The characteristic of this method for producing phenol comprises subjecting cyclohexanone to dehydrogenation reaction in the presence of a catalyst consisting of magnesium oxide, palladium element and an alkali metal fluoride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合成樹脂、界面活性
剤、医薬品などの合成中間体として広く用いられるフェ
ノールの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing phenol, which is widely used as a synthetic intermediate for synthetic resins, surfactants, pharmaceuticals and the like.

【0002】[0002]

【従来の技術及びその問題点】従来、フェノールの製造
方法としては、種々の方法が知られているが、クメンを
酸素酸化してクメンヒドロペルオキシドを合成し、この
クメンヒドロペルオキシドを酸によって分解して、フェ
ノールとアセトンとを製造するクメン法が主として行わ
れている。しかし、このクメン法においては、アセトン
が併産されるという特徴があり、近年、アセトンが供給
過剰になりつつあるため、アセトンを副生しないフェノ
ールの製造方法の開発が望まれている。
2. Description of the Related Art Conventionally, various methods have been known as a method for producing phenol. Cumene is oxidized with oxygen to synthesize cumene hydroperoxide, and the cumene hydroperoxide is decomposed with an acid. Thus, the cumene method for producing phenol and acetone is mainly used. However, this cumene method has a feature that acetone is co-produced, and since the supply of acetone is becoming excessive in recent years, development of a method for producing phenol without by-product of acetone is desired.

【0003】アセトンを副生しないフェノールの製造方
法としては、シクロヘキサノンの脱水素反応が知られて
いる。シクロヘキサノンの脱水素反応の触媒としては、
例えば、米国特許 3,580,970号公報には、ニッケル、白
金などのVIII族金属と錫を担体に担持させたもの、ある
いは、Journal of Catalysis, 50, 419 (1977)には、パ
ラジウム又はニッケルと錫を無機担体に同時に担持した
もの等が開示されている。しかしながら、これらの触媒
は、いずれも活性、選択性、触媒寿命などに問題があり
改良が望まれていた。
A dehydrogenation reaction of cyclohexanone is known as a method for producing phenol which does not produce acetone as a by-product. As a catalyst for the dehydrogenation reaction of cyclohexanone,
For example, U.S. Pat. No. 3,580,970, nickel, those Group VIII metal and tin, such as platinum supported on a carrier, or, Journal of Catalysis, 50, 419 (1977) , the palladium or inorganic nickel and tin Those supported at the same time on a carrier are disclosed. However, all of these catalysts have problems in activity, selectivity, catalyst life, etc., and improvements have been desired.

【0004】[0004]

【本発明の目的】本発明の目的は、前記問題点を解決
し、活性及び選択性が高い触媒を用いて高い収率でフェ
ノールを製造できる方法を提供するものである。
OBJECT OF THE INVENTION The object of the present invention is to solve the above problems and to provide a method for producing phenol in a high yield using a catalyst having high activity and selectivity.

【0005】[0005]

【問題点解決のための技術的手段】本発明は、シクロヘ
キサノンを、酸化マグネシウム、パラジウム元素、及び
アルカリ金属フッ化物からなる触媒の存在下に脱水素反
応させることを特徴とするフェノールの製造方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a method for producing phenol, which comprises subjecting cyclohexanone to a dehydrogenation reaction in the presence of a catalyst comprising magnesium oxide, elemental palladium and an alkali metal fluoride. It is a thing.

【0006】本発明で用いる酸化マグネシウム、パラジ
ウム元素、及びアルカリ金属フッ化物からなる触媒は、
酸化マグネシウム、パラジウム元素の化合物、及びアル
カリ金属フッ化物の混合物を、加熱処理することにより
調製することができる。
The catalyst composed of magnesium oxide, elemental palladium, and alkali metal fluoride used in the present invention is
It can be prepared by subjecting a mixture of magnesium oxide, a compound of elemental palladium, and an alkali metal fluoride to heat treatment.

【0007】酸化マグネシウムとしては、特に制限はな
く、炭酸マグネシウム、塩基性炭酸マグネシウム、水酸
化マグネシウムなどを熱分解させて得られる酸化マグネ
シウム、あるいは工業用マグネシアを用いることができ
るが、本発明においては、特にBET比表面積が 5〜17
0m2/g (比表面積径0.01〜 0.2μm )、純度99.9%以上
の高純度超微粉単結晶酸化マグネシウムが好適に用いる
ことができる。
The magnesium oxide is not particularly limited, and magnesium oxide obtained by thermally decomposing magnesium carbonate, basic magnesium carbonate, magnesium hydroxide or the like, or industrial magnesia can be used, but in the present invention, , Especially BET specific surface area of 5 to 17
High-purity ultrafine powder single crystal magnesium oxide having a specific surface area of 0 m 2 / g (specific surface area diameter of 0.01 to 0.2 μm) and a purity of 99.9% or more can be preferably used.

【0008】このような高純度超微粉単結晶酸化マグネ
シウムは、特公平2-289 号公報に開示された方法、すな
わち、マグネシウム蒸気と酸素含有ガスを乱流拡散状態
で酸化させる方法により合成することができる。BET
比表面積が 170m2/g を超えた酸化マグネシウムを製造
することも可能であり、本発明にも有用であるが、製造
コストがきわめた高くなること、通常の粉末の取扱いが
困難になることなどから、現状では実用性が低い。ま
た、比表面積が 5m2/g未満となると、触媒活性が低下す
るため好ましくない。
Such high-purity ultrafine single crystal magnesium oxide is synthesized by the method disclosed in Japanese Examined Patent Publication No. 2-289, that is, a method of oxidizing magnesium vapor and an oxygen-containing gas in a turbulent diffusion state. You can BET
It is also possible to produce magnesium oxide having a specific surface area of more than 170 m 2 / g, which is also useful in the present invention, but the production cost becomes extremely high, and the handling of ordinary powder becomes difficult. Therefore, the practicality is low at present. On the other hand, if the specific surface area is less than 5 m 2 / g, the catalytic activity will decrease, which is not preferable.

【0009】パラジウム元素の化合物としては、パラジ
ウムのアセチルアセトナト塩、硝酸塩、酢酸塩、カルボ
ニル化合物等が用いられる。中でも、パラジウムの硝酸
塩、酢酸塩などが好ましい。
As the compound of the palladium element, acetylacetonato salt of palladium, nitrate, acetate, carbonyl compound and the like are used. Of these, palladium nitrate and acetate are preferable.

【0010】アルカリ金属フッ化物としては、例えば、
フッ化リチウム、フッ化ナトリウム、フッ化カリウム、
フッ化ルビジウムなどが用いられる。中でも、フッ化ナ
トリウム、フッ化カリウムが好ましい。
As the alkali metal fluoride, for example,
Lithium fluoride, sodium fluoride, potassium fluoride,
Rubidium fluoride or the like is used. Of these, sodium fluoride and potassium fluoride are preferable.

【0011】触媒のパラジウム元素の含有量は、酸化マ
グネシウムに対して、0.05〜10wt%が好ましく、0.01〜
1wt% がより好ましい。その下限未満では充分な触媒活
性が得られず、上限値を超えると金属によるシンタリン
グ傾向が見られるようになり、活性が低下すると同時に
経済的にも不利である。
The content of palladium element in the catalyst is preferably 0.05 to 10 wt% with respect to magnesium oxide, and 0.01 to
1 wt% is more preferable. If the amount is less than the lower limit, sufficient catalytic activity cannot be obtained, and if the amount exceeds the upper limit, metal sintering tends to be observed, which lowers the activity and is economically disadvantageous.

【0012】触媒のアルカリ金属フッ化物の含有量は、
酸化マグネシウムに対して、 1〜10wt% が好ましく、 2
〜 5wt% がより好ましい。その上限以上では均一な担持
が困難になる。
The content of alkali metal fluoride in the catalyst is
1 to 10 wt% is preferable for magnesium oxide, and 2
~ 5 wt% is more preferred. Above the upper limit, uniform loading becomes difficult.

【0013】本発明で用いる触媒は、従来公知の触媒調
製法、例えば、含浸法、イオン交換法などで調製するこ
とができる。
The catalyst used in the present invention can be prepared by a conventionally known catalyst preparation method such as an impregnation method or an ion exchange method.

【0014】例えば、以下の方法で調製できる。まず、
パラジウム元素の化合物の水、アセトン、アルコール等
の溶液と、アルカリ金属フッ化物の水、アセトン、アル
コールなどの溶液を、あらかじめ焼成した酸化マグネシ
ウムに含浸させ乾固する。パラジウム元素の化合物及び
アルアリ金属フッ化物の含浸は別個に順次行ってもよい
が、混合溶液を用いて同時に行うのが好ましい。次い
で、該含浸物を 350〜 550℃の温度で加熱処理して調製
する。
For example, it can be prepared by the following method. First,
A solution of a palladium element compound in water, acetone, alcohol or the like and a solution of an alkali metal fluoride in water, acetone, alcohol or the like are impregnated into magnesium oxide that has been calcined in advance and dried. The impregnation of the palladium element compound and the arali metal fluoride may be carried out separately and sequentially, but it is preferable to carry out the impregnation simultaneously using a mixed solution. Then, the impregnated material is prepared by heat treatment at a temperature of 350 to 550 ° C.

【0015】このようにして調製された触媒を反応容器
に充填し、水素による還元処理を 300〜 450℃の温度で
行って活性化した後、シクロヘキサノンを流通して脱水
素反応を行わせる。反応容器は、特に制限はないが、例
えば固定床流通反応装置が好適に用いることができる。
反応温度は、通常 300〜450 ℃、好ましくは 350〜400
℃である。反応圧力は、特に制限はなく、常圧あるいは
加圧下で行うことができる。
The catalyst thus prepared is charged into a reaction vessel, reduction treatment with hydrogen is carried out at a temperature of 300 to 450 ° C. for activation, and then cyclohexanone is circulated to carry out a dehydrogenation reaction. The reaction vessel is not particularly limited, but for example, a fixed bed flow reactor can be preferably used.
The reaction temperature is usually 300 to 450 ° C, preferably 350 to 400
℃. The reaction pressure is not particularly limited and may be normal pressure or increased pressure.

【0016】触媒の形態は、特に制限はなく、粉末のも
の、あるいはこれを圧縮成型して粒状としたものなどを
用いることができる。使用後の触媒は、再焼成すること
によって、再使用できる。再焼成は、 350〜550℃の温
度で加熱処理して行うことができる。
The form of the catalyst is not particularly limited, and it is possible to use a powder or a powder obtained by compression-molding the powder. The used catalyst can be reused by recalcining. The re-baking can be performed by heat treatment at a temperature of 350 to 550 ° C.

【0017】[0017]

【実施例】以下に実施例を示し、本発明をさらに具体的
に説明する。
EXAMPLES The present invention will be described more concretely with reference to the following examples.

【0018】実施例1 硝酸パラジウム 0.005g をアセトン 100mLに溶かした溶
液と、フッ化カリウム0.04gをエタノール 100mLに溶か
した溶液との混合溶液中に、 550℃で前焼成した高純度
超微粉単結晶酸化マグネシウム(BET比表面積 131m2
/g、純度99.98%以上)2.00g を分散させ、これを減圧乾
固した後、 350℃で 2時間焼成した。この際の各成分の
添加量は、パラジウムはパラジウム元素として、またフ
ッ化カリウムは塩として酸化マグネシウムに対して、そ
れぞれ0.1wt%、2.0wt%であった。
Example 1 High-purity ultrafine single crystal pre-calcined at 550 ° C. in a mixed solution of a solution of 0.005 g of palladium nitrate in 100 mL of acetone and a solution of 0.04 g of potassium fluoride in 100 mL of ethanol. Magnesium oxide (BET specific surface area 131m 2
/ g, purity 99.98% or more) 2.00 g was dispersed, and this was dried under reduced pressure and baked at 350 ° C for 2 hours. At this time, the addition amount of each component was 0.1 wt% and 2.0 wt% with respect to magnesium oxide as a salt of palladium and potassium fluoride as a salt, respectively.

【0019】得られたPd/KF/MgO触媒を粉体の
まま常圧固定床流通反応装置に充填し、水素による還元
処理を 350℃で 2時間行った。次いで、シクロヘキサノ
ンを LHSV=3.0 で供給して反応を行った。キャリヤーガ
スとして 水素ガスを 330mL/minで流通させた。その時
の生成物をガスクロマトグラフィーにより分析して、転
化率と選択率の経時変化を調べた結果を表1に示す。
The obtained Pd / KF / MgO catalyst was charged as a powder into an atmospheric fixed bed flow reactor, and reduction treatment with hydrogen was carried out at 350 ° C. for 2 hours. Then, cyclohexanone was supplied at LHSV = 3.0 to carry out the reaction. Hydrogen gas was passed as a carrier gas at 330 mL / min. The product at that time was analyzed by gas chromatography, and the results of investigating the changes with time of the conversion rate and the selectivity are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】表中の転化率(conv.(%)) および選択率(s
el(%))はそれぞれ次式により算出した。 転化率(conv.(%)) =(A−B)/A 選択率(sel(%))=C/(A−B) A:供給シクロヘキサノン量 B:回収シクロヘキサノン量 C:回収フェノール量
Conversion (conv. (%)) And selectivity (s) in the table
el (%)) was calculated by the following formulas. Conversion (conv. (%)) = (AB) / A Selectivity (sel (%)) = C / (AB) A: amount of supplied cyclohexanone B: amount of recovered cyclohexanone C: amount of recovered phenol

【0022】比較例1 Pd/KF/MgO触媒に代えて、パラジウム元素を0.
1wt%を含みKFを含まないPd/MgO触媒を用いた以
外は、実施例1と同様にして行った。結果を表2に示
す。
Comparative Example 1 In place of the Pd / KF / MgO catalyst, palladium element was added in an amount of 0.1.
Example 1 was repeated except that a Pd / MgO catalyst containing 1 wt% and containing no KF was used. The results are shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】実施例2 実施例1に示した触媒を錠剤成型器で成型し、これを粉
砕して粒径 1mm〜 760μm のものを触媒として用いた以
外は、実施例1と同様にして行った。結果を表3に示
す。
Example 2 The same procedure as in Example 1 was carried out except that the catalyst shown in Example 1 was molded by a tablet molding machine and crushed and used as a catalyst having a particle size of 1 mm to 760 μm. . The results are shown in Table 3.

【0025】[0025]

【表3】 [Table 3]

【0026】実施例3 実施例2で反応に用いた触媒を、空気中 420℃で 6時間
再焼成して用いた以外は、実施例1と同様にして行っ
た。結果を表4に示す。
Example 3 The procedure of Example 1 was repeated, except that the catalyst used in the reaction of Example 2 was recalcined in air at 420 ° C. for 6 hours. The results are shown in Table 4.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【発明の効果】本発明によれば、シクロヘキサノンを脱
水素してフェノールを製造するに際し活性および選択性
が高い、パラジウム、酸化マグネシウムおよびアルカリ
金属フッ化物からなる触媒を用いることにより、高い収
率でフェノールを製造することができる。さらに、使用
後の触媒も空気中で再焼成することにより、初期の活性
を回復することができ、繰り返し用いることが可能で工
業的利点が大きい。
INDUSTRIAL APPLICABILITY According to the present invention, by using a catalyst composed of palladium, magnesium oxide and alkali metal fluoride, which has high activity and selectivity in dehydrogenating cyclohexanone to produce phenol, a high yield can be obtained. Phenol can be produced. Furthermore, by re-calcining the used catalyst in the air, the initial activity can be restored, and the catalyst can be repeatedly used, which is a great industrial advantage.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シクロヘキサノンを、酸化マグネシウ
ム、パラジウム元素、及びアルカリ金属フッ化物からな
る触媒の存在下に脱水素反応させることを特徴とするフ
ェノールの製造方法。
1. A method for producing phenol, which comprises subjecting cyclohexanone to a dehydrogenation reaction in the presence of a catalyst comprising magnesium oxide, elemental palladium, and an alkali metal fluoride.
JP33765393A 1993-12-28 1993-12-28 Method for producing phenol Expired - Fee Related JP3237365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33765393A JP3237365B2 (en) 1993-12-28 1993-12-28 Method for producing phenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33765393A JP3237365B2 (en) 1993-12-28 1993-12-28 Method for producing phenol

Publications (2)

Publication Number Publication Date
JPH07188082A true JPH07188082A (en) 1995-07-25
JP3237365B2 JP3237365B2 (en) 2001-12-10

Family

ID=18310687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33765393A Expired - Fee Related JP3237365B2 (en) 1993-12-28 1993-12-28 Method for producing phenol

Country Status (1)

Country Link
JP (1) JP3237365B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU673317B2 (en) * 1995-01-20 1996-10-31 Phillips Petroleum Company Process for selectively hydrogenating an alkyne
JP2003064011A (en) * 2001-08-29 2003-03-05 Dainippon Ink & Chem Inc Method for producing 6-hydroxytetralin
WO2009010224A1 (en) * 2007-07-16 2009-01-22 Exxonmobil Chemical Patents Inc. Process for oxidizing alkylaromatic compounds
WO2011096989A1 (en) * 2010-02-05 2011-08-11 Exxonmobil Chemical Patents Inc. Dehydrogenation of cyclohexanone to produce phenol
US8222459B2 (en) 1997-06-13 2012-07-17 Exxonmobil Chemical Patents Inc. Process for producing cyclohexanone
CN102725254A (en) * 2010-02-05 2012-10-10 埃克森美孚化学专利公司 Dehydrogenation of cyclohexanone to produce phenol
US8487140B2 (en) 2008-08-29 2013-07-16 Exxonmobil Chemical Patents Inc. Process for producing phenol
US9061270B2 (en) 2010-02-05 2015-06-23 Exxonmobil Chemical Patents Inc. Cyclohexanone dehydrogenation catalyst and process
US9242227B2 (en) 2010-02-05 2016-01-26 Exxonmobil Chemical Patents Inc. Dehydrogenation catalyst and process
US9249077B2 (en) 2009-07-14 2016-02-02 Exxonmobil Chemical Patents Inc. Dehydrogenation process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU673317B2 (en) * 1995-01-20 1996-10-31 Phillips Petroleum Company Process for selectively hydrogenating an alkyne
US8222459B2 (en) 1997-06-13 2012-07-17 Exxonmobil Chemical Patents Inc. Process for producing cyclohexanone
JP2003064011A (en) * 2001-08-29 2003-03-05 Dainippon Ink & Chem Inc Method for producing 6-hydroxytetralin
WO2009010224A1 (en) * 2007-07-16 2009-01-22 Exxonmobil Chemical Patents Inc. Process for oxidizing alkylaromatic compounds
US8487140B2 (en) 2008-08-29 2013-07-16 Exxonmobil Chemical Patents Inc. Process for producing phenol
US9249077B2 (en) 2009-07-14 2016-02-02 Exxonmobil Chemical Patents Inc. Dehydrogenation process
WO2011096989A1 (en) * 2010-02-05 2011-08-11 Exxonmobil Chemical Patents Inc. Dehydrogenation of cyclohexanone to produce phenol
CN102725254A (en) * 2010-02-05 2012-10-10 埃克森美孚化学专利公司 Dehydrogenation of cyclohexanone to produce phenol
US9029611B2 (en) 2010-02-05 2015-05-12 Exxonmobil Chemical Patents Inc. Dehydrogenation of cyclohexanone to produce phenol
US9061270B2 (en) 2010-02-05 2015-06-23 Exxonmobil Chemical Patents Inc. Cyclohexanone dehydrogenation catalyst and process
US9242227B2 (en) 2010-02-05 2016-01-26 Exxonmobil Chemical Patents Inc. Dehydrogenation catalyst and process

Also Published As

Publication number Publication date
JP3237365B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
US4207169A (en) Process for the steam dealkylation of aromatic hydrocarbons
US3198748A (en) Refractory oxide-alkaline earth carbonate supported catalyst
US4564642A (en) Process for the manufacture of unsaturated hydrocarbons
US4476250A (en) Catalytic process for the production of methanol
JP3237365B2 (en) Method for producing phenol
US5075268A (en) Regeneration method for methanol-reforming catalyst
HUP0202491A2 (en) Supported ruthenium oxide catalyst, process for preparing supported ruthenium catalyst and process for producing chlorine
US2307421A (en) Silver catalyst and method of making the same
US2960518A (en) Ethylene production process
US5053379A (en) High-activity nickel catalyst and process for preparation thereof
EP0204046B1 (en) Process and catalyst for the conversion of cyclohexanol to cyclohexanone
ITMI940317A1 (en) PROCEDURE FOR THE PRODUCTION OF RANGE-BUTYROLACTONE
US5001291A (en) Hydrocarbon dehydrogenation reactions
US3944627A (en) Hydrogenolysis of phenyl alkyl ketones and 1-phenylalkanols
JPH06263668A (en) Production of phenol
KR19990087753A (en) Dehydrogenation of Secondary Cyclic Alcohol
RU2190468C2 (en) Catalyst for dehydrogenation of cyclohexanol into cyclohexanone and method of its production
JP2853720B2 (en) Method for producing monoalkenylbenzenes
JPH09221437A (en) Production of ethanol
Guerrero-Ruiz et al. Effect of the basic function in Co, MgO/C catalysts on the selective oxidation of methane by carbon dioxide
CA1259632A (en) Catalytic reduction process
EP0730906B1 (en) Method for selective oxidation of hydrogen, and method for dehydrogenation of hydrocarbon
EP0826418A1 (en) Catalyst for oxidation of hydrogen, method for selective oxidation of hydrogen, and method for dehydrogenation of hydrocarbon
Benhmid et al. Highly active and selective Pd–Cu–TiO2 catalyst for the direct synthesis of benzyl acetate by gas phase acetoxylation of toluene
Kamiguchi et al. Catalytic hydrogenation and dehydrogenation over solid-state rhenium sulfide clusters with an octahedral metal framework

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees