JPH07187882A - Method for growing crystal of compound semiconductor and its production - Google Patents

Method for growing crystal of compound semiconductor and its production

Info

Publication number
JPH07187882A
JPH07187882A JP32895693A JP32895693A JPH07187882A JP H07187882 A JPH07187882 A JP H07187882A JP 32895693 A JP32895693 A JP 32895693A JP 32895693 A JP32895693 A JP 32895693A JP H07187882 A JPH07187882 A JP H07187882A
Authority
JP
Japan
Prior art keywords
crystal
composition ratio
elements
raw material
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32895693A
Other languages
Japanese (ja)
Inventor
Hidenori Mine
英規 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP32895693A priority Critical patent/JPH07187882A/en
Publication of JPH07187882A publication Critical patent/JPH07187882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide a method for growing a crystal capable of freely changing compsn. ratios according to precipitation and growth of the crystal at the time of growing the crystal of a compd. semiconductor from a liquid phase and capable of maintaining the specified compsn. ratios of crystals even in the case of growing of such mixed crystals which have elements of large coeffts. of segregation and its apparatus. CONSTITUTION:One or more elements X to be subjected to compsn. ratio control among the plural semiconductor elements are melted in respectively discrete or common auxiliary vessel 2 in the method for growing the crystal of the compd. semiconductor from a raw material liquid consisting of plural semiconductor elements and its apparatus. These elements to be subjected to the compsn. ratio control are then supplied from the auxiliary vessel 2 to a main vessel 1 through an element permeable sluice plate 4 capable of controlling the permeation rate of the elements to form the raw material liquid a, by which the compsn. ratios of the crystal A to be grown from this raw material liquid are arbitrarily controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体の結晶を
液相から成長させる方法およびその装置に関し、詳しく
は、析出する結晶の組成比を任意に制御しうる結晶成長
法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a crystal of a compound semiconductor from a liquid phase and an apparatus therefor, and more particularly to a crystal growth method and an apparatus therefor capable of arbitrarily controlling the composition ratio of precipitated crystals. Is.

【0002】[0002]

【従来の技術】半導体原料の液相から固相の結晶を成長
させる方法として、液相エピタキシャル法や引き上げ法
等が知られている。液相エピタキシャル法としては、融
解した低融点の金属を溶媒として、これに結晶成長を目
的とする半導体原料を溶解させたのち、溶液を冷却し、
該半導体の結晶を基板上に薄膜として析出させる結晶成
長法(徐冷法)、原料メルト内に温度差を設け、原料材
料を高温側で溶解し、低温側において基板と接触させる
結晶成長法(温度差法)などがある。また、引き上げ法
は半導体原料を融解し、種結晶を融液に接触させた後に
徐々に引き上げて、種結晶に続いて結晶を成長させ、バ
ルク結晶を得るという方法である。
2. Description of the Related Art As a method for growing a solid phase crystal from a liquid phase of a semiconductor raw material, a liquid phase epitaxial method, a pulling method and the like are known. As the liquid phase epitaxial method, a molten low melting point metal is used as a solvent, and a semiconductor raw material for the purpose of crystal growth is dissolved therein, and then the solution is cooled,
A crystal growth method (gradual cooling method) in which the semiconductor crystals are deposited as a thin film on the substrate, a temperature difference is provided in the raw material melt, the raw material material is melted on the high temperature side, and brought into contact with the substrate on the low temperature side (temperature difference). Law) etc. The pulling method is a method in which a semiconductor raw material is melted, a seed crystal is brought into contact with a melt, and then the seed crystal is gradually pulled up to grow a crystal after the seed crystal to obtain a bulk crystal.

【0003】[0003]

【発明が解決しようとする課題】上記のような液相から
固相の化合物半導体結晶を成長させる方法においては、
結晶が成長する方向に対して、即ち結晶の厚みが増加す
るに従って、該結晶の成分組成比を自在に変化させ、種
々の特性を付与することが望まれている。一方、3元以
上の元素からなる混晶中に偏析係数の大きい元素が存在
する場合には、元素ごとの析出量の差が原因となって、
結晶が成長する方向において組成比が変動し、良好な厚
膜結晶が得られないという問題がある。偏析係数は、溶
液・融液中の原料元素が結晶に取り込まれる割合(液相
中での組成と固相中での組成との比)であり、例えば、
ある元素Xの偏析係数が他の元素に比べて大きいと、そ
の元素Xは他の元素よりも結晶中によく析出し、該元素
Xが液相中に占める割合よりも固相中に占める割合の方
が大きいものとなる。このため、液相中に残留する元素
Xの量は、他の元素の量に比べて激しく減少し、その結
果、固相中に於ける該元素Xの組成も、結晶の成長が進
むにつれて減少することになる。従って、偏析係数の大
きい元素を有する3元以上の混晶を液相から成長させる
場合には、結晶の組成比を一定に維持することが望まれ
ている。
In the method of growing a solid-phase compound semiconductor crystal from a liquid phase as described above,
It is desired to freely change the composition ratio of the crystal in the direction in which the crystal grows, that is, as the thickness of the crystal increases to impart various characteristics. On the other hand, when an element having a large segregation coefficient is present in a mixed crystal composed of three or more elements, the difference in the amount of precipitation of each element causes
There is a problem that the composition ratio varies in the crystal growth direction, and a good thick film crystal cannot be obtained. The segregation coefficient is a ratio (ratio between a composition in a liquid phase and a composition in a solid phase) in which a raw material element in a solution / melt is incorporated into a crystal.
When the segregation coefficient of a certain element X is larger than that of another element, the element X precipitates better in the crystal than other elements, and the proportion of the element X in the solid phase is larger than that in the liquid phase. Will be bigger. Therefore, the amount of the element X remaining in the liquid phase is drastically reduced as compared with the amounts of the other elements, and as a result, the composition of the element X in the solid phase is also reduced as the crystal growth progresses. Will be done. Therefore, when growing a mixed crystal of three or more elements having an element with a large segregation coefficient from the liquid phase, it is desired to keep the composition ratio of the crystal constant.

【0004】本発明の目的は上記要望に対し、化合物半
導体の結晶を液相から成長させる際に、結晶が析出・成
長するに従って、該結晶の組成比を連続的に自在に変化
させることができる結晶成長法及びその装置を提供する
ことである。また、これによって、偏析係数の大きい元
素を有するような混晶を成長させる場合にも、その組成
比を常に一定に維持することを可能とするものである。
In response to the above demand, the object of the present invention is to allow the composition ratio of the compound semiconductor to be continuously and freely changed as the crystal precipitates and grows when the crystal of the compound semiconductor is grown from the liquid phase. A crystal growth method and an apparatus therefor are provided. Further, this makes it possible to always maintain a constant composition ratio even when growing a mixed crystal containing an element having a large segregation coefficient.

【0005】[0005]

【課題を解決するための手段】本発明者等は、原料液が
混合され結晶の成長が行われる本槽に対して、成分組成
比の制御を対象とする元素だけを別の溶融槽で溶融し、
該元素を本槽へ任意の量だけ送り込み拡散させることに
よって、本槽内の元素の組成比を任意の値に変化させ、
また、組成比の意図せぬ変化に対してはこれを一定に維
持することを可能とし本発明を完成した。即ち、本発明
の結晶成長法は、複数の半導体元素よりなる原料液から
化合物半導体の結晶を成長させる方法であって、当該複
数の半導体元素の内、組成比制御の対象となる1以上の
元素を各々個別の又は共通の副槽で溶融し、上記組成比
制御の対象となる元素を、該元素の通過量を制御しうる
元素透過性しきり板(以下、「しきり板」という。)を
通して副槽から本槽へ供給し原料液を形成することによ
って、該原料液から成長する結晶の組成比を任意に制御
することを特徴とするものである。また、上記組成比制
御の対象となる元素が他の元素に比べて偏析係数の大き
いものである場合は、本発明の結晶成長法は、成長する
結晶の組成比を常に一定となるよう制御しうるものであ
る。ただし、化合物半導体の結晶を成長させる方法は、
液相エピタキシャル法であってもよく、また、引き上げ
法であってもよい。
Means for Solving the Problems In the present tank in which raw material liquids are mixed and crystal growth is performed, the present inventors have melted only the elements whose composition ratio is controlled in another melting tank. Then
By changing the composition ratio of the element in the main tank to an arbitrary value by feeding and diffusing the element into the main tank in an arbitrary amount,
Further, the present invention has been completed by making it possible to keep the composition ratio constant against unintended changes. That is, the crystal growth method of the present invention is a method for growing a crystal of a compound semiconductor from a raw material liquid composed of a plurality of semiconductor elements, and one or more elements to be controlled in composition ratio among the plurality of semiconductor elements. Are melted in separate or common sub-vessels, and the element whose composition ratio is to be controlled is passed through an element-permeable sill plate (hereinafter, referred to as “shar plate”) capable of controlling the passage amount of the element. The composition of the present invention is characterized in that the composition ratio of the crystals grown from the raw material liquid is arbitrarily controlled by supplying the raw material liquid from the tank to the main tank. Further, when the element targeted for the composition ratio control has a larger segregation coefficient than other elements, the crystal growth method of the present invention controls the composition ratio of the growing crystal to be always constant. It is profitable. However, the method for growing a compound semiconductor crystal is
A liquid phase epitaxial method may be used, or a pulling method may be used.

【0006】さらに、本発明による結晶成長法を実施す
るための装置(以下、「結晶成長装置」という。)は、
1以上の副槽と1つの本槽とを有し、副槽と本槽とは副
槽内の元素の通過量を制御しうるしきり板を介して連通
され、副槽には組成比制御の対象となる元素が溶融また
は融解され、副槽内の元素がしきり板を通して本槽へ所
望量だけ供給されて原料液が形成される構成としてな
り、本槽において該原料液より組成比を任意に制御され
た化合物半導体の結晶を成長させることが可能なもので
ある。本明細書において「元素を溶融する」とは、「加
熱融解した溶媒に対して元素を溶質として溶解する」お
よび「元素を融解する」を含む。
Further, an apparatus for carrying out the crystal growth method according to the present invention (hereinafter referred to as "crystal growth apparatus") is
It has one or more sub-tanks and one main tank, and the sub-tanks and the main tank are communicated with each other through a plate that can control the passage amount of the elements in the sub-tank, and the sub-tank has a composition ratio control. The target element is melted or melted, and the element in the sub tank is supplied to the main tank through a divider plate in a desired amount to form a raw material liquid, and the composition ratio is arbitrarily adjusted from the raw material liquid in the main tank. It is possible to grow a controlled compound semiconductor crystal. In the present specification, “melting an element” includes “melting an element as a solute in a solvent which is heated and melted” and “melting an element”.

【0007】以下に、本発明の結晶成長法を、装置を示
す図を用いて具体的に説明する。図1は、本発明の結晶
成長法を実施する場合の一例を模式的に示す図である。
本発明の結晶成長法は、同図に示すように、複数の半導
体元素が溶融された原料液aから化合物半導体の結晶A
を成長させる方法であって、例えば、当該複数の半導体
元素をX,Y,Zの3元とすれば、これらの中で組成比
制御の対象となる元素X、即ち、組成比制御のために本
槽への供給量を制御する対象となる元素Xを副槽2で溶
融し、残りの元素Y,Zを本槽1で溶融し、上記元素X
を、該元素Xの通過量を制御しうる透過孔3を有するし
きり板4を通して副槽2から本槽1へ供給し拡散混合さ
せて原料液aを形成し、該原料液aの成分組成比を自在
に制御することによって、該原料液aから成長する結晶
Aの組成比を任意の値に制御することを特徴とするもの
である。ただし、同図は、結晶の析出に係るメカニズム
が温度差法を利用した液相エピタキシャル法である場合
の一例であり、結晶Aは基板5上に析出し成長するもの
である。
The crystal growth method of the present invention will be specifically described below with reference to the drawings showing the apparatus. FIG. 1 is a diagram schematically showing an example of carrying out the crystal growth method of the present invention.
As shown in the same figure, the crystal growth method of the present invention uses a crystal A of a compound semiconductor from a raw material liquid a in which plural semiconductor elements are melted.
In the method of growing a plurality of semiconductor elements, for example, if the plurality of semiconductor elements are ternary elements of X, Y, and Z, the element X to be controlled in composition ratio, that is, in order to control the composition ratio, The element X for which the supply amount to the main tank is controlled is melted in the sub tank 2, the remaining elements Y and Z are melted in the main tank 1, and the element X
Are supplied from the sub tank 2 to the main tank 1 through the dividing plate 4 having the permeation holes 3 capable of controlling the passage amount of the element X and diffuse-mixed to form the raw material liquid a. The composition ratio of the crystal A grown from the raw material liquid a is controlled to an arbitrary value by freely controlling. However, this figure is an example of the case where the mechanism relating to the precipitation of the crystal is the liquid phase epitaxial method utilizing the temperature difference method, and the crystal A is precipitated and grown on the substrate 5.

【0008】上記化合物半導体が2元の元素からなるも
のとしては、III 族(B,Al,Ga,In等)・V族
(N,P,As,Sb等)の組み合わせによる III−V
族化合物や、II族(Zn,Cd,Hg等)・VI族(S,
Se,Te等)の組み合わせによるII−VI族化合物等が
挙げられる。これらの化合物半導体の結晶成長に対して
は、本発明は、結晶の組成比が化学量論的な組成比から
ずれることを抑制するのに寄与する。例えば、GaAs
等では組成比がずれることにより種々の格子欠陥を生じ
る他、AlSb,GaSbなどでは高濃度のP型とな
り、InAsではN型となる等の問題があり、これらの
組成比制御に対して有効な手段の1つとなる。
As the compound semiconductor composed of a binary element, a group III-V (B, Al, Ga, In, etc.) / Group V (N, P, As, Sb, etc.) combination is used.
Group compounds, Group II (Zn, Cd, Hg, etc.) and Group VI (S,
II, VI group compounds and the like by a combination of Se, Te and the like). For crystal growth of these compound semiconductors, the present invention contributes to suppressing deviation of the crystal composition ratio from the stoichiometric composition ratio. For example, GaAs
In addition to causing various lattice defects due to deviation of the composition ratio, etc., there is a problem that AlSb, GaSb, etc. become high-concentration P type, and InAs becomes N type. It becomes one of the means.

【0009】上記化合物半導体が3元以上の混晶である
ものとしては、III −V族の化合物が代表的なものとし
て例示される。例えば、A,B,Cを III族の元素、
D,E,FをV族の元素とし、x,yを各元素の存在確
率(0≦x≦1,0≦y≦1)すると、 3元混晶として、 Ax 1-x D , ADy 1-y 、 4元混晶として、(Ax 1-x y 1-y D , A
(Dx 1-x y 1-y ,Ax 1-x y 1-y の形式で表される化合物が挙げられ、さらに5元混晶、
6元混晶というように多元のものが存在する。3元混晶
の元素の組み合わせとしては、AlGaAs,AlGa
Sb,GaInP,GaInAs,GaPAs等が例示
され、4元混晶としては、(AlGa)AsSb,(A
lGa)InP,(AlGaIn)As,(GaIn)
PAs,(GaIn)AsSb,In(PAsSb)A
s等が例示される。このような多元の混晶は、その組成
比を自在に変化させることが可能であるため、本発明の
結晶成長法が効果的に適用されるものである。即ち、本
発明の結晶成長法によって、これらの化合物半導体はそ
の結晶の成長方向に対して連続的に組成比が変化するも
のとなり、しかも、その組成比の変化率は任意に操作す
ることが可能となる。例えば、AlGaASからAlA
Sへ連続的に組成比が変化するような素材の形成も可能
である。
Compounds of Group III-V are representatively exemplified as the compound semiconductor of the above-mentioned compound semiconductor of ternary or more. For example, A, B, C are group III elements,
If D, E, and F are group V elements and x and y are the existence probabilities of each element (0 ≦ x ≦ 1, 0 ≦ y ≦ 1), a ternary mixed crystal is obtained: A x B 1-x D, AD y E 1-y , as a quaternary mixed crystal, (A x B 1-x ) y C 1-y D, A
(D x E 1-x ) y F 1-y , A x B 1-x D y E 1-y .
There are multiple elements such as hexagonal mixed crystals. As a combination of the elements of the ternary mixed crystal, AlGaAs, AlGa
Sb, GaInP, GaInAs, GaPAs, etc. are exemplified, and as the quaternary mixed crystal, (AlGa) AsSb, (A
lGa) InP, (AlGaIn) As, (GaIn)
PAs, (GaIn) AsSb, In (PAsSb) A
Examples are s and the like. The composition ratio of such a multi-element mixed crystal can be freely changed, and thus the crystal growth method of the present invention is effectively applied. That is, by the crystal growth method of the present invention, the composition ratio of these compound semiconductors changes continuously with respect to the crystal growth direction, and the rate of change of the composition ratio can be manipulated arbitrarily. Becomes For example, from AlGaAS to AlA
It is also possible to form a material whose composition ratio changes to S continuously.

【0010】化合物半導体が3元以上の混晶であり、混
晶中に偏析係数の大きい元素が存在するものである場合
は、前記のように組成比の変動が問題となる。AlGa
AsにおけるAlや、InGaAsPにおけるPなどは
その典型例であり、このような化合物半導体の結晶を液
相から固相へ析出・成長させると、成長層内のAlやP
の組成比は厚み方向において徐々に減少し、厚膜成長さ
せる際に均一な組成比を維持することが困難となる。こ
のような化合物半導体の結晶成長に対しては、本発明の
結晶成長法は組成比を安定させる有用な手段となる。即
ち、本発明の結晶成長法は、上記のように多元混晶の組
成比を結晶成長方向に対して連続的に変化させ得るもの
であるから、組成比制御の特殊な場合として、偏析係数
が原因となるような厚み方向の組成比の変動に対して
も、これを一定に制御することができるのである。
When the compound semiconductor is a ternary or more mixed crystal, and an element having a large segregation coefficient is present in the mixed crystal, the fluctuation of the composition ratio poses a problem as described above. AlGa
Typical examples are Al in As and P in InGaAsP. When such a compound semiconductor crystal is deposited and grown from a liquid phase to a solid phase, Al and P in the growth layer are formed.
The composition ratio is gradually reduced in the thickness direction, and it becomes difficult to maintain a uniform composition ratio when growing a thick film. For the crystal growth of such compound semiconductor, the crystal growth method of the present invention is a useful means for stabilizing the composition ratio. That is, since the crystal growth method of the present invention can continuously change the composition ratio of the multi-element mixed crystal in the crystal growth direction as described above, as a special case of composition ratio control, the segregation coefficient is Even if the composition ratio in the thickness direction fluctuates, which is a cause, this can be controlled to be constant.

【0011】多元の元素成分のうち、組成比制御のため
に供給量を制御する対象となる元素の数は1以上であ
り、多元混晶の全ての成分が組成比制御の対象となるも
のであってもよい。該供給量を制御する対象となる元素
は、副槽で溶融し、制御に必要な量だけを本槽へ供給す
る。該供給量を制御する対象となる元素が複数である場
合は、各々の元素の溶融を全て個別の副槽で行なうか、
該元素を全て1つの副層で溶融するか、あるいは幾つか
の元素だけを共通の副槽で溶融し残りを個別の副槽で溶
融するかを、目的に応じて選択すればよい。
Of the multi-element elements, the number of elements whose supply amount is controlled to control the composition ratio is 1 or more, and all the components of the multi-element mixed crystal are the object of composition ratio control. It may be. The element whose supply amount is to be controlled is melted in the sub tank and only the amount necessary for control is supplied to the main tank. When there are a plurality of elements for which the supply amount is controlled, melting of each element is performed in a separate sub tank, or
It may be selected depending on the purpose whether all the elements are melted in one sublayer, or only some of the elements are melted in a common subtank and the rest are melted in individual subtanks.

【0012】しきり板は、組成比の制御対象となる元素
を必要な制御量だけ副槽から本槽へ通過させるものであ
る。元素の通過量は、主として該しきり板に設けられた
透過孔の孔径,孔の全長,孔の数を変更することによっ
て制御されるが、透過孔を所定の間欠時間をもって開閉
する方法によってもよい。該しきり板と透過孔の具体的
な態様は、後述の結晶成長装置の説明において詳細に説
明する。
The partition plate is for passing the required controlled amount of the element whose composition ratio is to be controlled from the sub tank to the main tank. The passage amount of the element is controlled mainly by changing the hole diameter of the permeation holes, the total length of the holes, and the number of the holes provided in the partition plate, but it may be controlled by a method of opening and closing the permeation holes with a predetermined intermittent time. . Specific modes of the plate and the transmission hole will be described in detail in the description of the crystal growth apparatus described later.

【0013】結晶の析出そのものが成されるメカニズム
は、公知の液相エピタキシャル法や引き上げ法の原理に
よる。図1は液相エピタキシャル法の原理により析出が
成される場合の例であり、低融点の金属を本槽・副槽内
で加熱融解して溶媒とし、各々の槽に所定の原料元素を
溶質として溶解し組成比の制御を行なう。また、結晶の
析出が引き上げ法の原理によるものである場合は、原料
元素を各所定の溶融槽で加熱融解し、本槽における原料
液の組成比の制御を行なう。
The mechanism of crystal precipitation itself is based on the principles of known liquid phase epitaxial method and pulling method. Fig. 1 is an example of the case where precipitation is performed by the principle of the liquid phase epitaxial method. A low melting point metal is heated and melted in the main tank and the sub tank to form a solvent, and a predetermined source element is solute in each tank. And melt to control the composition ratio. When the crystal precipitation is based on the principle of the pulling method, the raw material elements are heated and melted in each predetermined melting tank, and the composition ratio of the raw material liquid in the main tank is controlled.

【0014】[0014]

【作用】組成比制御の対象となる元素を副槽に隔離し、
ここから本槽へ必要な制御量だけ送る構成とすることに
よって、本槽内の原料液中の元素の組成比を自在に制御
することができるようになる。従って、液相から固相へ
結晶の析出が進行するのに伴い、該原料液中の元素の組
成比を任意の変化率(一定に維持する場合を含む)をも
ってコントロールすることで、成長する結晶の組成比も
同様に制御することができる。
[Function] Isolation of the element whose composition ratio is to be controlled in the sub tank,
With the configuration in which only the required control amount is sent from here to the main tank, the composition ratio of the elements in the raw material liquid in the main tank can be freely controlled. Therefore, as the precipitation of crystals progresses from the liquid phase to the solid phase, the growing crystal can be controlled by controlling the composition ratio of the elements in the raw material liquid at an arbitrary rate of change (including the case of keeping it constant). The composition ratio of can be similarly controlled.

【0015】[0015]

【実施例】以下、本発明の結晶成長法を具体的に実施す
るための装置(以下、「結晶成長装置」という)を図面
に従って説明する。 〔実施例1〕本実施例では、化合物半導体XYZを形成
する元素のうち、組成比制御のために1つの元素Xの供
給量をコントロールする場合の結晶成長装置の基本的な
構成例を示す。図1は、該結晶成長装置の構成の一例を
模式的に示す図である。同図に示すように、本発明の結
晶成長装置は、副槽2と、本槽1とを有し、副槽2と本
槽1とは元素の通過量を制御しうる透過孔3を有するし
きり板4を介して連通され、副槽では組成比を制御する
ために供給する元素Xが加熱溶融され、本槽では元素X
以外の残りの元素YとZが加熱溶融され、副槽内の元素
Xがしきり板を通して本槽へ所望量だけ拡散混合されて
原料液aが形成される構成としてなり、本槽において該
原料液より組成比を任意に制御された化合物半導体の結
晶Aを成長させることが可能な装置である。上記結晶成
長装置は、液相エピタキシャル法による結晶析出に対応
する例であり、結晶Aは基板5に析出し成長するもので
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus for carrying out the crystal growth method of the present invention (hereinafter referred to as "crystal growth apparatus") will be described below with reference to the drawings. [Embodiment 1] This embodiment shows a basic configuration example of a crystal growth apparatus in the case of controlling the supply amount of one element X among the elements forming the compound semiconductor XYZ for controlling the composition ratio. FIG. 1 is a diagram schematically showing an example of the configuration of the crystal growth apparatus. As shown in the figure, the crystal growth apparatus of the present invention has a sub-tank 2 and a main tank 1, and the sub-tank 2 and the main tank 1 each have a permeation hole 3 capable of controlling the passage amount of an element. The element X, which is communicated through the divider plate 4, is heated and melted in the sub tank to be supplied for controlling the composition ratio, and the element X is supplied in the main tank.
The remaining elements Y and Z other than the above are melted by heating, and the element X in the sub tank is diffused and mixed into the main tank through a plate in a desired amount to form a raw material liquid a. It is an apparatus capable of growing a crystal A of a compound semiconductor whose composition ratio is arbitrarily controlled. The above crystal growth apparatus is an example corresponding to crystal precipitation by the liquid phase epitaxial method, and the crystal A is deposited and grown on the substrate 5.

【0016】本槽1と副槽2と基板5とは一体構造であ
っても分離可能な構造であってもよい。また、図1に示
すように本槽1と副槽2とを有するスライドボート7
が、基板5を有する基板ホルダー8に対してスライドす
る構造であってもよい。本槽1,副槽2および基板ホル
ダーの材質としては、グラファイト,ガラス状カーボ
ン,p−BN,SiO2 等が例示される。
The main tank 1, the sub tank 2, and the substrate 5 may have an integral structure or a separable structure. A slide boat 7 having a main tank 1 and a sub tank 2 as shown in FIG.
However, the structure may be such that it slides with respect to the substrate holder 8 having the substrate 5. Examples of materials for the main tank 1, the sub tank 2, and the substrate holder include graphite, glassy carbon, p-BN, and SiO 2 .

【0017】本槽1および副槽2には、原料を溶融する
ためのヒーター等の加熱手段(図示せず)以外に、原料
液の局部的な温度制御を行うための加熱手段6を付与す
ることが好ましい。該加熱手段を用いて原料液内の上下
間に温度変化を与えることによって、高温側から低温側
へ成長原料を移送でき基板上に結晶を成長させることが
できる。加熱手段としては電気ヒーターが一般的であ
る。加熱手段の態様としては、図1に示すように、本槽
の上部からしきり板にかけて加熱手段6を設ける構成
や、図2に示すように、図1の加熱手段6に加えて副槽
の上部に加熱手段6bを設ける構成、さらには、溶融槽
の壁面に多数段の加熱・冷却手段を設け、原料液の温度
変化を細かく制御する構成等が例示される。これによ
り、副槽内の元素が本槽内へ拡散する速度を制御でき、
成長膜の組成を変化させることができる。
In addition to heating means (not shown) such as a heater for melting the raw material, the main tank 1 and the sub tank 2 are provided with heating means 6 for locally controlling the temperature of the raw material liquid. It is preferable. By using the heating means to change the temperature between the upper and lower sides of the raw material liquid, the growth raw material can be transferred from the high temperature side to the low temperature side, and the crystal can be grown on the substrate. An electric heater is generally used as the heating means. As a mode of the heating means, as shown in FIG. 1, a configuration in which the heating means 6 is provided from the upper part of the main tank to the divider plate, and as shown in FIG. 2, in addition to the heating means 6 of FIG. Examples thereof include a configuration in which the heating means 6b is provided, and a configuration in which multiple stages of heating / cooling means are provided on the wall surface of the melting tank to finely control the temperature change of the raw material liquid. This makes it possible to control the speed at which the elements in the sub tank diffuse into the main tank,
The composition of the growth film can be changed.

【0018】しきり板4には副槽と本槽とを連絡する透
過孔3が設けられ、組成比制御の対象となる元素を所望
量だけ副槽から本槽へ供給するために用いるものであ
る。しきり板の材料としては、上記の基板ホルダーと同
様に、グラファイト,ガラス状カーボン,p−BN,S
iO2 等が使用できる。しきり板に対する透過孔の態様
は、直線的な貫通孔の他、カイメン状の不規則な多孔
等、限定されないが、直線的な貫通孔の方が実用的で好
ましい。透過孔3の孔径,孔の数,孔の全長は、元素の
通過量を決定するための重要な要素であって、液の温度
制御と共に理論的にあるいは実験的に最適な値を自由に
選択すればよい。また、図3に示すように、透過孔にシ
ャッターを設け、透過孔の開放時間によって元素の通過
量をコントロールしてもよい。図3(a)は全ての透過
孔を1枚の板4bで開閉する例であり、図3(b)は、
板4bに設けられた透過孔3bと、しきり板4に設けら
れた透過孔3との位置関係によって孔径を変化させ、開
閉を行う例である。
The partition plate 4 is provided with a permeation hole 3 which connects the sub tank and the main tank, and is used to supply a desired amount of the element whose composition ratio is to be controlled from the sub tank to the main tank. . The material for the plate is graphite, glassy carbon, p-BN, S, as in the above substrate holder.
iO 2 or the like can be used. The mode of the permeation holes for the plate is not limited to linear through holes, sponge-like irregular porosity, etc., but linear through holes are more practical and preferable. The pore diameter of the permeation hole 3, the number of pores, and the total length of the pores are important factors for determining the amount of passage of the element, and the optimum values can be freely selected theoretically or experimentally along with the temperature control of the liquid. do it. Further, as shown in FIG. 3, a shutter may be provided in the transmission hole and the passage amount of the element may be controlled by the opening time of the transmission hole. FIG. 3 (a) is an example in which all the transmission holes are opened and closed by one plate 4b, and FIG. 3 (b) is
This is an example of opening and closing by changing the hole diameter depending on the positional relationship between the transmission hole 3b provided in the plate 4b and the transmission hole 3 provided in the cut-off plate 4.

【0019】〔実験例〕上記結晶成長装置を用いて、偏
析係数が大きいAlのために従来困難であったAlGa
Asの液相エピタキシャル成長の実験をおこなった。溶
媒としてのGaを850℃で融解し、これにAlを副槽
に溶解し、本槽にはGa,Asを溶解し、炉体温度を8
50℃に保ち、局部ヒーターにより溶液上下間に約5℃
の温度差をもたせ結晶成長を行った。得られたAl0.6
Ga0.4 Asの組成比を厚み方向に調べたところ、一定
であり、本発明の結晶成長法およびその装置が、結晶の
組成比を制御でき、特に偏析係数の大きい元素を含むも
のに対しても、その組成比の変動を効果的に抑制しうる
ものであることが確認できた。
[Experimental Example] Using the above crystal growth apparatus, AlGa having a large segregation coefficient was difficult to achieve in the past.
An experiment of liquid phase epitaxial growth of As was performed. Ga as a solvent was melted at 850 ° C., Al was dissolved in the sub tank, Ga and As were melted in the main tank, and the furnace temperature was set to 8
Keep the temperature at 50 ℃, and about 5 ℃ between the top and bottom of the solution by the local heater.
The crystal growth was carried out with a temperature difference of. The obtained Al 0.6
When the composition ratio of Ga 0.4 As was examined in the thickness direction, it was found to be constant, and the crystal growth method and the apparatus thereof of the present invention can control the composition ratio of crystals, and especially for those containing an element with a large segregation coefficient. It was confirmed that the fluctuation of the composition ratio can be effectively suppressed.

【0020】〔実施例2〕本実施例では、実施例1に示
した装置のバリエーションの1つとして、組成比制御の
ために供給量コントロールの対象となる元素が複数であ
る場合の結晶成長装置の構成を示す。図4は、供給量コ
ントロールの対象となる元素が2つである場合の結晶成
長装置の構造を模式的に示す図である。同図に示すよう
に、該結晶成長装置は2槽の副槽2a,2bを並列に設
け、各々に組成比の制御対象となる元素を溶融する構成
とした以外は実施例1の装置と同様である。
[Embodiment 2] In this embodiment, as one of the variations of the apparatus shown in Embodiment 1, a crystal growth apparatus in the case where a plurality of elements whose supply amount is controlled for controlling the composition ratio are plural. Shows the configuration of. FIG. 4 is a diagram schematically showing the structure of the crystal growth apparatus in the case where the supply amount control target is two elements. As shown in the figure, the crystal growth apparatus is the same as the apparatus of Example 1 except that two sub-tanks 2a and 2b are provided in parallel and the elements whose composition ratio is to be controlled are melted in each. Is.

【0021】上記結晶成長装置によって、実施例1と同
様にInGaAsPのような多元混晶を液相エピタキシ
ャル成長させるに際し、複数の元素の組成比を制御の対
象とすることができる。副槽の数は、供給量コントロー
ルの対象となる元素を、全て個別に、あるいは、幾つか
の元素を共通の槽で溶融するのに必要な数だけ並列に設
ければよい。
With the above-described crystal growth apparatus, the composition ratio of a plurality of elements can be controlled when liquid phase epitaxial growth of a multi-element mixed crystal such as InGaAsP is performed as in the first embodiment. As for the number of sub-vessels, all the elements whose supply amount is to be controlled may be provided individually, or in parallel as many as necessary for melting some elements in a common vessel.

【0022】〔実施例3〕本実施例では、化合物半導体
の結晶析出の原理が引き上げ法によるものである場合の
結晶成長装置の構成を示す。図5は、その結晶成長装置
の構造の一例を模式的に示す図である。該結晶成長装置
は、複数の副槽(同図においては2a,2b以外は図示
せず)を本槽1の周囲に必要数だけ設け、副槽と本槽と
は元素の通過量を制御しうる透過孔3を有するしきり板
4を介して連通され、本槽の上部液面より公知の引き上
げ法によって混晶のバルク結晶Bが引き上げられる構成
とした以外は、各部の作用,態様,バリエーション等に
おいて実施例1,2の装置と同様である。
[Embodiment 3] This embodiment shows the structure of a crystal growth apparatus in the case where the principle of crystal precipitation of a compound semiconductor is based on the pulling method. FIG. 5 is a diagram schematically showing an example of the structure of the crystal growth apparatus. The crystal growth apparatus is provided with a plurality of sub-tanks (not shown in the figure, except for 2a and 2b) around the main tank 1, and the sub-tanks and the main tank control the passage amount of elements. Function of each part, except that the bulk crystal B of the mixed crystal is pulled up from the upper liquid surface of the main tank by a well-known pulling method. Is the same as the device of the first and second embodiments.

【0023】上記のような結晶成長装置によって、多成
分のバルク結晶を引き上げる場合においても成分比を自
在に制御できる。特に、偏析係数の大きい元素を含むも
のに対しては成分比の変動が抑制されたバルク結晶を得
ることが可能となった。
With the crystal growth apparatus as described above, the component ratio can be freely controlled even when pulling a bulk crystal of multiple components. In particular, it has become possible to obtain a bulk crystal in which fluctuations in the composition ratio are suppressed for those containing an element with a large segregation coefficient.

【0024】以上詳述したような化合物半導体の組成比
の制御例に加えて、さらに、本発明の方法および装置
は、結晶成長させる化合物半導体へ添加する不純物(ド
ーパント)濃度のコントロールにも有用である。例え
ば、キャリア濃度を結晶の厚み方向に一定とする場合、
あるいは厚み方向に連続的に変化させる場合など、不純
物元素(III −V族半導体の場合はZn,Te,Si
等)を副槽から本槽へ供給する材料とし、上述と同様の
方法で添加量を制御することによって、不純物濃度が自
在にコントロールできる。
In addition to the example of controlling the composition ratio of the compound semiconductor as detailed above, the method and apparatus of the present invention are also useful for controlling the concentration of impurities (dopants) added to the compound semiconductor for crystal growth. is there. For example, when the carrier concentration is constant in the thickness direction of the crystal,
Alternatively, when changing continuously in the thickness direction, an impurity element (Zn, Te, Si in the case of a III-V group semiconductor is used).
Etc.) as a material to be supplied from the sub tank to the main tank, and the impurity concentration can be freely controlled by controlling the addition amount in the same manner as described above.

【0025】[0025]

【発明の効果】以上詳述したように、本発明の結晶成長
法およびその装置によって、液相エピタキシャル法や引
き上げ法など、化合物半導体の結晶を液相から成長させ
る際に、結晶が析出・成長するに従って連続的に自在に
その組成比および/または不純物の添加量を変化させる
ことができる。また、従来、偏析係数の大きい元素を有
する混晶は、液相エピタキシャル法による結晶成長では
一定の組成比をもって厚膜に形成することが困難であっ
たが、本発明によって、液相エピタキシャル法による結
晶成長法であっても、その組成比を結晶の厚み方向に常
に一定に維持することが可能となる。
As described in detail above, when the crystal growth method and the apparatus thereof according to the present invention are used to grow a compound semiconductor crystal from a liquid phase such as a liquid phase epitaxial method or a pulling method, the crystal is precipitated and grown. As such, the composition ratio and / or the amount of impurities added can be continuously and freely changed. Further, conventionally, it has been difficult to form a mixed crystal containing an element having a large segregation coefficient into a thick film with a constant composition ratio by crystal growth by the liquid phase epitaxial method. Even with the crystal growth method, the composition ratio can be constantly maintained in the thickness direction of the crystal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の結晶成長法を具体的に実施するための
結晶成長装置の構成の一例を示す模式図である。
FIG. 1 is a schematic view showing an example of the configuration of a crystal growth apparatus for specifically carrying out the crystal growth method of the present invention.

【図2】加熱手段の態様の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a mode of heating means.

【図3】しきり板の透過孔に設けるシャッターの態様の
一例を示す模式図である。
FIG. 3 is a schematic view showing an example of a mode of a shutter provided in a transmission hole of a divider plate.

【図4】供給量の制御対象となる元素が2つの場合の結
晶成長装置の構造を示す模式図である。
FIG. 4 is a schematic diagram showing a structure of a crystal growth apparatus in the case where two elements whose supply amounts are controlled are two.

【図5】化合物半導体の結晶を成長させる方法が引き上
げ法によるものである場合の結晶成長装置の構成の一例
を示す模式図である。
FIG. 5 is a schematic diagram showing an example of a configuration of a crystal growth apparatus in the case where a method for growing a crystal of a compound semiconductor is a pulling method.

【符号の説明】[Explanation of symbols]

A 化合物半導体の結晶 a 原料液 X〜Z 化合物半導体を構成する元素 1 本槽 2 副槽 4 元素透過性しきり板 A crystal of compound semiconductor a raw material liquid X to Z elements constituting compound semiconductor 1 main tank 2 sub tank 4 element permeable threshold plate

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 29/40 B 8216−4G C 8216−4G H01L 21/208 Z Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C30B 29/40 B 8216-4G C 8216-4G H01L 21/208 Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の半導体元素よりなる原料液から化
合物半導体の結晶を成長させる方法であって、当該複数
の半導体元素の内、組成比制御の対象となる1以上の元
素を各々個別の又は共通の副槽で溶融し、上記組成比制
御の対象となる元素を、該元素の通過量を制御しうる元
素透過性しきり板を通して副槽から本槽へ供給し原料液
を形成することによって、該原料液から成長する結晶の
組成比を任意に制御することを特徴とする結晶成長法。
1. A method for growing a crystal of a compound semiconductor from a raw material liquid comprising a plurality of semiconductor elements, wherein one or more elements to be subject to composition ratio control are individually or individually selected from the plurality of semiconductor elements. Melting in a common sub-tank, the element to be subject to the composition ratio control, by forming a raw material liquid from the sub-tank to the main tank through an element permeable divider plate that can control the passage amount of the element, A crystal growth method, wherein the composition ratio of crystals grown from the raw material liquid is arbitrarily controlled.
【請求項2】 組成比制御の対象となる元素が他の元素
に比べて偏析係数の大きいものであり、原料液から成長
する結晶の組成比を常に一定となるよう制御することを
特徴とする請求項1記載の結晶成長法。
2. The element whose composition ratio is to be controlled has a larger segregation coefficient than other elements, and the composition ratio of the crystals grown from the raw material liquid is controlled to be always constant. The crystal growth method according to claim 1.
【請求項3】 原料液が、加熱溶融された溶媒中に複数
の半導体元素を溶解してなるものであり、化合物半導体
の結晶を成長させる方法が、液相エピタキシャル法であ
る請求項1記載の結晶成長法。
3. The raw material liquid is obtained by dissolving a plurality of semiconductor elements in a heated and melted solvent, and the method for growing a crystal of a compound semiconductor is a liquid phase epitaxial method. Crystal growth method.
【請求項4】 原料液が、複数の半導体元素を融解して
なるものであり、化合物半導体の結晶を成長させる方法
が引き上げ法である請求項1記載の結晶成長法。
4. The crystal growth method according to claim 1, wherein the raw material liquid is formed by melting a plurality of semiconductor elements, and the method for growing the crystal of the compound semiconductor is a pulling method.
【請求項5】 1以上の副槽と1つの本槽とを有し、副
槽と本槽とは副槽内の元素の通過量を制御しうる元素透
過性しきり板を介して連通され、副槽には組成比制御の
対象となる元素が溶融または融解され、副槽内の元素が
該しきり板を通して本槽へ所望量だけ供給されて原料液
が形成される構成としてなり、本槽において該原料液よ
り組成比を任意に制御された化合物半導体の結晶を成長
させることが可能な結晶成長装置。
5. It has one or more sub-tanks and one main tank, and the sub-tank and the main tank are communicated with each other through an element-permeable dividing plate capable of controlling the amount of passage of elements in the sub-tank, In the sub-tank, the element whose composition ratio is to be controlled is melted or melted, and the element in the sub-tank is supplied to the main tank through the plate in a desired amount to form a raw material liquid. A crystal growth apparatus capable of growing a compound semiconductor crystal whose composition ratio is arbitrarily controlled from the raw material liquid.
JP32895693A 1993-12-24 1993-12-24 Method for growing crystal of compound semiconductor and its production Pending JPH07187882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32895693A JPH07187882A (en) 1993-12-24 1993-12-24 Method for growing crystal of compound semiconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32895693A JPH07187882A (en) 1993-12-24 1993-12-24 Method for growing crystal of compound semiconductor and its production

Publications (1)

Publication Number Publication Date
JPH07187882A true JPH07187882A (en) 1995-07-25

Family

ID=18215995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32895693A Pending JPH07187882A (en) 1993-12-24 1993-12-24 Method for growing crystal of compound semiconductor and its production

Country Status (1)

Country Link
JP (1) JPH07187882A (en)

Similar Documents

Publication Publication Date Title
US3933538A (en) Method and apparatus for production of liquid phase epitaxial layers of semiconductors
US5021224A (en) Apparatus for growing multicomponents compound semiconductor crystals
US3632431A (en) Method of crystallizing a binary semiconductor compound
GB2140618A (en) Semiconductor manufacturing methods
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
US20100209686A1 (en) Mg-CONTAINING ZnO MIXED SINGLE CRYSTAL, LAMINATE THEREOF AND THEIR PRODUCTION METHODS
JPH07187882A (en) Method for growing crystal of compound semiconductor and its production
US7048797B2 (en) Liquid-phase growth process and liquid-phase growth apparatus
JP3435118B2 (en) Method for growing compound semiconductor bulk crystal and method for manufacturing compound semiconductor device
JP2533760B2 (en) Mixed crystal manufacturing method
JP3013125B2 (en) Pull-up growth method and apparatus
JP4211897B2 (en) Liquid phase epitaxial growth method
Plaskett The Synthesis of Bulk GaP from Ga Solutions
JP3202405B2 (en) Epitaxial growth method
JP3313412B2 (en) Method and apparatus for manufacturing semiconductor crystal
Baxter et al. Perfection of materials technology for producing improved Gunn-effect devices Interim scientific report
JP2000247624A (en) Production of iron silicide crystal
JP3551406B2 (en) Growth method of mixed crystal semiconductor single crystal
JP2885452B2 (en) Boat growth method for group III-V compound crystals
Arora Liquid phase epitaxial growth and characterization of III-V compound semiconductors
JPH05114565A (en) Slide boat member and liquid phase epitaxy using same
JP2003267794A (en) Method and apparatus for growing crystal
JPH04305089A (en) Method and device for producing semiconductor
Paorici Technology of Crystal Growth: Binary Semiconductors: II-VI Compounds
JPH08333193A (en) Production of semiconductor crystal and apparatus therefor