JPH07187630A - Ferromagnetic carbon material and its production - Google Patents

Ferromagnetic carbon material and its production

Info

Publication number
JPH07187630A
JPH07187630A JP3109779A JP10977991A JPH07187630A JP H07187630 A JPH07187630 A JP H07187630A JP 3109779 A JP3109779 A JP 3109779A JP 10977991 A JP10977991 A JP 10977991A JP H07187630 A JPH07187630 A JP H07187630A
Authority
JP
Japan
Prior art keywords
carbide
halogen
ungraphitized
carbon material
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3109779A
Other languages
Japanese (ja)
Other versions
JP2659077B2 (en
Inventor
Hisashi Ueda
寿 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3109779A priority Critical patent/JP2659077B2/en
Publication of JPH07187630A publication Critical patent/JPH07187630A/en
Application granted granted Critical
Publication of JP2659077B2 publication Critical patent/JP2659077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use

Abstract

PURPOSE:To obtain a ferromagnetic carbon material made of entirely carbonaceous ungraphitized carbide by heating an org. substance or ungraphitized carbide of the org. substance at a certain temp. in the presence of halogen. CONSTITUTION:An org. substance or ungraphitized carbide of the org. substance is heated at 250-800 deg.C in an oxygen-free inert gaseous atmosphere contg. 1-5vol.% halogen or halogen generating agent to obtain the objective ferromagnetic carbon material made of entirely carbonaceous ungraphitized carbide. This material has the advantage of low specific gravity and lightweight and is easy to produce.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、遷移金属元素を全く含
まず炭素質100%からなる強磁性炭素材料及びその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic carbon material which does not contain any transition metal element and is composed of 100% carbonaceous material, and a method for producing the same.

【0002】[0002]

【従来の技術】これまで、強磁性材料としては、鉄、コ
バルト、ニッケル、などの遷移金属の単体、合金、酸化
物などが用いられてきている。これらの強磁性材料は磁
化率が大きく、保磁力及び残留磁化値が大きいなど、磁
性材料として多くの長所を有する反面、幾つかの短所を
有する。その(1)は、重金属元素であるために比重が
大きく宇宙空間などへ運搬するためには不都合である。
その(2)は、鉄以外の元素は、地球上に資源として偏
在するため、将来的に資源の枯渇が心配されることであ
る。その(3)は、金属元素であるため、硬度が大き
く、軟質な材料とはなりにくいことである。その(4)
は、不要になった場合に、消磁して処分したい場合があ
るが、多大のエネルギーを要することである。
2. Description of the Related Art Heretofore, simple substances, alloys, oxides, etc. of transition metals such as iron, cobalt and nickel have been used as ferromagnetic materials. These ferromagnetic materials have many merits such as a large magnetic susceptibility, a large coercive force and a remanent magnetization value, but on the other hand, they have some disadvantages. Since (1) is a heavy metal element, it has a large specific gravity and is inconvenient for transportation to outer space.
The reason (2) is that elements other than iron are unevenly distributed on the earth as resources, and there is concern that resources will be depleted in the future. Since (3) is a metal element, it has a high hardness and is unlikely to be a soft material. That (4)
When you no longer need it, you may want to demagnetize and dispose of it, but this requires a lot of energy.

【0003】[0003]

【発明が解決しようとする課題】従来の強磁性材料の有
する欠点を克服した材料、言い換えると、従来の強磁性
材料と相補的に使える強磁性材料は、上記に述べたよう
に、(1)比重が小さく、(2)資源的に豊富であり、
(3)非金属元素であり、(4)簡単に焼却処分ができ
る、等の性質を有するものである。このような材料の候
補の一つとしては炭素材料がある。従って、本発明は、
強磁性を付与した炭素材料及びその製造方法を提供する
ことをその課題とする。
A material that overcomes the drawbacks of the conventional ferromagnetic material, in other words, a ferromagnetic material that can be used complementarily to the conventional ferromagnetic material, is as described above (1). It has a small specific gravity, and (2) is rich in resources,
(3) It is a non-metal element, and has properties such as (4) that it can be easily incinerated. A carbon material is one of candidates for such a material. Therefore, the present invention provides
It is an object of the present invention to provide a carbon material having ferromagnetism and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者は、前記課題を
解決すべく鋭意研究した結果、炭素含量100%の未グ
ラファイト化炭化物が強磁性を示すことを見出し、本発
明を完成するに至った。すなわち、本発明によれば、炭
素質100%の未グラファイト化炭化物からなる強磁性
炭素材料が提供される。また、本発明によれば、有機物
質の未グラファイト化炭化物をハロゲン又はハロゲン発
生剤の存在下250〜800℃の温度で加熱処理し、炭
素質100%の未グラファイト化炭化物を得ることを特
徴とする強磁性炭素材料の製造方法が提供される。さら
に、本発明によれば、有機物質を、ハロゲン又はハロゲ
ン発生剤の存在下、250〜800℃の温度で加熱処理
し、炭素質100%の未グラファイト化炭化物を得るこ
とを特徴とする強磁性炭素質材料の製造方法が提供され
る。
As a result of intensive studies to solve the above problems, the present inventor has found that ungraphitized carbide having a carbon content of 100% exhibits ferromagnetism, and has completed the present invention. It was That is, according to the present invention, there is provided a ferromagnetic carbon material composed of 100% carbonaceous ungraphitized carbide. Further, according to the present invention, an ungraphitized carbide of an organic substance is heat-treated at a temperature of 250 to 800 ° C. in the presence of halogen or a halogen generating agent to obtain an ungraphitized carbide of 100% carbonaceous. A method of manufacturing a ferromagnetic carbon material is provided. Further, according to the present invention, an organic substance is heat-treated in the presence of halogen or a halogen generator at a temperature of 250 to 800 ° C. to obtain an ungraphitized carbide containing 100% carbonaceous material. A method for manufacturing a carbonaceous material is provided.

【0005】本発明において、強磁性炭素材料を得るに
は、図1からわかるように、未グラフィト化炭化物にお
いて、それに含まれる水素原子を、炭化物のグラファイ
ト化を回避させながら、微底的に除去することが必要で
ある。また、図1からわかるように、炭素原子の電子軌
道がsp2型の平面構造を取っているので、飽和炭化水
素型化合物を利用する場合には、sp3型の四面体構造
からsp2型への転移が起こらなければならない。従っ
て、炭素原子がいわば『寝返りを打つ』運動性を与えな
ければいけない。このような運動性を与えるには加熱処
理が使用される。本発明においては、生成する炭化物の
グラファイト化を回避させるとともに、水素原子を含ま
ない炭素質100%の未グラファイト化炭化物を得るた
めに、炭化物又は有機物質を、ハロゲン又はハロゲン発
生剤の存在下、250〜800℃、好ましくは400〜
600℃の温度で加熱処理する。
In order to obtain a ferromagnetic carbon material in the present invention, as can be seen from FIG. 1, hydrogen atoms contained in ungraphitized carbide are finely removed while avoiding graphitization of the carbide. It is necessary to. Further, as can be seen from FIG. 1, since the electron orbit of the carbon atom has a sp2 type planar structure, when a saturated hydrocarbon type compound is used, the transition from the sp3 type tetrahedral structure to the sp2 type structure is performed. Must happen. Therefore, the carbon atom must provide the so-called "roll over" mobility. Heat treatment is used to provide such motility. In the present invention, in order to avoid graphitization of the resulting carbide and obtain an ungraphitized carbide containing 100% of carbonaceous material containing no hydrogen atom, the carbide or organic substance is added in the presence of halogen or a halogen generating agent, 250-800 ° C, preferably 400-
Heat treatment is performed at a temperature of 600 ° C.

【0006】有機物質の加熱処理によって得られる従来
の炭化物には、水素原子が含有されているが、このよう
な炭化物は強磁性を示さない。しかし、ハロゲン又はハ
ロゲン発生剤の存在下で加熱処理を行うと、水素原子
は、炭素に結合するよりも、ハロゲンと結合した方がよ
り安定化するので、炭化物中の水素はハロゲンと反応し
て炭化物中から除去され、炭素質100%の炭化物を得
ることができる。また、加熱処理温度を800℃を超え
ないようにコントロールすることで、炭化物のグラファ
イト化を制止し、SP2−シグマ不対電子を有する強磁
性を示す炭素原子を生成させることができる。
Conventional carbides obtained by heat treatment of organic substances contain hydrogen atoms, but such carbides do not exhibit ferromagnetism. However, when heat treatment is performed in the presence of halogen or a halogen generating agent, the hydrogen atom is more stable in the case where it is bonded to the halogen than in the case where it is bonded to the carbon. Therefore, hydrogen in the carbide reacts with the halogen. It can be removed from the carbide to obtain 100% carbonaceous carbide. Further, by controlling the heat treatment temperature so as not to exceed 800 ° C., graphitization of the carbide can be suppressed, and a carbon atom exhibiting ferromagnetism having SP2-sigma unpaired electrons can be generated.

【0007】本発明により強磁性炭素材料を得る方法と
しては、有機物質を加熱処理してあらかじめ炭化物とし
た後、この炭化物をハロゲン又はハロゲン発生剤の存在
下で加熱処理する方法を好ましく採用し得るが、有機物
質をハロゲン又はハロゲン発生剤の存在下で直接加熱処
理して強磁性炭素材料を得る方法も採用することができ
る。有機物質を加熱処理することにより、炭化物が生成
されることは周知である。有機物質としては、各種のも
のが用いられるが、その取扱いの容易さから、常温で固
体状のものが好ましい。また、高い炭化物収率を与える
点からは、炭素含有率の高い有機物質の使用が好まし
い。有機物質の具体例を示すと、例えば、石油や石炭系
の各種ピッチ類;ポリエチレン、ポリプロピレン、ポリ
塩化ビニル、ポリ塩化ビニリデン、ポリアクリレート、
ポリメタクリレート等の有機高分子物質;パルプ粉末、
木粉等の木質材料等が挙げられる。有機物質は、炭素原
子及び水素原子の他、酸素原子や、窒素原子、イオウ原
子、アルカリ金属原子を含んでいてもよいが、ケイ素原
子や金属原子は、炭化物中に残留してくるので、これら
の原子はできる限り含まないのが好ましく、その炭化物
中の含有量は、10重量%以下、好ましくはゼロ%に保
持する。
As a method of obtaining a ferromagnetic carbon material according to the present invention, a method of heat-treating an organic substance to obtain a carbide in advance and then heat-treating the carbide in the presence of halogen or a halogen generating agent can be preferably adopted. However, a method of directly heat-treating an organic substance in the presence of halogen or a halogen generating agent to obtain a ferromagnetic carbon material can also be adopted. It is well known that heat treatment of an organic substance produces a carbide. Although various kinds of organic substances are used, those which are solid at room temperature are preferable because of easy handling. Further, from the viewpoint of giving a high carbide yield, it is preferable to use an organic substance having a high carbon content. Specific examples of organic substances include, for example, various pitches of petroleum and coal series; polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyacrylate,
Organic polymeric substances such as polymethacrylate; pulp powder,
Examples include woody materials such as wood powder. The organic substance may contain oxygen atoms, nitrogen atoms, sulfur atoms, and alkali metal atoms in addition to carbon atoms and hydrogen atoms, but since silicon atoms and metal atoms remain in the carbide, these It is preferable to contain as few atoms as possible, and the content in the carbide is kept at 10% by weight or less, preferably zero%.

【0008】ハロゲンとしては、通常、塩素又は臭素が
用いられ、また、ハロゲン発生剤としては、加熱条件で
ハロゲンを生成する物質、例えば、四塩化炭素や各種の
ハロゲン化炭化水素が用いられる。加熱雰囲気は、ハロ
ゲン又はハロゲン発生剤雰囲気の他、これらを含む不活
性ガス(N やCO 、アルゴンガス等)であることが
できる。ハロゲン又はハロゲン発生剤を含む不活性ガス
雰囲気の場合、そのハロゲン又はハロゲン発生剤の含有
量は、1〜5vol%である。また、雰囲気中の酸素濃
度は0.1vol%以下、好ましくはゼロ%である。雰
囲気圧力は、常圧、加圧及び減圧のいずれでもよいが、
有機物質がガス化や昇華しやすいものの場合、加圧を採
用するのがよい。
Chlorine or bromine is usually used as the halogen, and a substance that produces halogen under heating conditions, such as carbon tetrachloride or various halogenated hydrocarbons, is used as the halogen generating agent. The heating atmosphere may be a halogen or a halogen generating agent atmosphere, or an inert gas (N, CO 2, argon gas, etc.) containing these. In the case of an inert gas atmosphere containing halogen or a halogen generating agent, the content of the halogen or halogen generating agent is 1 to 5 vol%. The oxygen concentration in the atmosphere is 0.1 vol% or less, preferably zero%. The atmospheric pressure may be normal pressure, increased pressure or reduced pressure,
When the organic substance is easily gasified or sublimated, it is preferable to apply pressure.

【0009】[0009]

【発明の効果】本発明の強磁性炭素材料は、比重が小さ
く、軽量であるという利点を有する上、その製造も容易
であり、さらに、必要に応じ、簡単に焼却処理すること
ができる。
The ferromagnetic carbon material of the present invention has the advantages of low specific gravity and light weight, is easy to manufacture, and can be easily incinerated if necessary.

【0010】[0010]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。 実施例1 ポリ塩化ビニル(PVCと略す)2gを取り、図2に示
す管壁に多数の透孔を有する硬質ガラス管に入れて1パ
スカル程度の減圧下で20℃より200℃まで15℃/
分の昇温速度で加熱し、200℃より昇温速度を5℃/
分にして280℃まで加熱する。280℃に60分保持
してから急令する。冷却後に取り出して秤量すると、
0.346gで収率は17.3%である。次に、このよ
うにして得た炭化物を、図2に示すガラス管に入れ、こ
れを圧力1.33パスカル、空間速度137mの四塩化
炭素気流中に置き、35℃/分の昇温速度で250℃ま
で昇温し、さらに5℃/分で400℃まで昇温する。4
00℃に120分間保持してから急冷する。収量は0.
3gで出発PVC量に対して15.0%である。この炭
化物の磁化率を振動容量法で測定してみると、保磁力
3.82mT,残留磁化1.57×10■ emu/g
を得た。
EXAMPLES Next, the present invention will be described in more detail by way of examples. Example 1 Polyvinyl chloride (abbreviated as PVC) (2 g) was taken and placed in a hard glass tube having a large number of through holes in the tube wall shown in FIG. 2 under a reduced pressure of about 1 Pascal from 20 ° C. to 200 ° C. 15 ° C. /
Heat at a heating rate of 5 minutes, and increase the heating rate from 200 ° C to 5 ° C /
Heat to 280 ° C in minutes. Hold at 280 ° C for 60 minutes and then make an emergency order. After cooling and taking out and weighing,
The yield is 17.3% at 0.346 g. Next, the thus-obtained carbide was placed in a glass tube shown in FIG. 2 and placed in a carbon tetrachloride gas stream having a pressure of 1.33 Pascal and a space velocity of 137 m at a temperature rising rate of 35 ° C./min. The temperature is raised to 250 ° C. and further to 400 ° C. at 5 ° C./minute. Four
Hold at 00 ° C for 120 minutes, then quench. The yield is 0.
It is 15.0% with respect to the amount of starting PVC at 3 g. When the magnetic susceptibility of this carbide was measured by the vibration capacitance method, the coercive force was 3.82 mT and the residual magnetization was 1.57 × 10 2 emu / g
Got

【0011】実施例2 PVC2gを取り、図2に示すガラス管に入れて四塩化
炭素気流中で加熱する。四塩化炭素の圧力は1.33パ
スカル、その空間速度137mである。20℃より20
0℃まで15℃/分の昇温速度で加熱し、200℃より
昇温速度を5℃/分にして280℃まで加熱する。28
0℃に60分保持してから急令する。冷却後に取り出し
て秤量すると0.328gで収率16.4%である。こ
のようにして得た炭化物を再び図2のガラス管に移し
て、上記と同じ四塩化炭素気流中で同一流速で加熱処理
を行った。35℃/分で250℃まで昇温し、次いで5
℃/分で400℃まで昇温する。400℃に120分間
保持してから急冷する。収量は0.266gで、収率1
3.3%である。この炭化物の磁化率を測定してみる
と、保磁力3.78mT,残留磁化3.60×10■
emu/gを得た。
Example 2 2 g of PVC was taken, placed in a glass tube shown in FIG. 2 and heated in a carbon tetrachloride stream. The pressure of carbon tetrachloride is 1.33 Pascal and its space velocity is 137 m. 20 from 20 ℃
It is heated to 0 ° C. at a temperature rising rate of 15 ° C./min, and heated from 200 ° C. to 280 ° C. at a rate of 5 ° C./min. 28
Hold at 0 ° C for 60 minutes and then make an emergency order. After cooling, the product is taken out and weighed, and the yield is 0.328 g, which is a yield of 16.4%. The carbide thus obtained was again transferred to the glass tube of FIG. 2 and heat-treated at the same flow rate in the same carbon tetrachloride stream as above. Heat up to 250 ° C at 35 ° C / min, then 5
The temperature is raised to 400 ° C at a rate of ° C / min. Hold at 400 ° C for 120 minutes, then quench. Yield 0.266g, yield 1
It is 3.3%. When the magnetic susceptibility of this carbide was measured, the coercive force was 3.78 mT and the residual magnetization was 3.60 × 10.
emu / g was obtained.

【0012】実施例3 実施例2で作成した強磁性炭素材料をさらに品質改良す
る目的で、四塩化炭素気流中で再度熱処理した。加熱容
器は図2のものを使用した。再処理温度は400℃から
800℃までとし、四塩化炭素の圧力は1.33Pa、
線速度は137m/分である。20℃から300℃まで
は昇温速度20℃/分で加熱し、300℃より最終到達
温度の50℃下までは5℃/分の昇温速度で加熱し、そ
の温度から最終到達温度までは1℃/分で昇温した。最
終加熱温度に到達したら、その温度に100分間保持し
てから急冷して室温まで冷却した。このようにして得
た、再熱処理ずみ強磁性炭素材料の収率は、使用した一
次処理原料に対して約77〜90%であった。このよう
に再熱処理した炭素材料について、磁化率の測定を行
い、得られた保磁力、残留磁化を再熱処理温度に対して
プロットした結果を図3に示す。図3で最も残留磁化の
大きい500℃処理物から得られる磁化率のヒステリシ
ス曲線を図4に示す。
Example 3 The ferromagnetic carbon material prepared in Example 2 was heat treated again in a carbon tetrachloride stream for the purpose of further improving the quality. The heating container used was that shown in FIG. The reprocessing temperature is from 400 ° C to 800 ° C, the pressure of carbon tetrachloride is 1.33 Pa,
The linear velocity is 137 m / min. From 20 ° C to 300 ° C, heating is performed at a heating rate of 20 ° C / min, from 300 ° C to 50 ° C below the final reached temperature, heating is performed at 5 ° C / min, and from that temperature to the final reached temperature The temperature was raised at 1 ° C / min. When the final heating temperature was reached, the temperature was maintained for 100 minutes and then rapidly cooled to room temperature. The yield of the thus obtained reheat-treated ferromagnetic carbon material was about 77 to 90% based on the used primary treatment raw material. The magnetic susceptibility of the carbon material thus reheat-treated was measured, and the obtained coercive force and residual magnetization were plotted against the temperature of the reheat treatment. The results are shown in FIG. FIG. 4 shows a hysteresis curve of magnetic susceptibility obtained from the 500 ° C.-treated product having the largest residual magnetization in FIG. 3.

【0013】実施例4 木炭2.0gを取り、これを100メッシュ以下に粉砕
し、磁性ボートに入れて、実施例3と同一の条件下(最
終到達加熱温度600℃)で四塩化炭素気流中で加熱処
理を行った。収率は13%であった。このものについて
磁化率を測定して、保磁力0.3mT,残留磁化7.0
×10■ emu/gを得た。
Example 4 Take 2.0 g of charcoal, grind this to 100 mesh or less, put in a magnetic boat, and under the same conditions as in Example 3 (final ultimate heating temperature 600 ° C.) in a carbon tetrachloride stream. Was heat-treated. The yield was 13%. The magnetic susceptibility of this material was measured, and the coercive force was 0.3 mT and the residual magnetization was 7.0.
× 10 2 emu / g was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】強磁性炭素材料分子の構造式を示す。FIG. 1 shows a structural formula of a ferromagnetic carbon material molecule.

【図2】炭化反応用硬質ガラス管を示す。FIG. 2 shows a hard glass tube for carbonization reaction.

【図3】強磁性炭素材料の再熱処理温度による磁性の変
化のグラフを示す。
FIG. 3 is a graph showing a change in magnetism of a ferromagnetic carbon material depending on a reheat treatment temperature.

【図4】500℃再熱処理物の磁化率曲線を示す。FIG. 4 shows a magnetic susceptibility curve of a 500 ° C. reheat-treated product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素質100%の未グラファイト化炭化
物からなる強磁性炭素材料。
1. A ferromagnetic carbon material comprising 100% carbonaceous ungraphitized carbide.
【請求項2】 有機物質の未グラファイト化炭化物をハ
ロゲン又はハロゲン発生剤の存在下、250〜800℃
の温度で加熱処理し、炭素質100%の未グラファイト
化炭化物を得ることを特徴とする強磁性炭素材料の製造
方法。
2. An ungraphitized carbide of an organic substance is heated at 250 to 800 ° C. in the presence of halogen or a halogen generating agent.
A method for producing a ferromagnetic carbon material, characterized in that the non-graphitized carbide having 100% carbonaceous matter is obtained by heat treatment at the temperature.
【請求項3】 有機物質を、ハロゲン又はハロゲン発生
剤の存在下、250〜800℃の温度で加熱処理し、炭
素質100%の未グラファイト化炭化物を得ることを特
徴とする強磁性炭素質材料の製造方法。
3. A ferromagnetic carbonaceous material characterized in that an organic substance is heat-treated in the presence of halogen or a halogen generating agent at a temperature of 250 to 800 ° C. to obtain an ungraphitized carbide containing 100% of carbonaceous matter. Manufacturing method.
JP3109779A 1991-04-15 1991-04-15 Manufacturing method of ferromagnetic carbon material Expired - Lifetime JP2659077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3109779A JP2659077B2 (en) 1991-04-15 1991-04-15 Manufacturing method of ferromagnetic carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3109779A JP2659077B2 (en) 1991-04-15 1991-04-15 Manufacturing method of ferromagnetic carbon material

Publications (2)

Publication Number Publication Date
JPH07187630A true JPH07187630A (en) 1995-07-25
JP2659077B2 JP2659077B2 (en) 1997-09-30

Family

ID=14519016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3109779A Expired - Lifetime JP2659077B2 (en) 1991-04-15 1991-04-15 Manufacturing method of ferromagnetic carbon material

Country Status (1)

Country Link
JP (1) JP2659077B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066674A1 (en) * 2005-12-06 2007-06-14 Tokyo Institute Of Technology Method for producing charcoal
JP2007153674A (en) * 2005-12-06 2007-06-21 Tokyo Institute Of Technology Method for producing charcoal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296710A (en) * 1989-05-10 1990-12-07 Idemitsu Kosan Co Ltd Production of carbonaceous magnetic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296710A (en) * 1989-05-10 1990-12-07 Idemitsu Kosan Co Ltd Production of carbonaceous magnetic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066674A1 (en) * 2005-12-06 2007-06-14 Tokyo Institute Of Technology Method for producing charcoal
JP2007153674A (en) * 2005-12-06 2007-06-21 Tokyo Institute Of Technology Method for producing charcoal
JPWO2007066674A1 (en) * 2005-12-06 2009-05-21 国立大学法人東京工業大学 Charcoal production method

Also Published As

Publication number Publication date
JP2659077B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US8075793B2 (en) Process for preparing magnetic graphitic materials, and materials thereof
Wei et al. Room‐temperature ferromagnetism in doped face‐centered cubic Fe nanoparticles
JP2659077B2 (en) Manufacturing method of ferromagnetic carbon material
Boi et al. Tuning high magnetizations in foam-like carbon-based films completely filled with α-Fe
JPH02167898A (en) Production of graphite whisker
JPS5950011A (en) Three-component interlaminar graphite compound consisting of graphite, alkali metallic fluoride and fluorine, its manufacture, and electrically conductive material made of it
Tricker et al. A57fe Mössbauer spectroscopic study of the ternary system graphite-ferric chloride-potassium
JP2981023B2 (en) Porous carbon fiber, method for producing the same, method for producing porous graphite fiber, and method for treating porous carbon fiber
JP2733191B2 (en) Ferromagnetic carbon material and method for producing the same
JP2580509B2 (en) Ferromagnetic carbon material and method for producing the same
JPH0269904A (en) Manufacture of modified magnetic metal powder
JPH02296710A (en) Production of carbonaceous magnetic material
Liu et al. Thermodynamics of diamond film deposition at low pressure from chlorinated precursors.
KR870010492A (en) Magnetic recording medium and its manufacturing method
JPH0477399A (en) Production of sic whisker
US3423179A (en) Catalyst for growth of boron carbide crystal whiskers
JPS60154502A (en) Method for stabilizing magnetic metal powder
Wen et al. Time-evolutional X-ray diffraction of n-diamond: An intermediate state between fcc and diamond structure
JPH06100308A (en) Ferromagnetic carbon material and its production
JPH0412008A (en) Production of magnetic powder
JPH0645124A (en) Ferromagnetic carbon material and manufacture thereof
JP2669490B2 (en) Organic magnetic material and method for producing the same
Seto et al. Mössbauer study of fullerene C60 doped with 129I
JPH04149017A (en) Silicon carbide powder and its production
Patterson Studies involving novel inorganic materials: I. The direct fluorination of diamond, high-temperature superconductors, and selected organic materials. II. The use of gem-cut cubic zirconia in the diamond anvil cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term