JPH0645124A - Ferromagnetic carbon material and manufacture thereof - Google Patents

Ferromagnetic carbon material and manufacture thereof

Info

Publication number
JPH0645124A
JPH0645124A JP21539192A JP21539192A JPH0645124A JP H0645124 A JPH0645124 A JP H0645124A JP 21539192 A JP21539192 A JP 21539192A JP 21539192 A JP21539192 A JP 21539192A JP H0645124 A JPH0645124 A JP H0645124A
Authority
JP
Japan
Prior art keywords
carbon material
ferromagnetic
powder
metal
paramagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21539192A
Other languages
Japanese (ja)
Other versions
JP2669486B2 (en
Inventor
Hisashi Ueda
壽 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4215391A priority Critical patent/JP2669486B2/en
Publication of JPH0645124A publication Critical patent/JPH0645124A/en
Application granted granted Critical
Publication of JP2669486B2 publication Critical patent/JP2669486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide novel ferromagnetic carbon material excellent magnetic characteristics. CONSTITUTION:The title ferromagnetic carbon material is composed of ferromagnetic carbon material consisting of an ungraphitized carbide containing paramagnetic metal or metal compound powder, and the ferromagnetic carbon material is manufactured by removing the paramagnetic metal or metal compound powder from the above-mentioned ferromagnetic carbon material. The carbon- containing substance, in which paramagnetic metal or metal compound powder is added, is thermally decomposed in an atmosphere containing the gas which can be reacted with hydrogen, and ferromagnetic containing the paramagnetic metal or metal compound powder, having the characteristics in which ungraphitized carbide is grown, is manufactured. From the ferromagnetic carbon material containing powder of the paramagnetic metal or metal compound produced by the above-mentioned method, the powder of paramagnetic metal or metal compound is extracted and removed in an acidic solution to manufacture a ferromagnetic material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強磁性炭素材料及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic carbon material and a method for producing the same.

【0002】[0002]

【従来の技術】これまで、強磁性材料としては、鉄、コ
バルト、ニッケルなどの遷移金属の単体、合金、酸化物
などが用いられてきている。これらの強磁性材料は磁化
率が大きく、保磁力及び残留磁化値が大きいなど、磁性
材料として多くの長所を有する反面、幾つかの短所を有
する。その短所の(1)は、重金属元素であるために比
重が大きく宇宙空間などへ運搬するためには不都合であ
る。その(2)は、鉄以外の元素は、地球上に資源とし
て偏在するため、将来的に資源の枯渇が心配されること
である。その(3)は、金属元素であるため、硬度が大
きく、軟質な材料とはなりにくいことである。その
(4)は、不要になった場合に、消磁して処分したい場
合があるが、そのために多大のエネルギーを要すること
である。その(5)は、金属系の強磁性材料は生体への
適合性が良くなく、血液中で溶解して毒性を示すなど、
生物体の中へ埋め込んだり或いは血液中に微粉状態で分
散して磁気的なイメージングなどに利用する事がしにく
いことである。これに対して、炭素強磁性体では、この
ような問題が少ない。本発明者は、先に、炭素含有物質
を熱分解して未グラファイト化炭化物に変換することに
より、強磁性炭素材料を得る方法を提案した(特願平3
−109779、109780、198795、235
569)。しかし、この方法で得られた炭化物の磁気特
性は、未だ充分なものではなかった。
2. Description of the Related Art Heretofore, simple substances, alloys, oxides, etc. of transition metals such as iron, cobalt and nickel have been used as ferromagnetic materials. These ferromagnetic materials have many merits such as a large magnetic susceptibility, a large coercive force and a remanent magnetization value, but on the other hand, they have some disadvantages. The disadvantage (1) is that since it is a heavy metal element, it has a large specific gravity and is inconvenient for transportation to outer space. The reason (2) is that elements other than iron are unevenly distributed on the earth as resources, and there is concern that resources will be depleted in the future. Since (3) is a metal element, it has a high hardness and is unlikely to be a soft material. In the case (4), there is a case where it is desired to demagnetize and dispose of it when it is no longer needed, but that requires a large amount of energy. The reason (5) is that metallic ferromagnetic materials have poor compatibility with living organisms and are toxic when dissolved in blood.
That is, it is difficult to embed it in a living body or disperse it in the blood in a fine powder state and use it for magnetic imaging. On the other hand, the carbon ferromagnet has few such problems. The present inventor has previously proposed a method for obtaining a ferromagnetic carbon material by thermally decomposing a carbon-containing substance and converting it into an ungraphitized carbide (Japanese Patent Application No. Hei 3).
-109779, 109780, 198795, 235
569). However, the magnetic properties of the carbide obtained by this method have not been satisfactory yet.

【0003】[0003]

【発明が解決しようとする課題】本発明は、磁気特性に
すぐれた新規な強磁性炭素材料及びその製造方法を提供
することをその課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel ferromagnetic carbon material having excellent magnetic properties and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者は、前記課題を
解決すべく鋭意研究を重ねた結果、本発明を完成するに
至った。即ち、本発明によれば、常磁性を有する金属又
は金属化合物の粉末を含有する未グラファイト化炭化物
からなる強磁性炭素材料及びこの強磁性炭素材料から常
磁性を有する金属又は金属化合物の粉末を除去してなる
強磁性炭素材料が提供される。また、本発明によれば、
常磁性を有する金属又は金属化合物の粉末を添加した炭
素含有物質を、水素と反応し得るガスを含む雰囲気下に
おいて熱分解させ、未グラファイト化炭化物を生成させ
ることを特徴とする常磁性を有する金属又は金属化合物
の粉末を含有する強磁性炭素材料の製造方法及びこの方
法で得られた常磁性を有する金属又は金属化合物の粉末
を含有する強磁性炭素材料から該常磁性を有する金属又
は金属化合物の粉末を、酸性溶液で抽出除去する強磁性
材料の製造方法が提供される。
The present inventor has completed the present invention as a result of intensive studies to solve the above-mentioned problems. That is, according to the present invention, a ferromagnetic carbon material made of an ungraphitized carbide containing a powder of paramagnetic metal or metal compound and a powder of paramagnetic metal or metal compound are removed from the ferromagnetic carbon material. Provided is a ferromagnetic carbon material. Further, according to the present invention,
A paramagnetic metal characterized in that a carbon-containing substance to which a powder of a paramagnetic metal or a metal compound is added is thermally decomposed in an atmosphere containing a gas capable of reacting with hydrogen to generate an ungraphitized carbide. Or a method for producing a ferromagnetic carbon material containing a powder of a metal compound and a ferromagnetic carbon material containing a powder of a paramagnetic metal or metal compound obtained by this method A method for manufacturing a ferromagnetic material is provided, in which powder is extracted and removed with an acidic solution.

【0005】本発明の強磁性炭素材料の製造において
は、炭素含有物質を熱分解させて原子価が不飽和なSP
2−シグマ不対電子を有する強磁性炭素原子を生成させ
るに際し、常磁性を有する金属又は金属化合物の粉末を
存在させ、その常磁性金属原子の作用により、生成され
る炭素原子の電子スピンベクトルを、その常磁性金属原
子の電子スピンベクトルと平行になるように誘導させ、
これによって磁気特性にすぐれた炭化物を得る。このよ
うな常磁性金属原子の存在下での炭素含有物質の熱分解
に際して生起する、常磁性金属原子による炭素原子のス
ピン誘導現象は本発明者らが初めて見出したものであ
る。
In the production of the ferromagnetic carbon material of the present invention, SP containing a carbon-containing substance which is thermally decomposed to have an unsaturated valence
When generating a ferromagnetic carbon atom having a 2-sigma unpaired electron, a powder of a metal or a metal compound having a paramagnetic property is present, and the electron spin vector of the generated carbon atom is changed by the action of the paramagnetic metal atom. , And induce it to be parallel to the electron spin vector of the paramagnetic metal atom,
As a result, a carbide having excellent magnetic properties is obtained. The spin induction phenomenon of a carbon atom by a paramagnetic metal atom, which occurs during the thermal decomposition of a carbon-containing substance in the presence of such a paramagnetic metal atom, was first found by the present inventors.

【0006】常磁性を有する金属としては従来公知のも
の、例えば、Ti、Cu、Mg、Gd、Zr、Nb、M
o、Pd等の遷移金属の単体及び合金が包含される。常
磁性を有する金属化合物としては、前記遷移金属の酸化
物、水酸化物、硫化物等が包含される。
Metals having paramagnetism are conventionally known, for example, Ti, Cu, Mg, Gd, Zr, Nb and M.
Simple metals and alloys of transition metals such as o and Pd are included. Examples of the paramagnetic metal compound include oxides, hydroxides and sulfides of the above transition metals.

【0007】炭素含有物質としては、熱分解により炭素
化し得るものであればどのようなものでもよく、常温で
液状又は固体状のものが包含され、また、低分子化合物
及び高分子化合物のいずれも使用可能である。しかし、
ダイヤモンドやグラファイトのように分解反応の余地の
ないものは使用できない。炭素含有物質には、酸素原子
や窒素原子、イオウ原子、アルカリ金属原子等の炭素以
外の原子を含んでいてもよいが、ケイ素原子は炭化物中
に残留してくるので、炭素含有物質にはケイ素原子を含
まないのが好ましい。炭化物中のケイ素含有率は、10
重量%以下、好ましくはゼロ%である。炭素含有物質の
好ましい具体例を示すと、例えば、石油や石炭系の各種
ピッチ類;ポリエチレン、ポリプロピレン、ポリ塩化ビ
ニル、ポリ塩化ビニリデン、ポリアクリレート、ポリメ
タクリレート等の有機高分子物質;パルプ粉末、木粉等
の木質材料等が挙げられる。
The carbon-containing substance may be any substance as long as it can be carbonized by thermal decomposition, including liquid or solid substances at room temperature, and both low molecular weight compounds and high molecular weight compounds. It can be used. But,
Materials that cannot be decomposed, such as diamond and graphite, cannot be used. The carbon-containing substance may contain an atom other than carbon such as an oxygen atom, a nitrogen atom, a sulfur atom, an alkali metal atom, etc., but since the silicon atom remains in the carbide, the carbon-containing substance is silicon. It is preferably free of atoms. The silicon content in the carbide is 10
It is less than or equal to% by weight, preferably zero%. Preferable specific examples of the carbon-containing substance include, for example, various pitches of petroleum or coal type; organic polymer substances such as polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyacrylate, polymethacrylate; pulp powder, wood Wood-based materials such as powder may be used.

【0008】本発明においては、常磁性を有する金属粉
末及び/又は常磁性金属化合物の粉末(以下、常磁性粉
末とも言う)を炭素含有物質に混合し、この混合物を熱
処理して、その炭素含有物質を未グラファイト化炭化物
に変換させて、強磁性炭素材料を得る。
In the present invention, a paramagnetic metal powder and / or a powder of a paramagnetic metal compound (hereinafter, also referred to as paramagnetic powder) is mixed with a carbon-containing substance, and the mixture is heat-treated to obtain the carbon-containing substance. The material is converted to ungraphitized carbide to obtain a ferromagnetic carbon material.

【0009】常磁性粉末の平均粒径は、0.1〜500
μm、好ましくは10〜150μmである。また、常磁
性粉末の添加量は、炭素含有物質100重量部に対し、
10重量部以上、好ましくは20〜30重量部の割合で
ある。
The average particle size of the paramagnetic powder is 0.1 to 500.
μm, preferably 10 to 150 μm. The amount of paramagnetic powder added is 100 parts by weight of the carbon-containing substance.
The proportion is 10 parts by weight or more, preferably 20 to 30 parts by weight.

【0010】熱処理温度は、炭素含有物質の熱分解反応
温度であればよく、一般には400〜700℃、好まし
くは500〜600℃である。加熱雰囲気は、水素と反
応し得るガスを含むものであればよい。この場合の水素
と反応し得るガスとしては、ハロゲンやハロゲン化炭化
水素、等が挙げられ、これらのガスは単独又は混合物で
使用することができる。加熱雰囲気は、窒素や炭酸ガ
ス、アルゴン等の不活性ガスを含むことができる。雰囲
気中の酸素濃度は0.1vol%以下、好ましくはゼロ
%である。炭素含有物質と常磁性粉末との混合物を前記
のようにして熱処理することにより、炭素含有物質は熱
分解され、それに含まれる水素原子が除去され、未グラ
ファイト化炭化物に変換されるが、この場合、炭化物中
の水素含有率が5重量%以下になると、水素と反応し得
るガスの存在は特に必要とはされず、加熱雰囲気は真空
(2パスカル以下)であることができる。本発明により
最終的に得られる未グラファイト化炭化物中に含まれる
水素原子は、炭素1原子当り、1/100原子以下、好
ましくは1/200原子以下の割合である。
The heat treatment temperature may be a temperature for the thermal decomposition reaction of the carbon-containing substance, and is generally 400 to 700 ° C, preferably 500 to 600 ° C. The heating atmosphere should just contain the gas which can react with hydrogen. In this case, examples of the gas capable of reacting with hydrogen include halogen and halogenated hydrocarbons, and these gases can be used alone or in a mixture. The heating atmosphere can contain an inert gas such as nitrogen, carbon dioxide, or argon. The oxygen concentration in the atmosphere is 0.1 vol% or less, preferably zero%. By heat-treating the mixture of the carbon-containing substance and the paramagnetic powder as described above, the carbon-containing substance is pyrolyzed, the hydrogen atoms contained therein are removed, and converted into ungraphitized carbide. When the hydrogen content in the carbide is 5% by weight or less, the presence of a gas capable of reacting with hydrogen is not particularly required, and the heating atmosphere can be vacuum (2 Pascal or less). The hydrogen atoms contained in the ungraphitized carbide finally obtained by the present invention are in a ratio of 1/100 atom or less, preferably 1/200 atom or less, per 1 carbon atom.

【0011】前記のようにして得られる常磁性粉末を含
有する未グラファイト化炭化物は、SP2−シグマ不対
電子を有する炭素からなり、強磁性を有するものであ
り、それ自体で強磁性炭素材料として使用可能のもので
ある。しかし、このものは、常磁性金属を含有すること
から、未だ比重が重い、生体への適合性が悪い等の問題
を有する。これらの常磁性金属に原因する問題のない強
磁性炭素材料とするには、それに含まれる常磁性金属を
除去すればよい。
The ungraphitized carbide containing the paramagnetic powder obtained as described above is composed of carbon having SP2-sigma unpaired electrons and has ferromagnetism. As such, it is a ferromagnetic carbon material. It can be used. However, since this material contains a paramagnetic metal, it still has problems such as a high specific gravity and poor compatibility with living bodies. In order to obtain a ferromagnetic carbon material free from the problems caused by these paramagnetic metals, the paramagnetic metal contained therein may be removed.

【0012】常磁性粉末を含む強磁性炭素材料からその
常磁性粉末を除去する方法としては、各種の方法がある
が、好ましくは酸性溶液を抽出液として用いて、常磁性
粉末を抽出除去する方法である。抽出液として用いる酸
性溶液は、硝酸と、硫酸及び/又は燐酸を含む水溶液の
使用が好ましい。水溶液中の硝酸濃度は5〜30重量
%、好ましくは10〜20重量%であり、硫酸及び/又
は燐酸の濃度は、20〜50重量%、好ましくは30〜
40重量%である。抽出処理温度は、20〜80℃、好
ましくは50〜60℃である。このような抽出処理によ
ると、強磁性炭素材料中に含まれる常磁性金属は、金属
イオンとして強磁性炭素材料から効率よく抽出除去され
る。
There are various methods for removing the paramagnetic powder from the ferromagnetic carbon material containing the paramagnetic powder, but it is preferable to extract and remove the paramagnetic powder by using an acidic solution as an extract. Is. The acidic solution used as the extract is preferably an aqueous solution containing nitric acid and sulfuric acid and / or phosphoric acid. The nitric acid concentration in the aqueous solution is 5 to 30% by weight, preferably 10 to 20% by weight, and the concentration of sulfuric acid and / or phosphoric acid is 20 to 50% by weight, preferably 30 to
It is 40% by weight. The extraction treatment temperature is 20 to 80 ° C, preferably 50 to 60 ° C. According to such an extraction treatment, the paramagnetic metal contained in the ferromagnetic carbon material is efficiently extracted and removed from the ferromagnetic carbon material as metal ions.

【0013】[0013]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。 実施例1 ポリ塩化ビニール(PVC)1.0gを取り、テトラハ
イドロフラン(THF)20mlを加えて溶解する。こ
れに100メッシュ以下に粉砕したチタン粉末50mg
を加えて激しく攪拌する。このようにして得た金属/ポ
リマー分散系を磁気スターラーでかきまぜているメタノ
ール50ml中に注入してポリマーを沈殿させる。乾燥
後、磁性ボートに入れて10パスカルの四塩化炭素雰囲
気中で20℃より260℃まで10℃/分で昇温加熱
し、260℃より325℃までを2℃/分で昇温加熱
し、325℃から390℃までを10℃/分で昇温加熱
し、390℃に60分保持してから急冷した。次に、こ
のものをガラス管に入れ、さらに10パスカルの四塩化
炭素雰囲気中で、20−390℃を30℃/分で昇温加
熱し、390−454℃を2℃/分で昇温加熱し、45
0−520℃を1℃/分で昇温加熱してから、520℃
に60分保持してから急冷した。元のPVCに対して収
率5.1%で強磁性炭化物を得た。このものは、最大磁
化率16.2emu/g(1.5T)、保磁力3.96
mT、残留磁化0.231emu/gの磁気特性を示し
た。磁化値の印加磁場に対する変化を図1に示す。図1
において、横軸は印加磁場強度を示し、縦軸は磁化の値
を示す。
EXAMPLES Next, the present invention will be described in more detail by way of examples. Example 1 1.0 g of polyvinyl chloride (PVC) is taken and 20 ml of tetrahydrofuran (THF) is added and dissolved. 50 mg of titanium powder crushed to 100 mesh or less
And stir vigorously. The metal / polymer dispersion thus obtained is poured into 50 ml of methanol, which is stirred with a magnetic stirrer, to precipitate the polymer. After drying, put in a magnetic boat and heat up at 10 ° C / min from 20 ° C to 260 ° C in a carbon tetrachloride atmosphere of 10 Pascal, and heat up from 260 ° C to 325 ° C at 2 ° C / min. The temperature was raised from 325 ° C to 390 ° C at a rate of 10 ° C / min, heated at 390 ° C for 60 minutes, and then rapidly cooled. Next, this is put in a glass tube, and further heated in a carbon tetrachloride atmosphere of 10 Pascal at 20 to 390 ° C. at 30 ° C./min and heated at 390 to 454 ° C. at 2 ° C./min. Then 45
0-520 ° C is heated to 1 ° C / min and heated to 520 ° C.
Hold for 60 minutes and then quench. A ferromagnetic carbide was obtained with a yield of 5.1% based on the original PVC. This has a maximum magnetic susceptibility of 16.2 emu / g (1.5 T) and a coercive force of 3.96.
It showed magnetic characteristics of mT and residual magnetization of 0.231 emu / g. The change of the magnetization value with respect to the applied magnetic field is shown in FIG. Figure 1
In, the horizontal axis represents the applied magnetic field strength and the vertical axis represents the magnetization value.

【0014】実施例2 実施例1と同様に、電解銅粉末50mgを使用して銅粉
入りPVC1.05gを得た。これを実施例1と同じ雰
囲気、同じ温度プログラムに従って加熱分解して、元の
PVCに対して収率5.2%で強磁性炭化物を得た。こ
のものは、最大磁化率15.7emu/g(1.5
T)、保磁力3.85mT、残留磁化0.220emu
/gの磁気特性を示した。
Example 2 As in Example 1, 50 mg of electrolytic copper powder was used to obtain 1.05 g of PVC containing copper powder. This was thermally decomposed according to the same atmosphere and the same temperature program as in Example 1 to obtain a ferromagnetic carbide with a yield of 5.2% based on the original PVC. This has a maximum magnetic susceptibility of 15.7 emu / g (1.5
T), coercive force 3.85 mT, remanent magnetization 0.220 emu
The magnetic property was / g.

【0015】実施例3 実施例1において、チタン粉末の代りに部分還元処理し
た酸化チタンを用いた以外は同様にして実験を行い、元
のPVCに対して収率6%で強磁性炭化物を得た。この
ものは、最大磁化率13.5emu/g(1.5T)、
保磁力3.50mT、残留磁化0.210emu/gの
磁気特性を示した。
Example 3 The same experiment as in Example 1 was carried out except that titanium oxide which had been partially reduced was used in place of the titanium powder, and a ferromagnetic carbide was obtained with a yield of 6% based on the original PVC. It was This one has a maximum magnetic susceptibility of 13.5 emu / g (1.5T),
The magnetic characteristics were a coercive force of 3.50 mT and a residual magnetization of 0.210 emu / g.

【0016】実施例4 実施例1で得られた炭化物30mgを、硝酸150g/
リットル及び硫酸350g/リットルを含む酸性水溶液
10ミリリットル中に200分間55℃において浸漬し
た後、70℃で加熱乾燥して、チタンの溶出除去された
炭化物を得た。このものは、最大磁化率17.8emu
/g(1.5T)、保磁力3.95mT、残留磁化0.
232emu/gの磁気特性を示した。
Example 4 30 mg of the carbide obtained in Example 1 was added to 150 g of nitric acid /
It was immersed in 10 ml of an acidic aqueous solution containing liter and 350 g / liter of sulfuric acid for 200 minutes at 55 ° C. and then dried by heating at 70 ° C. to obtain a carbide from which titanium was eluted and removed. This has a maximum magnetic susceptibility of 17.8 emu.
/ G (1.5T), coercive force 3.95 mT, residual magnetization 0.
The magnetic property was 232 emu / g.

【0017】比較例1 実施例1において、チタン粉末を用いない以外は同様に
して実験を行った。この場合に得られた強磁性の未グラ
ファイト化炭化物の収率は1%であり、このものは、最
大磁化率13.2emu/g(1.5T)、保磁力3.
00mT、残留磁化0.20emu/gの磁気特性を示
した。
Comparative Example 1 The same experiment as in Example 1 was carried out except that titanium powder was not used. The yield of ferromagnetic ungraphitized carbide obtained in this case was 1%, which had a maximum magnetic susceptibility of 13.2 emu / g (1.5 T) and a coercive force of 3.
The magnetic characteristics were 00 mT and a residual magnetization of 0.20 emu / g.

【0018】[0018]

【発明の効果】本発明によれば、強磁性を示す炭化物
を、銅やチタンのような常磁性粉体の助けを借りて比較
的容易に高収率で製造することが出来る。また、常磁性
粉体は水溶性の酸によって溶解除去できるので、強磁性
炭化物を純粋な状態で得ることが出来る。本発明によれ
ば、各種炭素含有物質を原料として強磁性炭素材料を確
実に高収率で製造する事ができ、その産業的意義は多大
である。
According to the present invention, a carbide showing ferromagnetism can be produced relatively easily in high yield with the aid of a paramagnetic powder such as copper or titanium. Further, since the paramagnetic powder can be dissolved and removed with a water-soluble acid, the ferromagnetic carbide can be obtained in a pure state. According to the present invention, a ferromagnetic carbon material can be reliably produced in high yield from various carbon-containing substances as raw materials, and its industrial significance is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において得られた強磁性炭化物から測
定される磁化率曲線を示す。図1(a)は磁場掃引をー
1.5Tから+1.5Tにわたって行ったもの、図1
(b)は、磁場掃引を−50mTから+50mTにわた
って行ったものである。
1 shows a magnetic susceptibility curve measured from a ferromagnetic carbide obtained in Example 1. FIG. FIG. 1 (a) shows a magnetic field sweep performed from −1.5T to + 1.5T.
In (b), the magnetic field sweep is performed from −50 mT to +50 mT.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 常磁性を有する金属又は金属化合物の粉
末を含有する未グラファイト化炭化物からなる強磁性炭
素材料。
1. A ferromagnetic carbon material comprising an ungraphitized carbide containing a powder of a paramagnetic metal or metal compound.
【請求項2】 請求項1の強磁性炭素材料から常磁性を
有する金属又は金属化合物の粉末を除去してなる強磁性
炭素材料。
2. A ferromagnetic carbon material obtained by removing powder of a paramagnetic metal or metal compound from the ferromagnetic carbon material according to claim 1.
【請求項3】 常磁性を有する金属又は金属化合物の粉
末を添加した炭素含有物質を、水素と反応し得るガスを
含む雰囲気下において熱分解させて未グラファイト化炭
化物を生成させることを特徴とする常磁性を有する金属
又は金属化合物の粉末を含有する強磁性炭素材料の製造
方法。
3. A non-graphitized carbide is produced by thermally decomposing a carbon-containing substance to which a powder of paramagnetic metal or metal compound is added in an atmosphere containing a gas capable of reacting with hydrogen. A method for producing a ferromagnetic carbon material containing powder of paramagnetic metal or metal compound.
【請求項4】 請求項1で得られた常磁性を有する金属
又は金属化合物を含有する強磁性炭素材料から、該常磁
性を有する金属又は金属化合物の粉末を酸性溶液で金属
イオンとして抽出除去することを特徴とする強磁性炭素
材料の製造方法。
4. The powder of the paramagnetic metal or metal compound is extracted and removed as a metal ion from the ferromagnetic carbon material containing the paramagnetic metal or metal compound obtained in claim 1 with an acidic solution. A method for producing a ferromagnetic carbon material, which is characterized by the above.
【請求項5】 酸性溶液として、硝酸と、燐酸及び/又
は硫酸との混酸水溶液を用いる請求項4の方法。
5. The method according to claim 4, wherein a mixed acid aqueous solution of nitric acid and phosphoric acid and / or sulfuric acid is used as the acidic solution.
JP4215391A 1992-07-21 1992-07-21 Method for producing ferromagnetic carbon Expired - Lifetime JP2669486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4215391A JP2669486B2 (en) 1992-07-21 1992-07-21 Method for producing ferromagnetic carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4215391A JP2669486B2 (en) 1992-07-21 1992-07-21 Method for producing ferromagnetic carbon

Publications (2)

Publication Number Publication Date
JPH0645124A true JPH0645124A (en) 1994-02-18
JP2669486B2 JP2669486B2 (en) 1997-10-27

Family

ID=16671541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4215391A Expired - Lifetime JP2669486B2 (en) 1992-07-21 1992-07-21 Method for producing ferromagnetic carbon

Country Status (1)

Country Link
JP (1) JP2669486B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167413A (en) * 1982-03-23 1983-10-03 Ngk Insulators Ltd Carbonaceous material and preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167413A (en) * 1982-03-23 1983-10-03 Ngk Insulators Ltd Carbonaceous material and preparation thereof

Also Published As

Publication number Publication date
JP2669486B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
Portehault et al. A general solution route toward metal boride nanocrystals
KR101268502B1 (en) hybrid material comprising grapheme and iron oxide, method for manufacturing thereof and apparatus for treating waste water using thereof
US8075793B2 (en) Process for preparing magnetic graphitic materials, and materials thereof
CN112657531B (en) Preparation method and application of elemental copper and copper-iron oxide co-modified graphite phase carbon nitride magnetic catalyst
Zamanpour et al. Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method
Km et al. Study on synthesis and magnetic properties of Nd–Fe–B alloy via reduction–diffusion process
Kodama et al. CO2 decomposition to carbon with ferrite-derived metallic phase at 300° C
JP2014080653A (en) Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder
JP2669486B2 (en) Method for producing ferromagnetic carbon
JP5769228B2 (en) Method for producing silver / magnetite composite wire
JP2020057779A (en) Samarium-iron-bismuth-nitrogen-based magnet powder and samarium-iron-bismuth-nitrogen-based sintered magnet
Jinshan et al. Synthesis and thermal properties of ultrafine powders of iron group metals
KR101483319B1 (en) Method for forming rare earth metal hydride and method for forming rare earth metal-transition metal alloy powder using the same
JP6601432B2 (en) Manufacturing method of magnetic powder
CN112264070A (en) Iron nitride @ nitrogen-doped graphene composite material and preparation method and application thereof
JP2733191B2 (en) Ferromagnetic carbon material and method for producing the same
Alonso et al. A kinetic study of the thermal decomposition of ammoniojarosite
JP3567742B2 (en) Method for producing rare earth Fe-based alloy powder
JP2016146314A (en) Superconductive material and method for producing the same
JP2580509B2 (en) Ferromagnetic carbon material and method for producing the same
JP2023049688A (en) Method for producing modified hexagonal boron nitride powder and modified hexagonal boron nitride powder
Gabdulhakovich et al. Direct Growth of the Oriented Nanocrystals of Gamma-Iron on Graphene Oxide Substrate. The Detailed Analysis of the Factors Affecting Unexpected Formation of the Gamma-Iron Phase
Machida et al. Magnetic properties of rare earth-iron compounds containing carbon and/or nitrogen
JP2669481B2 (en) Method for producing ferromagnetic carbon
JP2018123414A (en) Magnetic powder and manufacturing method therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term