JPH07187606A - Method for recovering hydrogen from gaseous hydrogen containing much carbon dioxide - Google Patents

Method for recovering hydrogen from gaseous hydrogen containing much carbon dioxide

Info

Publication number
JPH07187606A
JPH07187606A JP5329502A JP32950293A JPH07187606A JP H07187606 A JPH07187606 A JP H07187606A JP 5329502 A JP5329502 A JP 5329502A JP 32950293 A JP32950293 A JP 32950293A JP H07187606 A JPH07187606 A JP H07187606A
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
carbon dioxide
gas
large amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5329502A
Other languages
Japanese (ja)
Inventor
Hideaki Yanaru
英明 矢鳴
Yuzuru Yanagisawa
譲 柳澤
Katsuhiko Kita
克彦 喜多
Satoshi Hirose
聡 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP5329502A priority Critical patent/JPH07187606A/en
Publication of JPH07187606A publication Critical patent/JPH07187606A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To operate a PSA device by a two-tower system not requiring a complicated sequence while saving the energy required for pressure rise and the consumption of raw fuel. CONSTITUTION:Of gaseous hydrogen contg. much carbon dioxide discharged without performing pressure equalizing operation after adsorption operation in a pressure swing adsorption method, the gaseous hydrogen holding 10 to 30 atm of gas pressure is subjected to decarbonation treatment to trun it into gas contg. much hydrogen from which hydrogen is recovered. And also a part of the gaseous hydrogen is subjected to pressure rise and cicrculating by a compressor of one stage, and a part of the circulated gas is fed to the pressure rise of a PSA device. Thus, hydrogen is recovered from gaseous hydrogen contg. much carbon dioxide by the PSA device operated by a two-tower system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を回収する方法に
関し、昇圧に要するエネルギ−消費及び反応系に供給さ
れる原料・燃料(以下、原燃料と称する。)の節減を計
りつつ、PSA装置を複雑なシ−ケンスを要しない2塔
にて運転しうる二酸化炭素を多量に含む水素ガスから水
素を回収する方法を提供することにある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering hydrogen, while reducing energy consumption required for pressurization and saving raw materials and fuels (hereinafter referred to as raw fuels) supplied to a reaction system, PSA. An object of the present invention is to provide a method for recovering hydrogen from hydrogen gas containing a large amount of carbon dioxide, which can be operated in two towers without requiring a complicated sequence.

【0002】[0002]

【従来の技術】二酸化炭素を多量に含む水素ガスの発生
するプロセス例としてメタン、天然ガス、ブタン、ナフ
サ等の炭化水素を原料とする水蒸気改質、部分酸化及び
シフト反応を伴うメタノ−ル改質等がある。発生する二
酸化炭素を含む水素ガスの組成は前記プロセスによつて
異なるが、概ね次の範囲にある。すなわち、 二酸化炭素: 10ないし25 m0l% 水素: 65ないし75 m0l% 一酸化炭素: 2ないし 5 m0l% 炭化水素: 2ないし10 m0l% である。
2. Description of the Related Art As an example of a process for generating hydrogen gas containing a large amount of carbon dioxide, a methanol reformer using steam reforming, partial oxidation and shift reaction using hydrocarbons such as methane, natural gas, butane and naphtha as raw materials. There is quality. The composition of hydrogen gas containing carbon dioxide generated varies depending on the process, but is generally in the following range. That is, carbon dioxide: 10 to 25 m0l% hydrogen: 65 to 75 m0l% carbon monoxide: 2 to 5 m0l% hydrocarbon: 2 to 10 m0l%.

【0003】二酸化炭素を多量に含む水素ガスから水素
を回収する一例として圧力スイング吸着法(以下、PS
A法と称する。)が知られている。PSA法とは、混合
ガスから特定ガスを選別分離する方法の一つであつて、
高い圧力で被吸着物を吸着剤に吸着させ、ついで、吸着
系の圧力を下げることによつて吸着剤に吸着した被吸着
物を脱離し、吸着物および被吸着物を分離する方法であ
つて、工業的には吸着剤を充填した塔を複数個設け、そ
れぞれの吸着塔において、昇圧→吸着→洗浄→脱気(再
生)の一連の操作を繰り返すことにより、装置全体とし
ては連続的に分離回収を行うことができるようにしたも
のであり、複雑なシ−ケンスを組むにもかかわらず供給
された水素の回収率の観点から1000Nm3 /Hr以
上の処理規模のPSA装置は4塔以上の吸着塔が用いら
れている。
As an example of recovering hydrogen from hydrogen gas containing a large amount of carbon dioxide, a pressure swing adsorption method (hereinafter referred to as PS
This is called method A. )It has been known. The PSA method is one of the methods for separating and separating a specific gas from a mixed gas.
A method of adsorbing an adsorbent on an adsorbent at a high pressure, and then desorbing the adsorbent adsorbed on the adsorbent by lowering the pressure of the adsorbent to separate the adsorbate from the adsorbent. , Industrially, a plurality of towers filled with adsorbents are provided, and in each of the adsorption towers, a series of operations of pressurization → adsorption → washing → degassing (regeneration) is repeated to continuously separate the entire apparatus. The PSA device having a treatment scale of 1000 Nm 3 / Hr or more has four or more towers in view of the recovery rate of the supplied hydrogen in spite of the complicated sequence. An adsorption tower is used.

【0004】PSA法においては、非吸着成分の水素以
外の諸成分のうち一成分が破過して製品水素中に漏出す
る前に吸着操作を止めるのは、製品水素中への不純物の
漏出を防ぐためであること及び吸着塔の塔頂から製品水
素ガスと同程度の濃度の水素ガスを抜きだしてから、均
圧操作を行うこと及び洗浄操作を兼ねつつ圧力の低い塔
へと順次均圧して保有している圧力を有効に利用してい
るのは供給される水素の回収率あげるためであることも
よく知られている。通常、吸着が終了した塔は吸着操作
に入るために昇圧をまつている別の吸着塔と均圧にさ
れ、残圧分(以下、パ−ジガスと称する。)は、前記吸
着が終了した塔から、低圧で洗浄操作を行う塔に移送し
洗浄を行いながら降圧する。ここで、パ−ジガスは、常
圧付近まで降圧され、常圧付近まで降圧された塔は、最
終的に製品水素で洗浄され吸着操作に入るために昇圧を
まつている塔となる。なお洗浄に用いられた水素は製造
ロスとなる。
In the PSA method, stopping the adsorption operation before one of the various components other than the non-adsorbed component, hydrogen, breaks through and leaks into the product hydrogen is to prevent the leakage of impurities into the product hydrogen. This is to prevent this, and after removing hydrogen gas at the same concentration as the product hydrogen gas from the top of the adsorption tower, perform pressure equalization operation and sequentially equalize pressure to the tower with lower pressure while also performing the washing operation. It is also well known that the effective use of the stored pressure is to increase the recovery rate of the supplied hydrogen. Usually, the adsorption-completed column is pressure-equalized with another adsorption column that is increasing the pressure in order to start the adsorption operation, and the residual pressure (hereinafter referred to as page gas) is the adsorption-completed column. Then, it is transferred to a tower that performs a washing operation at low pressure, and the pressure is lowered while washing. Here, the purge gas is lowered to a pressure near atmospheric pressure, and the column lowered to a pressure near atmospheric pressure is a column which is finally washed with the product hydrogen and the pressure is increased to start the adsorption operation. The hydrogen used for cleaning causes a production loss.

【0005】以上の一連の操作で、吸着操作終了直後の
二酸化炭素を多量に含む排出ガスは、吸着操作に入るべ
く昇圧をまつている塔の均圧操作に利用された後、常圧
付近まで降圧されるパ−ジガスとして排出される。洗浄
も兼ね複数回均圧操作を施された後のパ−ジガスの圧力
は、均圧操作に移るそれぞれ直前のガス圧力の約半分と
なり、その圧力に相応する各成分の吸着量を超える各成
分は脱着されることになる。この場合、水素は非吸着成
分であるので、概ね圧力が低下する程吸着成分の脱着量
が増え、均圧操作を繰り返す程水素の濃度は低下するこ
とになる。
In the above series of operations, the exhaust gas containing a large amount of carbon dioxide immediately after the end of the adsorption operation is used for the pressure equalizing operation of the tower whose pressure is increased to enter the adsorption operation, and then to near the normal pressure. It is discharged as a purge gas whose pressure is reduced. The pressure of the purge gas after being subjected to the pressure equalization operation a plurality of times also serving as cleaning is about half of the gas pressure immediately before the pressure equalization operation is performed, and each component exceeds the adsorption amount of each component corresponding to the pressure. Will be removed. In this case, since hydrogen is a non-adsorption component, the desorption amount of the adsorption component increases as the pressure decreases, and the hydrogen concentration decreases as the pressure equalization operation is repeated.

【0006】上述のようにパ−ジガスは、メタン、天然
ガス、ブタン、ナフサ等の炭化水素を原料とした水蒸気
改質、部分酸化及びシフト反応を伴うメタノ一ル改質等
の場合、二酸化炭素を含む水素ガスであり、二酸化炭素
に加え、一酸化炭素、メタン、精製ロスとしての水素等
からなり、通常、上流プロセスで炭化水素原料を改質す
るのに使用される外部燃焼式改質器(以下、改質炉と称
する。)にて必要な燃料の一部として使用されるのであ
る。
As described above, the purge gas is carbon dioxide in the case of steam reforming using hydrocarbons such as methane, natural gas, butane and naphtha as raw materials, and methanol reforming involving partial oxidation and shift reaction. An external combustion reformer that is used to reform hydrocarbon raw materials in upstream processes, and is composed of carbon monoxide, methane, hydrogen as a refining loss, etc. in addition to carbon dioxide. It is used as a part of the fuel required in the (hereinafter referred to as reforming furnace).

【0007】[0007]

【発明が解決しようとする課題】前述の従来の技術には
改善すべき次の課題がある。 (1)メタネ−ル法を工業的に吸着塔を4塔以上で用い
る場合には、そのうち1塔が不具合を生じるとどの1塔
が不具合を生じたかの確認及び確認後残りの塔で運転す
る運転モ−ドの切り換え等複雑なシ−ケンスを組むが故
の、いわゆる、トラブル対策の課題があつた。 (2)上記課題を避けるため、より簡単なシ−ケンスで
足りる2塔による運転を行う場合PAS装置に供給され
る水素の回収率が4塔以上を用いる場合より悪いという
課題があり、上述(1)の課題があるにも係わらず4塔
以上で用いられている。また、PSA法では高純度の水
素が得られる一方で、吸着剤の脱気(再生)操作によ
り、常圧に近い二酸化炭素を多量に含む水素がパ−ジガ
スとして残留し、常圧に近いこのパ−ジガスを昇圧し水
素を回収しようとする場合、昇圧に要する動力が大とな
るため、以上の理由で消費エネルギ−の観点から改質炉
にて燃料の一部として用いる以外適当な利用方法がなか
つた。 (3)さらに、説明のため下記にもつとも簡単なメタン
の水蒸気改質の反応式を1例として示する二酸化炭素を
多量に含む水素ガスを昇圧後反応系に戻しても下記反応
式(1)及び(2)が進みにくく全体として反応系に供
給される原料の節約とはならなかつた。 CH4 +H2 0 → C0 + 3H2 ・・・・(1) CH4 +H2 0 → C02 + H2 ・・・・(2) 消費エネルギ−の観点から改質炉にて燃料の一部として
用いる以外適当な利用方法がなかつた。本発明は、前述
の課題を同時に解決する方法を提供することにある。す
なわち、本発明は、前述の従来技術の課題である昇圧に
要するエネルギ−消費及び反応系に供給される原料、燃
料(以下、原燃料と称する。)の節減を計りつつ、PS
A装置を複雑なシ−ケンスを要しない2塔にて運転しう
る二酸化炭素を多量に含む水素ガスから水素を回収する
方法を提供することにある。
The above-mentioned conventional techniques have the following problems to be improved. (1) When four or more adsorption towers are industrially used in the methanol method, when one of the towers has a failure, it is confirmed which one has a failure, and after the confirmation, the operation is performed with the remaining towers. There was a problem of so-called trouble countermeasures due to the complicated sequence such as mode switching. (2) In order to avoid the above problems, there is a problem that when the operation with two towers that requires a simpler sequence is performed, the recovery rate of hydrogen supplied to the PAS device is worse than when four or more towers are used. Despite the problem of 1), it is used in 4 or more towers. In addition, while high-purity hydrogen is obtained by the PSA method, degassing (regeneration) operation of the adsorbent leaves hydrogen containing a large amount of carbon dioxide close to normal pressure as purge gas, which is close to normal pressure. When attempting to boost the pressure of the purge gas and recover hydrogen, the power required to boost the pressure becomes large. Therefore, from the viewpoint of energy consumption for the above reasons, an appropriate usage method other than using it as a part of the fuel in the reforming furnace. It was a long time ago. (3) Furthermore, for the sake of explanation, the following simple reaction formula for steam reforming of methane is shown as an example. Even if hydrogen gas containing a large amount of carbon dioxide is returned to the reaction system after pressurization, the following reaction formula (1) Since (2) and (2) were difficult to proceed, the raw materials supplied to the reaction system as a whole were not saved. CH 4 + H 2 0 → C0 + 3H 2 ··· (1) CH 4 + H 2 0 → C0 2 + H 2 ··· (2) Part of fuel in the reformer from the viewpoint of energy consumption There was no suitable usage other than as. The present invention is to provide a method for solving the aforementioned problems at the same time. That is, the present invention aims to reduce the energy consumption required for pressurization, which is a problem of the above-mentioned prior art, and the saving of raw materials and fuels (hereinafter referred to as raw fuels) supplied to the reaction system, while reducing PS.
It is an object of the present invention to provide a method for recovering hydrogen from hydrogen gas containing a large amount of carbon dioxide, which can operate the apparatus A in two towers without requiring a complicated sequence.

【0008】[0008]

【課題を解決するための手段】本発明は、二酸化炭素を
多量に含む水素ガスから水素を回収する方法に関し、P
SA法において吸着操作終了後の二酸化炭素を多量に含
む水素ガスを均圧操作を行わずに、脱炭酸法の工程に導
入し連続的に脱炭酸処理の前後の前記水素ガスの圧力が
概ね変わらないことに着目し本発明に至つたものであ
る。すなわち、本発明は、(1)圧力スイング吸着法に
おける吸着操作後排出される二酸化炭素を多量に含む水
素ガスのうち、ガス圧力10ないし30気圧を保持する
前記二酸化炭素を多量に含む水素ガスを脱炭酸法により
脱炭処理を行ない、水素を多量に含むガスとし、(2)
水素ガスを多量に含む水素ガスの一部を一段のコンプレ
ッサ−で上流側の反応系に戻して水素を回収することを
特徴とする二酸化炭素を多量に含む水素ガスから水素を
回収する方法の構成である。本発明において、PSA装
置における吸着操作終了後に排出される二酸化炭素を多
量に含む水素ガスは脱炭酸された後、水素を多量に含む
主ガスとなり、上流側のPSA装置又は反応器、好まし
くは反応器に循環されるが、その循環量は脱炭酸後に排
出されるガス量の50%を超えると、後述の実施例3お
よび比較例2に示すように原燃料の消費量が増え好まし
くない。(3)循環される水素を多量に含むガスは、反
応器、2塔式PSA装置に循環するに加え、2塔式PS
A装置で吸着工程に入る準備をしている別の1塔の昇圧
に用いる。すなわち、本発明の構成は、圧力スイング吸
着法における吸着操作後均圧操作を行わずに排出させた
二酸化炭素を多量に含む水素ガスのうち、ガス圧10な
いし30気圧を保持する前記二酸化炭素を多量に含む水
素ガスを脱炭酸法により脱炭処理を行ない、水素を多量
に含むガスとし水素を回収するとともに、この水素ガス
の一部を一段のコンプレッサ−で昇圧循環し、この循環
ガスの一部をPAS装置の昇圧に供給し、PAS装置を
2塔で運転できることを特徴とする二酸化炭素を多量に
含む水素ガスから水素を回収する方法である。本発明に
おいて、PSA装置における吸着操作終了後に排出され
る二酸化炭素を多量に含む水素ガスは脱炭酸された後、
水素を多量に含む主ガスとなり、上流側のPSA装置又
は反応塔、好ましくは反応塔に循環されるが、その循環
量は脱炭酸後に排出されるガス量の50%を超えると、
後述の実施例3および比較例2に示すように原燃料の消
費量が増え好ましくない。
SUMMARY OF THE INVENTION The present invention relates to a method for recovering hydrogen from hydrogen gas containing a large amount of carbon dioxide.
In the SA method, the hydrogen gas containing a large amount of carbon dioxide after the adsorption operation is introduced into the decarboxylation method step without performing the pressure equalization operation, and the pressure of the hydrogen gas before and after the decarboxylation process is substantially changed. The present invention has been made paying attention to the fact that it is not present. That is, the present invention provides (1) a hydrogen gas containing a large amount of carbon dioxide, which is maintained at a gas pressure of 10 to 30 atm, among hydrogen gas containing a large amount of carbon dioxide discharged after an adsorption operation in a pressure swing adsorption method. Decarburization is performed by the decarbonation method to obtain a gas containing a large amount of hydrogen, (2)
Configuration of a method for recovering hydrogen from hydrogen gas containing a large amount of carbon dioxide, characterized in that a part of the hydrogen gas containing a large amount of hydrogen gas is returned to an upstream reaction system by a one-stage compressor to recover hydrogen Is. In the present invention, the hydrogen gas containing a large amount of carbon dioxide discharged after the end of the adsorption operation in the PSA device is decarbonated and becomes a main gas containing a large amount of hydrogen, and the upstream PSA device or reactor, preferably the reaction Although it is circulated in the vessel, if the circulated amount exceeds 50% of the gas amount discharged after decarbonation, the consumption amount of the raw fuel increases as shown in Example 3 and Comparative Example 2 described later, which is not preferable. (3) The gas containing a large amount of circulated hydrogen is circulated to the reactor, the two-column PSA device, and the two-column PS.
It is used for boosting the pressure of another column that is preparing to enter the adsorption process in the A unit. That is, the configuration of the present invention is to remove the carbon dioxide having a gas pressure of 10 to 30 atm from the hydrogen gas containing a large amount of carbon dioxide discharged without performing the pressure equalizing operation after the adsorption operation in the pressure swing adsorption method. A large amount of hydrogen gas is decarburized by a decarbonation method to recover hydrogen as a gas containing a large amount of hydrogen, and a portion of this hydrogen gas is circulated under pressure by a single-stage compressor to reduce the amount of this circulating gas. Is a method for recovering hydrogen from hydrogen gas containing a large amount of carbon dioxide, which is characterized in that the PAS device can be operated in two columns by supplying a part to the pressure rising of the PAS device. In the present invention, the hydrogen gas containing a large amount of carbon dioxide discharged after the end of the adsorption operation in the PSA device is decarbonated,
It becomes a main gas containing a large amount of hydrogen and is circulated to the upstream PSA device or reaction tower, preferably the reaction tower, but when the circulation amount exceeds 50% of the gas amount discharged after decarbonation,
As shown in Example 3 and Comparative Example 2 described later, the consumption of raw fuel increases, which is not preferable.

【0009】脱炭酸の操作圧力は、二酸化炭素を多量に
含む水素ガス中の二酸化炭素の分圧によつて異なるが、
10気圧以上30気圧以下が好ましい。10気圧未満で
あると脱炭酸の効率が低下することがあり、30気圧を
超えると30気圧以下の場合と脱炭酸の効率に変化はな
い。本発明に使用する脱炭酸方法は、吸収法は物理吸収
法および化学吸収法のいずれでも良いが、化学吸収法で
あるアミン法、熱炭酸カリ法等が通常使用される。
The operating pressure for decarbonation varies depending on the partial pressure of carbon dioxide in hydrogen gas containing a large amount of carbon dioxide,
It is preferably 10 atm or more and 30 atm or less. If it is less than 10 atm, the efficiency of decarboxylation may decrease, and if it exceeds 30 atm, there is no change in the efficiency of decarboxylation as in the case of 30 atm or less. The decarboxylation method used in the present invention may be either a physical absorption method or a chemical absorption method as an absorption method, but an amine method, a potassium carbonate method and the like which are chemical absorption methods are usually used.

【0010】[0010]

【作用】作用を図面に基づきメタンの水蒸気改質の実施
例についてさらに説明するが、本発明はこれに制限され
ることはない。メタンを原料30とした水蒸気改質にお
いて原料30および反応に必要な水蒸気がライン5を通
り反応器1に供給される。反応器1での圧力は、概ね2
0気圧以上60気圧以下であり、本発明では45気圧未
満の圧力条件であることが好ましい。
The operation will be further described with reference to the drawings of an example of steam reforming of methane, but the present invention is not limited thereto. In the steam reforming using methane as the raw material 30, the raw material 30 and the steam required for the reaction are supplied to the reactor 1 through the line 5. The pressure in the reactor 1 is about 2
The pressure is 0 atm or more and 60 atm or less, and in the present invention, it is preferable that the pressure condition is less than 45 atm.

【0011】反応器1で発生した二酸化炭素を多量に含
む水素ガスは、ライン6およびク−ラ−20およびライ
ン7を通りPSA装置2に供給される。通常、ライン6
での温度は700℃から850℃でありPSA装置2の
入口温度は30ないし40℃である。PSA装置2では
圧力10ないし30気圧で操作され、製品としての9
9.9%以上の純度の水素がライン8から得られる。こ
の場合、上述のメタンの水蒸気改質における反応式
(2)を抑える二酸化炭素を除去しているため反応式
(2)は進み易くなり、他方、水素を反応系に循環して
いるため反応式(1)は抑制されるが、後述の実施例1
ないし3及び比較例1に示すように原料30と燃料40
の和である原燃料消費量は改善される。一方、圧力10
ないし30気圧である二酸化炭素を多量に含む水素ガス
はライン9を通り脱炭酸装置3に導かれる。脱炭酸装置
3は、アミン法、熱炭酸カリ法等が採用される。ところ
で、PSA装置2において脱炭酸に必要な圧力未満とな
つたパ−ジガスは、ライン14を通り燃料40の供給さ
れるライン17と合流して燃料の一部として利用される
のである。
Hydrogen gas containing a large amount of carbon dioxide generated in the reactor 1 is supplied to the PSA apparatus 2 through a line 6, a cooler 20 and a line 7. Usually line 6
The temperature at 700 ° C. to 850 ° C., and the inlet temperature of the PSA apparatus 2 is 30 to 40 ° C. The PSA unit 2 is operated at a pressure of 10 to 30 atm,
Hydrogen of 9.9% or higher purity is obtained from line 8. In this case, since the carbon dioxide that suppresses the reaction formula (2) in the steam reforming of methane described above is removed, the reaction formula (2) easily proceeds, while the reaction formula (2) is circulated in the reaction system. Although (1) is suppressed, Example 1 described later
3 to 3 and Comparative Example 1, the raw material 30 and the fuel 40
The sum of raw fuel consumption is improved. On the other hand, pressure 10
Hydrogen gas containing a large amount of carbon dioxide at 30 to 30 atm is introduced to the carbon dioxide removal device 3 through the line 9. The decarbonation device 3 employs an amine method, a hot potassium carbonate method, or the like. By the way, the purge gas whose pressure is less than the pressure required for decarbonation in the PSA apparatus 2 merges with the line 17 to which the fuel 40 is supplied through the line 14 and is used as a part of the fuel.

【0012】脱炭酸装置3で脱炭酸されて得られる水素
を多量に含むは、ライン10、19を通りコンプレッサ
−4に導入され昇圧され循環される。反応系に循環され
る場合にはライン21、11ライン13、23を通り反
応器1に供給される。この場合、上述のメタンの水蒸気
改質における反応式(2)を抑える二酸化炭素を除去し
ているため反応式(2)は進み易くなり、他方、水素を
反応系に循環しているため反応式(1)は抑制される
が、後述の実施例1ないし3及び比較例1に示すように
原料30と燃料40の和である原燃料消費量は改善され
る。
A large amount of hydrogen obtained by decarboxylation in the decarbonation device 3 is introduced into the compressor-4 through lines 10 and 19 and is pressurized and circulated. When it is circulated in the reaction system, it is supplied to the reactor 1 through lines 21, 11 and 13, 23. In this case, since the carbon dioxide that suppresses the reaction formula (2) in the steam reforming of methane described above is removed, the reaction formula (2) easily proceeds, while the reaction formula (2) is circulated in the reaction system. Although (1) is suppressed, the raw fuel consumption, which is the sum of the raw material 30 and the fuel 40, is improved as shown in Examples 1 to 3 and Comparative Example 1 described later.

【0013】PSA装置2に循環される場合には、ライ
ン21、11およびライン12を通り循環される。循環
される箇所はいずれの場合を採用してもよいが、プロセ
スを単純化するため、反応系に循環するのが好ましい。
また、ライン18から分岐しPSA装置2の中で吸着工
程に入る準備している塔の運転圧力まで昇圧することも
できる。本発明を更に詳細に説明するため、以下に実施
例を示すが、本発明はこれに制限されるものではない。
When it is circulated to the PSA device 2, it is circulated through lines 21, 11 and 12. Although any place may be adopted as the place to be circulated, it is preferably circulated to the reaction system in order to simplify the process.
It is also possible to raise the pressure up to the operating pressure of the column which is branched from the line 18 and is preparing to enter the adsorption step in the PSA apparatus 2. The following examples are provided to explain the present invention in more detail, but the present invention is not limited thereto.

【0014】[0014]

【実施例】【Example】

実施例1 以下本発明の二酸化炭素を多量に含む水素ガスから水素
を回収する方法の一実施例を図面に基づいて説明する
と、反応器1、ライン6及びライン7を通り2塔で運転
しているPSA装置2への供給ガス条件を下記の表1に
示す。 PSA装置2としては、内径43mmおよび高さ2mの
サイズで、内部に吸着剤としてモレキュラ−シ−ブと活
性炭を4対6の割合で充填したものを使用し、供給ガス
流量15リッタ−/分でPSA装置2の塔底部より送入
し、PSA装置2の塔頂より精製ガスである99.9%
の水素をライン8から、また、パ−ジ−ガスはライン1
4から排出した。反応器1及びライン9の二酸化炭素を
多量に含むガスの圧力は、各々20気圧及び10気圧で
あつた。二酸化炭素を多量に含むガスはライン9から脱
炭酸装置3に供給され脱炭酸された。脱炭酸装置3では
アミン法の1つであるモノエタノ−ルアミン法(MEA
法)を採用した。脱炭酸後、コンプレッサ−4でライン
11及びライン13を通して反応器1の塔底に脱炭酸後
のガスを10%循環して戻した。なお、ライン18を通
してPSA装置2の1塔へ昇圧するガスを導入した。算
定原燃料消費量を下記の表2に示す。 実施例2 実施例1の循環ガス量を10%から30%に換え実施例
1と同様に行つた。算定原燃料消費量を表2に併記す
る。 実施例3 実施例1の循環ガス量を10%から50%に換え実施例
1と同様に行つた。算定原燃料消費量を表2に併記す
る。 比較例1 実施例1の循環ガス量を10%から0%に換え実施例1
と同様に行つた。算定原燃料消費量を表2に併記する。 比較例2 実施例1の循環ガス量を10%から70%に換え実施例
1と同様に行つた。算定原燃料消費量を表2に併記す
る。 実施例4 実施例1のライン13を通して反応器1の塔底に脱炭酸
後のガスを10%循環して戻したのをライン12及びラ
イン7を通しPSA装置2の塔底部に10%ガスを循環
した以外は実施例1と同様に行つた。算定原燃料消費量
を下記の表3に併記する。 実施例5 実施例4の循環ガス量を10%から30%に換え実施例
4と同様に行つた。算定原燃料消費量を表3に併記す
る。 実施例6 実施例4の循環ガス量を10%から50%に換え実施例
4と同様に行つた。算定原燃料消費量を表3に併記す
る。 比較例3 実施例4の循環ガス量を10%から0%に換え実施例4
と同様に行つた。算定原燃料消費量を表3に併記する。 比較例4 実施例4の循環ガス量を10%から70%に換え実施例
4と同様に行つた。算定原燃料消費量を表3に併記す
る。
Example 1 An example of a method for recovering hydrogen from hydrogen gas containing a large amount of carbon dioxide according to the present invention will be described below with reference to the drawings. Table 1 below shows the conditions of the gas supplied to the PSA device 2. As the PSA device 2, one having an inner diameter of 43 mm and a height of 2 m, which was filled with a molecular sieve and activated carbon as an adsorbent at a ratio of 4: 6, was used, and the supply gas flow rate was 15 liter / min. At the bottom of the PSA apparatus 2, the purified gas is fed from the top of the PSA apparatus 2 at 99.9%.
Hydrogen from line 8 and purge gas from line 1
Ejected from 4. The pressure of the gas containing a large amount of carbon dioxide in the reactor 1 and the line 9 was 20 atm and 10 atm, respectively. The gas containing a large amount of carbon dioxide was supplied to the decarbonation device 3 through the line 9 and decarbonated. In the decarboxylation device 3, the monoethanolamine method (MEA), which is one of the amine methods, is used.
Law) was adopted. After decarboxylation, 10% of the decarbonated gas was circulated back to the bottom of the reactor 1 through the line 11 and the line 13 by the compressor-4. In addition, the pressure-increasing gas was introduced into one column of the PSA apparatus 2 through the line 18. The calculated raw fuel consumption is shown in Table 2 below. Example 2 The amount of circulating gas in Example 1 was changed from 10% to 30%, and the same procedure as in Example 1 was carried out. The calculated raw fuel consumption is also shown in Table 2. Example 3 The procedure of Example 1 was repeated except that the amount of circulating gas in Example 1 was changed from 10% to 50%. The calculated raw fuel consumption is also shown in Table 2. Comparative Example 1 The circulating gas amount of Example 1 was changed from 10% to 0%.
I went as well. The calculated raw fuel consumption is also shown in Table 2. Comparative Example 2 The same procedure as in Example 1 was carried out by changing the circulating gas amount in Example 1 from 10% to 70%. The calculated raw fuel consumption is also shown in Table 2. Example 4 10% of the gas after decarboxylation was circulated back to the bottom of the reactor 1 through the line 13 of Example 1 and returned to the bottom of the PSA apparatus 2 through the lines 12 and 7. The same procedure as in Example 1 was carried out except that the circulation was performed. The calculated raw fuel consumption is also shown in Table 3 below. Example 5 The cycle gas amount of Example 4 was changed from 10% to 30%, and the same procedure as in Example 4 was carried out. Table 3 shows the calculated raw fuel consumption. Example 6 The amount of circulating gas in Example 4 was changed from 10% to 50%, and the same procedure as in Example 4 was carried out. Table 3 shows the calculated raw fuel consumption. Comparative Example 3 Example 4 in which the circulating gas amount in Example 4 was changed from 10% to 0%
I went as well. Table 3 shows the calculated raw fuel consumption. Comparative Example 4 The same procedure as in Example 4 was carried out by changing the circulating gas amount in Example 4 from 10% to 70%. Table 3 shows the calculated raw fuel consumption.

【0015】[0015]

【発明の効果】本発明の二酸化炭素を多量に含む水素ガ
スから水素を回収する方法は、前述したような構成であ
るから下記の如き効果がある。 (1)脱炭酸後得られる水素を多量に含むガスを反応系
内またはPSA装置入口に戻すため原燃料消費量の低減
に効果がある。 (2)脱炭酸後得られる水素を多量に含むガスをPSA
装置の昇圧に用いるため水素回収率を落とすことなく、
しかも2塔で運転でき、複雑なシ−ケンスによる制御が
不要となつた。 (3)10気圧以上の圧力で脱炭酸し水素に富むガスと
しこのガスを循環して戻すため、戻す量は相対的に少な
く、かつ、1段のコンプレッサ−ですむ。それゆえ、コ
ンプレッサ−の動力は少なく、かつ、小型でよいから、
コンプレッサ−の運転に要する機械・器具等の経費が少
なくなる効果がある。 (4)以上のことは、反応系内圧力が高い程効果が大き
い。 (5)従来のメタネ−ル法を工業的に吸着塔を4塔以上
で用いる場合には、そのうち1塔が不具合を生じるとど
の1塔が不具合を生じたかの確認及び確認後残りの塔で
運転する運転モ−ドの切り換え等複雑なシ−ケンスを組
むが故の、いわゆる、トラブル対策の課題があつたが、
2塔であるからそれらのトラブル対策の課題が少なくな
つた。
The method of recovering hydrogen from hydrogen gas containing a large amount of carbon dioxide according to the present invention has the following effects because it has the above-described structure. (1) Since a gas containing a large amount of hydrogen obtained after decarbonation is returned to the reaction system or the inlet of the PSA device, it is effective in reducing the raw fuel consumption. (2) PSA is a gas containing a large amount of hydrogen obtained after decarboxylation.
Since it is used for boosting the pressure of the device, without reducing the hydrogen recovery rate,
Moreover, it can be operated with two towers, and the control by a complicated sequence is unnecessary. (3) Since the gas is decarbonated at a pressure of 10 atm or more to produce a hydrogen-rich gas, which is circulated and returned, the amount to be returned is relatively small, and a single-stage compressor is sufficient. Therefore, since the power of the compressor is small and the size is small,
This has the effect of reducing the cost of machinery and equipment required for operating the compressor. (4) The above is more effective as the pressure in the reaction system is higher. (5) When the conventional methanol method is industrially used with four or more adsorption towers, if one of them fails, it is confirmed which one fails, and after confirmation, the remaining towers are operated. There is a problem of so-called trouble countermeasures due to the complicated sequence such as switching the operating mode
Since there are two towers, the number of issues for those trouble countermeasures has decreased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二酸化炭素を多量に含む水素ガスから
水素を回収する方法の一実施例の工程フロ−の説明図で
ある。
FIG. 1 is an explanatory view of a process flow of an embodiment of a method for recovering hydrogen from hydrogen gas containing a large amount of carbon dioxide according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・反応器 2・・・PSA装置 3・・・脱炭酸装置 4・・・コンプレッサ− 5ないし19・・・ライン 21ないし23・・・ライン 20・・・ク−ラ− 30・・・原料 40・・・燃料 50・・・高純度水素 60・・・二酸化炭素 70・・・均圧用ガス V1 、V2 、V3 、V4 ・・・調整バルブDESCRIPTION OF SYMBOLS 1 ... Reactor 2 ... PSA device 3 ... Decarbonation device 4 ... Compressor 5 to 19 ... Line 21 to 23 ... Line 20 ... Cooler 30 ... raw material 40 ... fuel 50 ... high-purity hydrogen 60 ... carbon dioxide 70 ... pressure equalizing gas V 1, V 2, V 3 , V 4 ··· adjustment valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧力スイング吸着法における吸着操作後
均圧操作を行わずに排出させた二酸化炭素を多量に含む
水素ガスのうち、ガス圧10ないし30気圧を保持する
前記二酸化炭素を多量に含む水素ガスを脱炭酸法により
脱炭処理を行ない、水素を多量に含むガスとし水素を回
収するとともに、この水素ガスの一部を一段のコンプレ
ッサ−で昇圧循環し、この循環ガスの一部をPAS装置
に昇圧に供給し、PAS装置を2塔で運転できることを
特徴とする二酸化炭素を多量に含む水素ガスから水素を
回収する方法。
1. A hydrogen gas containing a large amount of carbon dioxide discharged without performing a pressure equalizing operation after an adsorption operation in a pressure swing adsorption method contains a large amount of the carbon dioxide having a gas pressure of 10 to 30 atm. The hydrogen gas is decarburized by a decarbonation method to recover the hydrogen as a gas containing a large amount of hydrogen, and a part of this hydrogen gas is pressure-circulated by a one-stage compressor to partly circulate this PAS gas. A method for recovering hydrogen from hydrogen gas containing a large amount of carbon dioxide, characterized in that the PAS device can be operated in two columns by supplying pressure to the device.
【請求項2】 前記循環ガスを反応系およびまたはPA
S装置に循環させることを特徴とする請求項1に記載の
二酸化炭素を多量に含む水素ガスから水素を回収する方
法。
2. The circulating gas is used as a reaction system and / or PA.
The method for recovering hydrogen from hydrogen gas containing a large amount of carbon dioxide according to claim 1, which is circulated through the S device.
JP5329502A 1993-12-27 1993-12-27 Method for recovering hydrogen from gaseous hydrogen containing much carbon dioxide Pending JPH07187606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5329502A JPH07187606A (en) 1993-12-27 1993-12-27 Method for recovering hydrogen from gaseous hydrogen containing much carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5329502A JPH07187606A (en) 1993-12-27 1993-12-27 Method for recovering hydrogen from gaseous hydrogen containing much carbon dioxide

Publications (1)

Publication Number Publication Date
JPH07187606A true JPH07187606A (en) 1995-07-25

Family

ID=18222094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5329502A Pending JPH07187606A (en) 1993-12-27 1993-12-27 Method for recovering hydrogen from gaseous hydrogen containing much carbon dioxide

Country Status (1)

Country Link
JP (1) JPH07187606A (en)

Similar Documents

Publication Publication Date Title
EP0307843B1 (en) Production of hydrogen and carbon monoxide
US4869894A (en) Hydrogen generation and recovery
KR940006239B1 (en) Integrated processes for the production of carbon monoxide
US4475929A (en) Selective adsorption process
JPH01131005A (en) Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
CN113784777B (en) Pressure swing adsorption process for producing hydrogen and carbon dioxide
KR20090075700A (en) Process for Carbon Dioxide Recovery
CA1238868A (en) Method for obtaining high-purity carbon monoxide
EP0367618B1 (en) Process for producing carbon monoxide gas
JP5498661B2 (en) Blast furnace gas separation method
JPS6140807A (en) Process and apparatus for purifying gaseous argon
JP4316386B2 (en) Method and apparatus for producing hydrogen from hydrogen rich feed gas
JP6068148B2 (en) Method for starting hydrogen production apparatus and hydrogen production apparatus
JP2001347125A (en) Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus
JPH07187606A (en) Method for recovering hydrogen from gaseous hydrogen containing much carbon dioxide
JPH02699A (en) Removal of carbon dioxide and moisture from gas in town gas production process
JP6930513B2 (en) Organic matter synthesizer and synthesis method
EP0314040B1 (en) Method for removing carbon dioxide gas and moisture in a city gas production
JP2587334B2 (en) Method of separating CO gas not containing CH4
JPS6129453Y2 (en)
JP4771668B2 (en) Hydrogen production method and apparatus
JP2005177716A (en) Processing method of off-gas discharged from hydrogen psa purifying device
US20090065108A1 (en) Integrated Reformer and Batch Annealing Processes and Apparatus Therefor
JPH11137942A (en) Gas purifying method using pressure swing adsorption method
JP2002355521A (en) Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen