JPH07186375A - Inspection method for printed matter - Google Patents

Inspection method for printed matter

Info

Publication number
JPH07186375A
JPH07186375A JP5333897A JP33389793A JPH07186375A JP H07186375 A JPH07186375 A JP H07186375A JP 5333897 A JP5333897 A JP 5333897A JP 33389793 A JP33389793 A JP 33389793A JP H07186375 A JPH07186375 A JP H07186375A
Authority
JP
Japan
Prior art keywords
image
printed matter
value
inspection
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5333897A
Other languages
Japanese (ja)
Inventor
Hideki Nakakuki
秀樹 中久木
Naoki Kasai
直樹 笠井
Ryohei Kumagai
良平 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ezel Inc
Toppan Inc
Original Assignee
Ezel Inc
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ezel Inc, Toppan Printing Co Ltd filed Critical Ezel Inc
Priority to JP5333897A priority Critical patent/JPH07186375A/en
Publication of JPH07186375A publication Critical patent/JPH07186375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To obtain an inspection method for a printed matter by which the defect of the printed matter can be correctly detected in an in-line system, and the edge part that has been an uninspectable area in a prior art can be inspected. CONSTITUTION:Image pattern information of a printed matter fed from a printing part 1 is received by a detection part 4 per pixel in accordance with a sampling timing obtained from a rotary encoder 5 to be inputted to a processing circuit 6. The processing circuit 6 receives image pattern information of a normal printed matter, forms an image thereform, and filters it through a minimum value filter and/or a maximum value filter to form a reference image. A difference value is found by comparing this image with an image to be inspected. A defect is detected by comparing the difference value with an allowable value (a threshold).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、印刷中の印刷物の状態
をインラインで基準物と比較して印刷物の異常を検出す
る印刷物の検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a printed matter by detecting the abnormality of the printed matter by in-line comparing the state of the printed matter during printing with a reference material.

【0002】[0002]

【従来の技術】従来、印刷物の検査はオフラインで人間
の視覚に頼って行われるものが主流であった。これは印
刷物における正異常の判断が人間の視覚を頼らざるを得
ない微妙な差によって行われるためである。一方、印刷
中の印刷物に高速で同期回転するミラーにより印刷物の
絵柄を静止画像としてとらえる手段や印刷速度に同期し
たストロボ照明により検査精度を向上させる手段が採用
されている。しかし、これ等はいずれも人間の視覚によ
って検査する方法である。一方、最近ではラインセンサ
を用いて印刷中の印刷物をインラインで検査するシステ
ムが採用されてきている。このシステムは、印刷物の絵
柄情報を画素毎に取り込み、この画像を画素毎に基準画
像と比較して印刷中に発生した異常を検出するものであ
る。
2. Description of the Related Art Conventionally, the mainstream of the inspection of printed matter has been off-line and relying on human vision. This is because the determination of normality / abnormality in the printed matter is made by a subtle difference that must rely on human vision. On the other hand, a means for capturing a picture of a printed matter as a still image by a mirror that rotates at high speed in synchronization with the printed matter being printed and a means for improving inspection accuracy by stroboscopic illumination synchronized with the printing speed have been adopted. However, these are all methods of inspecting by human vision. On the other hand, recently, a system for in-line inspection of a printed matter using a line sensor has been adopted. This system takes in the picture information of the printed matter for each pixel and compares this image with the reference image for each pixel to detect an abnormality that occurred during printing.

【0003】[0003]

【発明が解決しようとする課題】印刷物は定常運転で印
刷されていても微妙に蛇行したり伸縮したりする。従っ
て、単純に基準画像と取り込み画像とを画素毎に比較し
て行くと絵柄のエッジ部で著しい差異が生じ正常な印刷
物を異常と誤判定する問題点が生じる。位置合わせを正
確に行う方法は画像処理の分野では色々研究されている
が、印刷物の絵柄検査の場合には検査対象が大きく、解
像度も細かくする必要があり、かつデータ量も膨大で印
刷スピードも高速のため位置合わせを正確にした上で実
用上エッジ部を検査することは不可能である。このた
め、従来方式では、エッジ部をマスクして非検査領域と
していた。なお、マスク部は微分,ソベールフィルタ等
のエッジ検出処理によりエッジ部を抽出し、それを2値
化して2値マスクとして用いる。以上のように、従来技
術ではエッジ部を非検査領域としてマスクしてしまうた
め、この領域に異常が発生しても検出されないという問
題点がある。
The printed matter slightly meanders or expands or contracts even when printed in a normal operation. Therefore, if the reference image and the captured image are simply compared on a pixel-by-pixel basis, a significant difference occurs at the edge portion of the pattern, and a problem arises in that a normal printed matter is erroneously determined to be abnormal. Various methods have been studied in the field of image processing for accurate alignment, but in the case of pattern inspection of printed matter, the inspection target is large, it is necessary to make the resolution fine, and the amount of data is enormous and the printing speed is also high. Due to the high speed, it is practically impossible to inspect the edge portion after performing accurate alignment. Therefore, in the conventional method, the edge portion is masked to form a non-inspection area. The mask portion extracts the edge portion by edge detection processing such as differentiation and a Sober filter and binarizes it to use as a binary mask. As described above, in the conventional technique, the edge portion is masked as a non-inspection area, and therefore, there is a problem that even if an abnormality occurs in this area, it is not detected.

【0004】本発明は、以上の事情に鑑みて創案された
ものであり、インラインにおいて印刷物の検査が正確に
行われ、従来技術では困難とされていたエッジ部領域の
検査が可能な印刷物の検査方法を提供することを目的と
する。
The present invention was devised in view of the above circumstances, and an inspection of a printed matter can be performed accurately in-line, and an inspection of an edge region which has been difficult in the prior art can be performed. The purpose is to provide a method.

【0005】[0005]

【課題を解決するための手段】本発明は、以上の目的を
達成するために、正常印刷物の絵柄情報を画素毎に取り
込んだ画像に最小値フィルタ及び/又は最大値フィルタ
を施した画像を基準画像とし、被検査物の印刷物の絵柄
情報を画素毎に取り込んだ画像を検査画像とし、該検査
画像と前記基準画像との差分値を演算し、その差分値と
許容値とを比較して異常の有無を検出する印刷物の検査
方法を特徴とするものである。ここで最小値フィルタ又
は最大値フィルタは、注目画像の近傍n×m画素中の最
小値又は最大値を前記注目画素の新しい値とする処理を
行うフィルタである。
In order to achieve the above object, the present invention is based on an image obtained by applying a minimum value filter and / or a maximum value filter to an image in which picture information of a normal print is taken in for each pixel. As an image, an image in which the picture information of the printed matter of the inspection object is captured for each pixel is used as an inspection image, a difference value between the inspection image and the reference image is calculated, and the difference value is compared with an allowable value to determine an abnormality. It is characterized by a method of inspecting a printed matter for detecting the presence or absence of Here, the minimum value filter or the maximum value filter is a filter that performs a process of setting a minimum value or a maximum value in n × m pixels in the vicinity of the target image as a new value of the target pixel.

【0006】[0006]

【作用】正常印刷物をラインスキャナ等でその絵柄情報
を画素毎に取り込み、これに最小値フィルタ及び/又は
最大値フィルタによるフィルタ処理を施して基準画像を
作成する。一方、検査対象の印刷物の絵柄情報を画素毎
に取り込み検査画像とする。この検査画像と基準画像と
の全画素を比較してその差分値を求める。この差分値と
予め定めた許容値を比較し、差分値が許容値を越した場
合には、印刷された絵柄に異常があると判断し、その印
刷物を異常と判定する。以上の画像処理はインラインに
おいて自動的に行われる。
The pattern information of a normal printed matter is fetched for each pixel by a line scanner or the like, and the reference image is created by performing a filtering process by the minimum value filter and / or the maximum value filter. On the other hand, the picture information of the printed matter to be inspected is taken in for each pixel and used as an inspection image. All the pixels of this inspection image and the reference image are compared to obtain the difference value. This difference value is compared with a predetermined allowable value, and when the difference value exceeds the allowable value, it is determined that the printed pattern is abnormal, and the printed matter is determined to be abnormal. The above image processing is automatically performed inline.

【0007】[0007]

【実施例】以下、本発明の一実施例を図面に基づき説明
する。図1は本実施例の概要構成を示す配置図、図2乃
至図9は基準画像,検査画像の内容と本実施例の検査方
法を説明する説明図、図10はエッジ部の検査方法を説
明するための部分画像図、図11はエッジ部の検査方法
を説明するための画素階調値−度数線図、図12は本実
施例の処理回路のブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a layout diagram showing a schematic configuration of the present embodiment, FIGS. 2 to 9 are explanatory views for explaining the contents of reference images and inspection images and the inspection method of this embodiment, and FIG. 10 is for explaining an edge portion inspection method. FIG. 11 is a pixel gradation value-frequency diagram for explaining the edge inspection method, and FIG. 12 is a block diagram of the processing circuit of this embodiment.

【0008】まず、図1により本実施例とそれが適用さ
れる印刷装置の概要を説明する。図では本実施例の検査
装置は輪転機に取り付けられているが、枚葉印刷機や巻
き返し検品機のような用紙を一定速度で搬送する機構を
有する機械であれば適用される。ロール状の巻き取りウ
エブ2より供給された帯状の印刷用紙3は印刷部1で各
色の印刷が行われる。検査装置は全色が印刷された後の
印刷状態を検査するため最終色印刷部の後に取り付けら
れる。印刷部1のローラの1つにとりつけたロータリエ
ンコーダ5はサンプリングのタイミングを取り、処理回
路6に入力する。検出部4は印刷用紙3の印刷物の絵柄
を読み取るもので印刷用紙3と相対向して配置される。
検出部4のラインセンサ等により絵柄情報を印刷用紙3
の流れ方向と直交する方向に走査して読み取りを行う。
すなわち、ラインセンサの走査を主走査とし、印刷用紙
3の流れを副走査とし印刷物の絵柄を画素単位で処理回
路6に取り込む。処理回路6は後に詳説するが、印刷物
の正常,異常の判定を行う。その判定結果が異常の場合
はアラーム,マーキング,リジェクト等の手段で対応す
る。
First, an outline of this embodiment and a printing apparatus to which it is applied will be described with reference to FIG. Although the inspection apparatus of this embodiment is attached to a rotary press in the figure, any machine such as a sheet-fed printing machine or a rewinding inspection machine having a mechanism for conveying sheets at a constant speed may be applied. The strip-shaped printing paper 3 supplied from the roll-shaped winding web 2 is printed by the printing unit 1 in each color. The inspection device is installed after the final color printing unit in order to inspect the printing state after all colors are printed. The rotary encoder 5 attached to one of the rollers of the printing unit 1 takes sampling timing and inputs it to the processing circuit 6. The detection unit 4 reads the pattern of the printed matter on the printing paper 3, and is arranged so as to face the printing paper 3.
The pattern information is printed on the printing paper 3 by the line sensor of the detection unit 4.
The reading is performed by scanning in the direction orthogonal to the flow direction of.
That is, the scanning of the line sensor is the main scanning, the flow of the printing paper 3 is the sub-scanning, and the design of the printed matter is taken into the processing circuit 6 pixel by pixel. As will be described later in detail, the processing circuit 6 determines whether the printed matter is normal or abnormal. If the judgment result is abnormal, it is dealt with by means such as alarm, marking, and reject.

【0009】処理回路6は図12に示すように、ロータ
リエンコーダ5と連結されるタイミングコントローラ7
と、検出部4に連結して検出信号をA/D交換するA/
Dコンバータ8と、検査画像を格納する検査画像格納メ
モリ9と、基準画像を格納する最小値画像格納メモリ1
0および最大値画像格納メモリ11と、最小値および最
大値画像格納メモリ10,11を作成するための最小値
フィルタ回路12および最大値格納フィルタ回路13
と、検査画像と基準画像の差分値を求める差分回路14
と、差分処理された欠陥候補画像を格納する欠陥候補画
像格納メモリ15,16と、予め決めた許容値(閾値)
により欠陥候補画像を2値化処理する2値化回路17,
18と、許容値を越える差分値を有する欠陥候補画像を
異常画像として格納する欠陥画像格納メモリ19等から
構成される。
The processing circuit 6 is, as shown in FIG. 12, a timing controller 7 connected to a rotary encoder 5.
And A / D that is connected to the detection unit 4 and A / D exchanges detection signals.
D converter 8, inspection image storage memory 9 for storing inspection images, and minimum value image storage memory 1 for storing reference images
0 and maximum value image storage memory 11 and minimum value filter circuit 12 and maximum value storage filter circuit 13 for creating minimum value and maximum value image storage memories 10 and 11.
And a difference circuit 14 for obtaining a difference value between the inspection image and the reference image.
And defect candidate image storage memories 15 and 16 for storing the defect candidate image subjected to the difference processing, and a predetermined allowable value (threshold value)
A binarization circuit 17, which binarizes the defect candidate image by
18 and a defect image storage memory 19 for storing a defect candidate image having a difference value exceeding an allowable value as an abnormal image.

【0010】次に、本実施例の検査方法について説明す
る。図2に示すAは正常な印刷物であり(以下、印刷物
Aという)、印刷物Bは印刷欠陥を有する印刷物を示
す。なお、印刷物Bの欠陥20はゴミ,インキなどの付
着によるものであり、欠陥21はインキが部分的に付着
しないピンホール的欠陥である。なお、画素の階調値は
暗い部分が小さく、明るい部分を大きく規定すると欠陥
20の階調値が小さく欠陥21の階調値は大きな値とな
る。印刷物Aの絵柄情報を画素毎に取り込んだ画像を画
像Cとし図4に示す。一方、印刷物Bの絵柄情報を画素
毎に取り込んだ画像を画像Fとし図7に示す。この画像
Fが検査画像に相当する。画像Cに対し最小値フィルタ
を施した画像を画像Dとして図5に示す。この画像Dが
第1の基準画像となる。一方、画像Cに対し最大値フィ
ルタ施した画像を画像Eとして図6に示す。この画像E
が第2の基準画像となる。
Next, the inspection method of this embodiment will be described. A shown in FIG. 2 is a normal printed matter (hereinafter referred to as a printed matter A), and a printed matter B is a printed matter having a print defect. It should be noted that the defect 20 of the printed matter B is caused by adhesion of dust, ink, etc., and the defect 21 is a pinhole-like defect in which ink is not partially adhered. It should be noted that if the gradation value of a pixel is small in the dark portion and large in the bright portion, the gradation value of the defect 20 is small and the gradation value of the defect 21 is large. An image in which the picture information of the printed material A is captured for each pixel is referred to as an image C and is shown in FIG. On the other hand, an image in which the picture information of the printed matter B is taken in for each pixel is referred to as an image F and is shown in FIG. This image F corresponds to the inspection image. An image obtained by applying the minimum value filter to the image C is shown as an image D in FIG. This image D becomes the first reference image. On the other hand, an image obtained by applying the maximum value filter to the image C is shown as an image E in FIG. This image E
Is the second reference image.

【0011】次に、最小値フィルタおよび最大値フィル
タによるフィルタ処理の具体的方法を説明する。最小値
フィルタは画像Cの各画素を注目画素とし、注目画素の
近傍のn×m画素を選択しその枠内における階調値の最
も小さい値を求め、その値を注目画素の階調値とする処
理を逐次行う。一方、最大値フィルタは画像Cの各画素
を注目画素とし、注目画素の近傍のn×m画素を選定し
その枠内における階調値の最も大きい値を求め、その値
を注目画素の階調値とする処理を行うものである。な
お、n,mは用紙の蛇行量,伸縮量,画像のボケ具合等
を勘案して決められるもので適宜設定される。
Next, a specific method of filtering by the minimum value filter and the maximum value filter will be described. The minimum value filter sets each pixel of the image C as a target pixel, selects n × m pixels in the vicinity of the target pixel, obtains the smallest gradation value within the frame, and sets the value as the gradation value of the target pixel. The processing to be performed is sequentially performed. On the other hand, the maximum value filter sets each pixel of the image C as a target pixel, selects n × m pixels in the vicinity of the target pixel, obtains the largest gradation value within the frame, and determines the value as the gradation of the target pixel. It is a process that takes a value. Note that n and m are determined in consideration of the meandering amount of paper, the amount of expansion and contraction, the degree of image blurring, etc., and are set appropriately.

【0012】次に、第1および第2の基準画像(画像D
と画像E)を用いて検査画像である画像Fの欠陥を検出
する方法を説明する。検査方法は基準画像と検査画像を
画素毎に比較してその差分値を求める。まず、画像Dか
ら画像Fの各画素の階調値の差分を求め、更に差分値が
負の場合には0に置換する。この結果が図8の画像Gに
示される。以上の処理を次式のFIX関数で表現する。 G=FIX(D−F) 画像Dの各画素の階調値は元の画像Cの階調値よりも最
小値フィルタ処理ですべて小さな値に入れ換えられ画像
Fは階調値の入れ換えがないため殆どの画素の階調値は
画像Dよりも画像Fの方が大きい。よってD−Fの値は
殆どマイナス又は零になる。差分値がマイナス又は零の
場合は画素の階調値を0とする。しかしながら、画像F
の内、欠陥20はゴミ,インキなどの付着したもので暗
い画像であり階調値は小さい。そのため、欠陥20に限
ってはD−Fの値がプラスの値となり正の差分値とな
る。従って、G=FIX(D−F)により図8の画像G
に示すように欠陥20が欠陥候補としてクローズアップ
される。この欠陥候補を予め定めた許容値(閾値)と比
較し差分値が許容値より大きい場合は欠陥であると決定
する。前記と同様の方法で画像Eと画像Fとを比較しH
=FIX(F−E)を求める。画像Eは元の画像Cのす
べての画素の階調値を最大値フィルタ処理により大きな
値に入れ換えたものからなり、F−Eは殆どの画素でマ
イナス又は零となる。しかしながら、欠陥21に相当す
る部分は大きな階調値を有するものからなりF−Eはプ
ラスになり正の差分値が求まる。従って図9に示すよう
に画像Hには欠陥候補として欠陥21がクローズアップ
される。この欠陥候補を予め定めた許容値(閾値)と比
較し差分値が許容値より大きい場合には欠陥であると決
定する。以上により、印刷物Bの欠陥20,21を検出
することが出来る。
Next, the first and second reference images (image D
A method of detecting a defect in the image F, which is the inspection image, using the image and the image E) will be described. The inspection method compares the reference image and the inspection image for each pixel to obtain the difference value. First, the difference in gradation value of each pixel of the image F is obtained from the image D, and when the difference value is negative, it is replaced with 0. The result is shown in image G of FIG. The above processing is expressed by the FIX function of the following equation. G = FIX (DF) Since the gradation value of each pixel of the image D is replaced with a smaller value than the gradation value of the original image C by the minimum value filter processing, the image F has no replacement of the gradation values. The gradation value of most pixels is larger in the image F than in the image D. Therefore, the value of DF becomes almost negative or zero. When the difference value is negative or zero, the gradation value of the pixel is set to zero. However, image F
Among them, the defect 20 is a dark image due to dust, ink, etc., and the gradation value is small. Therefore, only for the defect 20, the value of DF becomes a positive value and becomes a positive difference value. Therefore, by G = FIX (DF), the image G in FIG.
As shown in, the defect 20 is highlighted as a defect candidate. This defect candidate is compared with a predetermined allowable value (threshold value), and if the difference value is larger than the allowable value, it is determined to be a defect. Image E and image F are compared by the same method as described above and H
= FIX (FE) is calculated. The image E is made by replacing the gradation values of all the pixels of the original image C with large values by the maximum value filter processing, and FE becomes minus or zero in most of the pixels. However, the portion corresponding to the defect 21 has a large gradation value, FE becomes positive, and a positive difference value is obtained. Therefore, as shown in FIG. 9, the defect 21 is highlighted as a defect candidate in the image H. This defect candidate is compared with a predetermined allowable value (threshold value), and if the difference value is larger than the allowable value, it is determined to be a defect. As described above, the defects 20 and 21 of the printed matter B can be detected.

【0013】図12は本実施例が実行可能な処理回路6
のブロック図を示す。これを参照して図1に示した検査
装置の動作を説明する。印刷部1の版胴あるいは圧胴に
取り付けたロータリエンコーダ5より発生したタイミン
グパルスに基づいてタイミングコントロール部7は検出
部4にサンプリングスタート信号等を与える。検出部4
から出力される映像信号はA/Dコンバータ8を介して
検査画像格納メモリ9に格納される。また、基準画像作
製時には最小値フィルタ回路12,最大値フィルタ回路
13を経てそれぞれ最小値画像格納メモリ10,最大値
画像格納メモリ11に格納される。検査画像格納メモリ
9と最小値画像格納メモリ10はそれぞれの画素毎に差
分回路14で差分演算され、欠陥候補画像格納メモリ1
5に格納される。同様に、最大値画像格納メモリと検査
画像格納メモリ9も差分され、欠陥候補画像格納メモリ
16に格納される。各欠陥候補画像は2値化回路17,
18で2値化後、欠陥画像格納メモリ19に格納され
る。
FIG. 12 shows a processing circuit 6 which can be executed by this embodiment.
The block diagram of is shown. The operation of the inspection apparatus shown in FIG. 1 will be described with reference to this. The timing control unit 7 gives a sampling start signal or the like to the detection unit 4 based on the timing pulse generated by the rotary encoder 5 attached to the plate cylinder or the impression cylinder of the printing unit 1. Detection unit 4
The video signal output from the storage unit 9 is stored in the inspection image storage memory 9 via the A / D converter 8. Further, when the reference image is produced, it is stored in the minimum value image storage memory 10 and the maximum value image storage memory 11 via the minimum value filter circuit 12 and the maximum value filter circuit 13, respectively. The inspection image storage memory 9 and the minimum value image storage memory 10 are subjected to difference calculation by the difference circuit 14 for each pixel, and the defect candidate image storage memory 1
Stored in 5. Similarly, the maximum value image storage memory and the inspection image storage memory 9 are also subtracted and stored in the defect candidate image storage memory 16. Each defect candidate image is a binarization circuit 17,
After being binarized at 18, it is stored in the defect image storage memory 19.

【0014】次に、エッジ部における欠陥検出について
図10および図11により説明する。図10に示すよう
に、この印刷物はXの範囲が約130の階調値を有し、
Yの範囲が約80の階調値を有するものとする。XとY
の境界のエッジ部22の近傍の画素を前記した最小値フ
ィルタおよび最大値フィルタを施してその階調値分布を
求めたものが図11のMAXおよびMINのヒストグラ
ムにより示される。エッジ部22の近傍に図11に示す
欠陥Rおよび欠陥Sが発生しているとする。欠陥Rは4
0の階調値を持ち、欠陥Sは100の階調値をもつ。前
記と同様の検出方法を用いまず欠陥RのFIX関数を求
める。 FIX(40−130)→マイナス→0 FIX(80−40)=40 よってプラスの差分値40が求めるため最小値フィルタ
を施した第1の基準画像により欠陥Rは検出される。次
に、欠陥SのFIX関数を求める。 FIX(100−130)→マイナス→0 FIX(80−100)→マイナス→0 以上により、欠陥Sは求められない。以上のことから、
本実施例の検査方法ではエッジ部における淡部と濃部の
中間調の欠陥は検出できないがそれ以外のエッジ部22
の欠陥は検出可能であることがわかる。元々中間調の欠
陥は希であり又目立たない。このことから従来技術に較
べて本実施例の検査方法はエッジ部の検出機能において
優れる。
Next, the defect detection in the edge portion will be described with reference to FIGS. As shown in FIG. 10, this printed matter has a gradation value of X range of about 130,
It is assumed that the range of Y has a gradation value of about 80. X and Y
The histogram of MAX and MIN in FIG. 11 shows the gradation value distribution obtained by applying the above-mentioned minimum value filter and maximum value filter to the pixels near the edge portion 22 of the boundary of the above. It is assumed that the defect R and the defect S shown in FIG. 11 occur near the edge portion 22. Defect R is 4
The gradation value is 0, and the defect S has a gradation value of 100. First, the FIX function of the defect R is obtained using the same detection method as described above. FIX (40-130) → minus → 0 FIX (80-40) = 40 Therefore, since the positive difference value 40 is obtained, the defect R is detected by the first reference image subjected to the minimum value filter. Next, the FIX function of the defect S is obtained. FIX (100-130) → minus → 0 FIX (80-100) → minus → 0 Due to the above, the defect S cannot be obtained. From the above,
The inspection method according to the present embodiment cannot detect a halftone defect of a light portion and a dark portion in the edge portion, but the other edge portions 22.
It can be seen that the defect of 1 is detectable. Originally, halftone defects are rare and unnoticeable. For this reason, the inspection method of the present embodiment is superior to the prior art in the edge detection function.

【0015】[0015]

【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)従来は非検査領域とされていたエッジ部の検査が可
能となり、エッジ部の欠陥が大部分検出される。 2)インラインにおいて印刷物の欠陥が正確に、かつ自
動的に検出される。 3)許容値およびn×mの値を印刷物の絵柄状態に合わ
せて適宜設定することにより高精度な測定が行われる。
According to the present invention, the following remarkable effects are obtained. 1) It is possible to inspect the edge portion, which was conventionally a non-inspection area, and most defects in the edge portion are detected. 2) Defects in printed matter are accurately and automatically detected in-line. 3) Highly accurate measurement is performed by appropriately setting the allowable value and the value of n × m according to the picture state of the printed matter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例とそれが適用される印刷装置
の概要構造を示す構成図。
FIG. 1 is a configuration diagram showing a schematic structure of an embodiment of the present invention and a printing apparatus to which the embodiment is applied.

【図2】正常な印刷物Aを示す平面図。FIG. 2 is a plan view showing a normal printed material A. FIG.

【図3】欠陥のある被検査印刷物Bを示す平面図。FIG. 3 is a plan view showing an inspection printed matter B having a defect.

【図4】印刷物Aを取り込んだ画像Cを示す平面図。FIG. 4 is a plan view showing an image C in which a printed matter A is captured.

【図5】画像Cに最小値フィルタを施した画像Dを示す
平面図。
FIG. 5 is a plan view showing an image D obtained by applying a minimum value filter to the image C.

【図6】画像Cに最大値フィルタを施した画像Eを示す
平面図。
FIG. 6 is a plan view showing an image E obtained by applying a maximum value filter to the image C.

【図7】印刷物Bを取り込んだ画像Fを示す平面図。FIG. 7 is a plan view showing an image F in which a printed matter B is captured.

【図8】画像Fと画像Dの差分を求めて形成される画像
Gを示す平面図。
FIG. 8 is a plan view showing an image G formed by obtaining a difference between the image F and the image D.

【図9】画像Fと画像Eの差分を求めて形成された画像
Hを示す平面図。
FIG. 9 is a plan view showing an image H formed by obtaining a difference between the image F and the image E.

【図10】エッジ部の欠陥検出を説明するための印刷物
サンプルを示す平面図。
FIG. 10 is a plan view showing a printed material sample for explaining defect detection of an edge portion.

【図11】図10に示した印刷物サンプルをフィルタ処
理して得られた階調値−度数線図。
11 is a gradation value-frequency diagram obtained by filtering the printed material sample shown in FIG.

【図12】本実施例を実行可能な処理回路のブロック
図。
FIG. 12 is a block diagram of a processing circuit capable of executing this embodiment.

【符号の説明】[Explanation of symbols]

1 印刷部 2 巻き取りウエブ 3 印刷用紙 4 検出部 5 ロータリエンコーダ 6 処理回路 7 タイミングコントローラ 8 A/Dコンバータ 9 検査画像格納メモリ 10 最小値画像格納メモリ 11 最大値画像格納メモリ 12 最小値フィルタ回路 13 最大値フィルタ回路 14 差分回路 15 欠陥候補画像格納メモリ 16 欠陥候補画像格納メモリ 17 2値化回路 18 2値化回路 19 欠陥画像格納メモリ 20 欠陥 21 欠陥 22 エッジ部 1 Printing Section 2 Winding Web 3 Printing Paper 4 Detection Section 5 Rotary Encoder 6 Processing Circuit 7 Timing Controller 8 A / D Converter 9 Inspection Image Storage Memory 10 Minimum Value Image Storage Memory 11 Maximum Value Image Storage Memory 12 Minimum Value Filter Circuit 13 Maximum value filter circuit 14 Difference circuit 15 Defect candidate image storage memory 16 Defect candidate image storage memory 17 Binarization circuit 18 Binarization circuit 19 Defect image storage memory 20 Defect 21 Defect 22 Edge part

フロントページの続き (72)発明者 熊谷 良平 東京都世田谷区北沢3−5−18 株式会社 イーゼル内Front page continued (72) Inventor Ryohei Kumagai 3-5-18 Kitazawa, Setagaya-ku, Tokyo Easel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正常印刷物の絵柄情報を画素毎に取り込
んだ画像に最小値フィルタを施した画像を基準画像と
し、被検査物の印刷物の絵柄情報を画素毎に取り込んだ
画像を検査画像とし、該検査画像と前記基準画像との差
分値を演算し、その差分値と許容値とを比較して異常の
有無を検出する検査方法であって、前記最小値フィルタ
は、注目画素の近傍n×m画素中の最小値を前記注目画
素の新しい値とする処理を行うフィルタであることを特
徴とする印刷物の検査方法。
1. An image obtained by applying a minimum value filter to an image in which the picture information of a normal printed matter is captured for each pixel is used as a reference image, and an image in which the picture information of the printed matter of the inspection object is captured is used as an inspection image, An inspection method for calculating a difference value between the inspection image and the reference image, and comparing the difference value with an allowable value to detect the presence / absence of an abnormality, wherein the minimum value filter includes a neighborhood n × of a target pixel. A method for inspecting a printed matter, which is a filter for performing processing for setting a minimum value of m pixels as a new value of the pixel of interest.
【請求項2】 正常印刷物の絵柄情報を画素毎に取り込
んだ画像に最大値フィルタを施した画像を基準画像と
し、被検査物の印刷物の絵柄情報を画素毎に取り込んだ
画像を検査画像とし、該検査画像と前記基準画像との差
分値を演算し、その差分値と許容値とを比較して異常の
有無を検出する検査方法であって、前記最大値フィルタ
は、注目画素の近傍n×m画素中の最大値を前記注目画
素の新しい値とする処理を行うフィルタであることを特
徴とする印刷物の検査方法。
2. An image obtained by applying a maximum value filter to an image in which the picture information of the normal printed matter is captured for each pixel is used as a reference image, and an image in which the picture information of the printed matter of the inspection object is captured is used as an inspection image, An inspection method for calculating a difference value between the inspection image and the reference image and comparing the difference value with an allowable value to detect the presence / absence of an abnormality, wherein the maximum value filter includes a neighborhood n × of a target pixel. A method for inspecting a printed matter, which is a filter for performing processing for setting a maximum value in m pixels as a new value of the pixel of interest.
【請求項3】 前記最小値フィルタを施した基準画像を
第1の基準画像とし、前記最大値フィルタを施した基準
画像を第2の基準画像とし、前記検査画像と第1および
第2の基準画像との差分値を演算し、その差分値と許容
値とを比較して異常の有無を検出することを特徴とする
請求項1及び2の印刷物の検査方法。
3. The reference image to which the minimum value filter has been applied is a first reference image, the reference image to which the maximum value filter has been applied is a second reference image, the inspection image and the first and second reference images. 3. The method for inspecting a printed matter according to claim 1, wherein a difference value with respect to the image is calculated, and the difference value is compared with an allowable value to detect the presence or absence of abnormality.
JP5333897A 1993-12-28 1993-12-28 Inspection method for printed matter Pending JPH07186375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5333897A JPH07186375A (en) 1993-12-28 1993-12-28 Inspection method for printed matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5333897A JPH07186375A (en) 1993-12-28 1993-12-28 Inspection method for printed matter

Publications (1)

Publication Number Publication Date
JPH07186375A true JPH07186375A (en) 1995-07-25

Family

ID=18271185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5333897A Pending JPH07186375A (en) 1993-12-28 1993-12-28 Inspection method for printed matter

Country Status (1)

Country Link
JP (1) JPH07186375A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260244B2 (en) 2002-09-20 2007-08-21 Nitto Denko Corporation Print inspection method and print inspection apparatus
JP2011047862A (en) * 2009-08-28 2011-03-10 Ricoh Co Ltd Image inspection apparatus, image inspection method, program, and recording medium
CN106093058A (en) * 2016-08-04 2016-11-09 河南省新郑金芒果实业总公司 A kind of press quality amount detecting device and detection method
US11108932B2 (en) 2018-06-22 2021-08-31 Konica Minolta, Inc. Image test apparatus, image forming system and recording medium
WO2021256389A1 (en) 2020-06-19 2021-12-23 富士フイルム株式会社 Defect inspection device, defect inspection method and program, printing device, and printed matter production method
US20220051386A1 (en) * 2020-08-13 2022-02-17 Konica Minolta, Inc. Image inspecting apparatus, image inspecting method, and computer-readable recording medium storing image inspecting program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260244B2 (en) 2002-09-20 2007-08-21 Nitto Denko Corporation Print inspection method and print inspection apparatus
JP2011047862A (en) * 2009-08-28 2011-03-10 Ricoh Co Ltd Image inspection apparatus, image inspection method, program, and recording medium
US8538086B2 (en) 2009-08-28 2013-09-17 Ricoh Company, Limited Image inspection apparatus, image inspection method, and computer program product
CN106093058A (en) * 2016-08-04 2016-11-09 河南省新郑金芒果实业总公司 A kind of press quality amount detecting device and detection method
US11108932B2 (en) 2018-06-22 2021-08-31 Konica Minolta, Inc. Image test apparatus, image forming system and recording medium
WO2021256389A1 (en) 2020-06-19 2021-12-23 富士フイルム株式会社 Defect inspection device, defect inspection method and program, printing device, and printed matter production method
US20220051386A1 (en) * 2020-08-13 2022-02-17 Konica Minolta, Inc. Image inspecting apparatus, image inspecting method, and computer-readable recording medium storing image inspecting program

Similar Documents

Publication Publication Date Title
US5652804A (en) Automatic inspection of printing plates or cylinders
US7260244B2 (en) Print inspection method and print inspection apparatus
CN110293753B (en) Method for image detection of printed products by means of a computer
JPH07186375A (en) Inspection method for printed matter
EP0443062B1 (en) Device for inspecting quality of printed matter and method thereof
JP4507523B2 (en) Printed matter inspection apparatus and printed matter inspection program
JP3204876B2 (en) Print inspection equipment
JP2004090644A (en) Quality control apparatus for printed matter
JP2516606B2 (en) Print quality inspection device
EP0437648B1 (en) Quality inspection method for a printed matter
JP3598558B2 (en) Method and apparatus for detecting periodic continuous defects in printed matter
JP2680588B2 (en) Print inspection method
JPS60145852A (en) Inspection apparatus of printed matter
JP4585109B2 (en) Steel plate surface flaw detection device, detection method, and storage medium
JP2876999B2 (en) Printing defect inspection equipment
JPH0367631B2 (en)
JP2566292B2 (en) Print quality inspection method
JPH1185980A (en) Method and device for inspecting print quantity of printed metal plate
JP2000182046A (en) Defect inspecting device for printing paper
JPH0410861B2 (en)
JP2004045228A (en) Method and apparatus for inspecting stain in print
JPH11142350A (en) Printed matter inspection apparatus
JPH0511554B2 (en)
JP2018194460A (en) Inspection device and method for inspection
JPH0752367A (en) Method and apparatus for inspecting printing pattern