JPH07186368A - Nozzle device - Google Patents

Nozzle device

Info

Publication number
JPH07186368A
JPH07186368A JP33513693A JP33513693A JPH07186368A JP H07186368 A JPH07186368 A JP H07186368A JP 33513693 A JP33513693 A JP 33513693A JP 33513693 A JP33513693 A JP 33513693A JP H07186368 A JPH07186368 A JP H07186368A
Authority
JP
Japan
Prior art keywords
air
sheet
heat transfer
distance
perforated plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33513693A
Other languages
Japanese (ja)
Inventor
Yasutaka Tanaka
康崇 田中
Yoshiyuki Kitamura
義之 北村
Yuji Yoshimura
裕司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP33513693A priority Critical patent/JPH07186368A/en
Publication of JPH07186368A publication Critical patent/JPH07186368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)
  • Nozzles (AREA)

Abstract

PURPOSE:To obtain a nozzle device having a heat transfer performance higher than that of a conventional device without increasing an energy required for blowing air from the nozzle device. CONSTITUTION:In a nozzle device for blowing air from a plurality of air blow holes 4 provided in a porous plate 3 of a nozzle part 1 to a running sheet material 5, a distance Z from the porous plate to the sheet material is determined to be smaller than 30mm, a percentage of a total area B of the air blow holes to a surface area A of the porous plate is 1.5-4%, and a bore diameter d (mm) of each of the air blow holes for a distance Z is found by a formula d=0.77.Z<0.49>+ or -0.3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、フィルム、紙
等のシート状物の製造装置、印刷装置、塗工装置のよう
に、シート状物の乾燥、加熱、冷却等の目的でシート状
物表面に熱風や冷風を吹き付けるノズル装置の改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet-shaped product for the purpose of drying, heating and cooling the sheet-shaped product such as a manufacturing device for a sheet-shaped product such as film and paper, a printing device and a coating device. The present invention relates to improvement of a nozzle device that blows hot air or cold air onto the surface of an object.

【0002】[0002]

【従来の技術】従来のノズル装置としては、例えば特公
平4−72696号公報に記載された乾燥装置のノズル
装置が知られている。
2. Description of the Related Art As a conventional nozzle device, for example, a nozzle device for a drying device described in Japanese Patent Publication No. 4-72696 is known.

【0003】このノズル装置は、走行するシート状物に
対し、所定高さの位置に設けられた箱状のエア吹出部か
ら熱風を高速で吹き付けるもので、エア吹出部には、複
数のエア吹出孔を有する多孔板が設けられおり、上記多
孔板からシート状物までの距離Zを15mmよりも小さ
くし、それぞれのエア吹出孔間の間隔を15〜45m
m、上記距離Zと孔径dとの比Z/dを1〜3とし、多
孔板のシート状物移送方向の長さLを50〜250mm
としたことを特徴とするものである。
This nozzle device blows hot air at a high speed onto a traveling sheet-like object from a box-shaped air blowing portion provided at a predetermined height position, and a plurality of air blowing portions are blown to the air blowing portion. A perforated plate having holes is provided, the distance Z from the perforated plate to the sheet-like material is set to be smaller than 15 mm, and the distance between the air blowing holes is set to 15 to 45 m.
m, the ratio Z / d between the distance Z and the pore diameter d is 1 to 3, and the length L of the perforated plate in the sheet-like material transfer direction is 50 to 250 mm.
It is characterized by that.

【0004】[0004]

【発明が解決しようとする課題】ところが上記従来装置
は、多孔板からシート状物までの距離Zが一定であって
も、エア吹出孔の孔径dが採り得る範囲が1〜3倍と広
い範囲であるため、多孔板からシート状物までの距離Z
に対するエア吹出孔の孔径dが適切でないと、ノズル装
置からシート状物への伝熱性能、具体的には両者間で熱
の授受を規定する熱伝達率、温度差、伝熱面積のうち、
伝熱性能に最も大きく影響する吹出しエアとシート状物
間の熱伝達率hが低くなり、エア吹き出しのためのファ
ン動力もこの分だけ浪費するという問題がある。すなわ
ち、従来装置のように多孔板の孔径dを上記比Z/dを
満足するように選んでも、孔径dの最適値が明確でな
く、また最適値がその範囲に存在しない場合もあること
から、伝熱性能が十分に発揮されないという問題があっ
た。
However, in the above-mentioned conventional apparatus, even if the distance Z from the perforated plate to the sheet-like object is constant, the range in which the hole diameter d of the air blowout hole can be set is a wide range of 1 to 3 times. Therefore, the distance Z from the perforated plate to the sheet
If the hole diameter d of the air blowout hole with respect to is not appropriate, among the heat transfer performance from the nozzle device to the sheet-like material, specifically, the heat transfer coefficient, the temperature difference, and the heat transfer area that regulate the transfer of heat between the two,
There is a problem that the heat transfer coefficient h between the blown air and the sheet-like object, which has the greatest effect on the heat transfer performance, becomes low, and the fan power for blowing the air is wasted by this amount. That is, even if the pore size d of the perforated plate is selected so as to satisfy the ratio Z / d as in the conventional apparatus, the optimum value of the pore size d may not be clear, and the optimum value may not exist in that range. However, there was a problem that the heat transfer performance was not fully exhibited.

【0005】発明者らは、かかる問題を解決するため種
々のテストを行った結果、吹き出しエアとシート状物間
の熱伝達率hを極力高くするには、多孔板からシート状
物までの距離Zに対して最も好ましい孔径dの値が一つ
だけ存在するという知見を得るに至った。
As a result of various tests carried out by the inventors in order to solve such a problem, the distance from the perforated plate to the sheet-like material is required to maximize the heat transfer coefficient h between the blowing air and the sheet-like material. We have come to the knowledge that there is only one value of the most preferable pore diameter d for Z.

【0006】本発明は、かかる知見に基づいてなされた
もので、その目的とするところは、ノズル装置からのエ
アの吹き出しに要するエネルギを増大させることなく、
従来装置よりも伝熱性能の高いノズル装置を提供するこ
とにある。
The present invention has been made on the basis of such knowledge, and its object is to increase the energy required for blowing air from the nozzle device without increasing the energy.
It is to provide a nozzle device having a higher heat transfer performance than a conventional device.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するため、ノズル部の多孔板に設けられた複数のエア
吹出孔から、走行するシート状物に対してエアを吹き付
けるノズル装置であって、(イ)多孔板からシート状物
までの距離Zは、30mmよりも小さく設定されてお
り、(ロ)多孔板の表面積Aに対するエア吹出孔の総面
積Bの百分率は、1.5〜4%であり、(ハ)個々のエ
ア吹出孔の孔径d(mm)は、多孔板からシート状物ま
での距離Z(mm)に対して、下記式よりなることを特
徴とする。 d=0.77・Z0.49±0.3 (mm) ここで、上記(イ)の距離Zを30mmよりも小さく設
定する理由は、エアの広がりによる風量の損失を防いで
有効に活用するためであり、距離Zを30mm以上とす
るのは、高い伝熱性能を得るためには好ましくない。
In order to achieve the above-mentioned object, the present invention is a nozzle device for blowing air to a traveling sheet-like object from a plurality of air blowing holes provided in a perforated plate of a nozzle portion. Therefore, (a) the distance Z from the perforated plate to the sheet-like material is set to be smaller than 30 mm, and (b) the percentage of the total area B of the air outlet holes to the surface area A of the perforated plate is 1.5. Is 4%, and (c) the hole diameter d (mm) of each air blowout hole is represented by the following formula with respect to the distance Z (mm) from the perforated plate to the sheet-like material. d = 0.77 · Z 0.49 ± 0.3 (mm) Here, the reason why the distance Z in (a) above is set to be smaller than 30 mm is to prevent the loss of air volume due to the spread of air and to effectively utilize it. Therefore, it is not preferable to set the distance Z to 30 mm or more in order to obtain high heat transfer performance.

【0008】また、上記(ロ)の百分率を1.5〜4%
の範囲にする理由は、所定のファン動力に対し効率良く
伝熱性能を高めるためであり、この値を1.5%未満と
することはノズル部での圧力損失が増大することから省
エネルギーに反し、逆にこの値が4%を越えると同じ風
量であっても風速が落ち、伝熱性能が低下してしまうか
らである。
The percentage of (b) above is 1.5-4%.
The reason why the range is set is to efficiently enhance the heat transfer performance with respect to the predetermined fan power. Setting this value to less than 1.5% increases the pressure loss at the nozzle portion, which is against energy saving. On the contrary, if this value exceeds 4%, the wind speed will drop and the heat transfer performance will decrease even with the same air volume.

【0009】上記(イ)〜(ハ)の三条件のうち、熱伝
達率hのアップに最も大きく寄与するのは、(ハ)の孔
径dと距離Zとの関係であり、その理由は以下の如くと
考えられる。すなわち、ノズル部から吹き出されるエア
風量が等しく、さらに多孔板の表面積に対するエア吹出
孔の総面積の百分率が等しいという条件、すなわちエア
吹出孔から吹き出されるエアの平均風速が孔径dに関係
なく等しいという条件下では、上記式によって選ばれた
孔径dよりも小さい孔径を有する多孔板を用いると、式
から選ばれた孔径dの多孔板に比べて孔と孔の距離Lが
小さくなるため、広い範囲にエアを吹付けることがで
き、熱伝達が有利となるにもかかわらず、孔径dが小さ
くなったことによって吹出しエアの風速が隣接する孔か
ら吹き出されるエアの剪断力によって減衰する。その結
果、シート状物表面に到達するエアの速度が遅くなって
熱伝達に不利になる影響の方が強くなり、同じエア風量
であるにもかかわらず熱伝達は低下する。なお、式中の
±0.3は、この発明の作用効果を奏することのできる
好ましい孔径dの範囲であり、この範囲は発明者らの実
験によって得られたものである。一方、式から選ばれた
孔径dよりも大きい孔径を有する多孔板を用いると、式
から選ばれた孔径dの多孔板と比べて孔径が大きくなる
ため、吹出しエアの風速が周囲のエアの剪断力によって
減衰しにくくなり、シート状物表面に到達するエアの速
度が高く維持される。その結果、熱伝達に有利となるに
もかかわらず、孔と孔の距離Lが大きくなったことによ
ってエアの吹付けられる範囲が狭くなって熱伝達に不利
になる影響の方が強くなり、この場合も熱伝達率は低下
する。つまり、ファン動力が一定であるという条件下で
熱伝達率を最大にし得る、上記距離Zに応じた好ましい
孔径dが存在するのであり、かかる熱伝達率を最大にし
得る因子は、シート状物表面での吹出しエアの風速であ
ると考えられる。このような具体的な風速は、遅すぎる
と自然対流熱伝達による熱伝達が支配的になって多孔板
の孔径dによる熱伝達率の効果がなくなるため、10m
/s以上の風速が必要であり、逆にエア風速が速すぎる
とノズル装置内での圧力損失が増してファン動力が増大
するため、結局20〜60m/sの範囲内にするのが好
ましい。
Among the above three conditions (a) to (c), it is the relationship between the hole diameter d and the distance Z in (c) that contributes most to the increase in the heat transfer coefficient h, for the following reasons. It is thought to be like. That is, the amount of air blown from the nozzles is equal, and the percentage of the total area of the air blowout holes to the surface area of the perforated plate is equal, that is, the average wind speed of the air blown out from the air blowout holes is independent of the hole diameter d. Under the condition of equality, if a perforated plate having a pore size smaller than the pore size d selected by the above formula is used, the distance L between the pores becomes smaller than that of the perforated plate having the pore size d selected from the formula. Although the air can be blown to a wide range and heat transfer is advantageous, the wind velocity of the blown air is attenuated by the shearing force of the air blown from the adjacent holes due to the small hole diameter d. As a result, the speed of the air reaching the surface of the sheet-like object becomes slower, which is more adversely affected by heat transfer, and the heat transfer decreases even with the same air volume. It should be noted that ± 0.3 in the formula is a preferable range of the hole diameter d capable of exhibiting the action and effect of the present invention, and this range is obtained by the experiment of the inventors. On the other hand, when a perforated plate having a pore size larger than the pore size d selected from the formula is used, the pore size becomes larger than that of the perforated plate having the pore size d selected from the formula, so that the wind velocity of the blown-out air is sheared by the surrounding air. It becomes difficult for the force to damp, and the velocity of the air that reaches the surface of the sheet-like material is kept high. As a result, although it is advantageous for heat transfer, the distance L between the holes is increased, so that the range in which the air is blown is narrowed and the adverse effect on heat transfer becomes stronger. Also in this case, the heat transfer rate is lowered. That is, there is a preferable hole diameter d according to the distance Z that can maximize the heat transfer coefficient under the condition that the fan power is constant, and the factor that can maximize the heat transfer coefficient is the sheet surface. It is considered to be the wind speed of the blowing air at. If such a specific wind speed is too slow, heat transfer due to natural convection heat transfer becomes dominant and the effect of the heat transfer coefficient due to the hole diameter d of the perforated plate disappears, so that it is 10 m.
A wind speed of / s or more is required, and conversely, if the air wind speed is too high, pressure loss in the nozzle device increases and fan power increases. Therefore, it is preferable to set the wind speed within the range of 20 to 60 m / s.

【0010】なお、本発明においては、エア吹出孔を千
鳥状配列にするか格子状配列にするか等の配列態様や、
エア吹出孔の孔と孔間の距離については特に限定される
ものではない。
In the present invention, the arrangement of the air outlets in a staggered arrangement or a lattice arrangement, and the like,
The distance between the air blowing holes is not particularly limited.

【0011】[0011]

【作用】本発明のノズル装置によれば、走行されてきた
シート状物に対し多孔板に設けられている複数のエア吹
出孔からエアが吹き付けられると、多孔板からシート状
物までの距離Zが30mmよりも小さくされているの
で、エアの広がりによる風量の損失が少なく、また、多
孔板の表面積Aに対するエア吹出孔の総面積Bの百分率
が1.5〜4%の範囲とされているので、ファン動力に
対する効率が高く、更にこの多孔板の孔径dは、上記式
から選ぶため、シート状物表面での熱伝達率が最も高く
なる作用が生じる。結局、これら三つの作用によって本
発明のノズル装置は、走行するシート状物に対して最大
限の伝熱性能を発揮し、ファン動力が無駄なく使用され
る。
According to the nozzle device of the present invention, when air is blown to a running sheet-like object from a plurality of air outlets provided in the perforated plate, the distance Z from the porous plate to the sheet-like object is increased. Is less than 30 mm, the loss of air volume due to the spread of air is small, and the percentage of the total area B of the air outlet holes to the surface area A of the perforated plate is in the range of 1.5 to 4%. Therefore, the efficiency with respect to the fan power is high, and since the hole diameter d of the perforated plate is selected from the above formula, the heat transfer coefficient on the surface of the sheet-like material is maximized. After all, the nozzle device of the present invention exerts the maximum heat transfer performance to the traveling sheet-like object by these three actions, and the fan power is used without waste.

【0012】[0012]

【実施例及び比較例】以下、本発明の一実施例を図面に
よって説明する。
EXAMPLES AND COMPARATIVE EXAMPLES An example of the present invention will be described below with reference to the drawings.

【0013】図1は、本発明に係るノズル装置のノズル
部1の部分側面図で、距離Zの下方に図示しない搬送手
段で矢印A方向に移送されるシート状物5を乾燥させる
ため、その表面に熱風を吹き付けている状態を示してい
る。
FIG. 1 is a partial side view of a nozzle portion 1 of a nozzle device according to the present invention, which is for drying a sheet-like material 5 which is transported in a direction of an arrow A by a conveying means (not shown) below a distance Z. It shows a state in which hot air is blown onto the surface.

【0014】図において、ノズル部1は、シート状物5
の幅より若干広い幅を有する箱状のノズル箱2と、その
底部のノズル板3とからなる。ノズル板3は、複数のエ
ア吹出孔4を有し、シート状物5の移送平面と平行にノ
ズル箱2に固定されている。ノズル板3には、式で求め
た孔径を有する複数のエア吹出孔4が格子状に設けられ
ており、この孔に熱風が上方から図示しないファンによ
って供給されてシート状物表面に吹き付けられるように
なっている。なお、図示を省略したが、本実施例のノズ
ル装置は、かかる構成のノズル部1がシート状物5の移
送方向に沿って複数配列されてなるものである。
In the figure, the nozzle portion 1 is a sheet-like material 5.
The box-shaped nozzle box 2 has a width slightly wider than the width of the nozzle box, and the nozzle plate 3 at the bottom thereof. The nozzle plate 3 has a plurality of air blowing holes 4 and is fixed to the nozzle box 2 in parallel with the plane of transfer of the sheet-like material 5. The nozzle plate 3 is provided with a plurality of air blowout holes 4 having a hole diameter obtained by a formula in a lattice shape, and hot air is supplied to the holes from above by a fan (not shown) so as to be blown onto the surface of the sheet-like material. It has become. Although not shown, in the nozzle device of this embodiment, a plurality of nozzle portions 1 having such a configuration are arranged along the transport direction of the sheet-like material 5.

【0015】かかる構成のノズル装置に対して、多孔板
3からシート状物5までの距離Zに対する最も好ましい
孔径dを求めるため、以下に述べる試験装置を製作し
た。
In order to obtain the most preferable hole diameter d with respect to the distance Z from the porous plate 3 to the sheet-like object 5 with respect to the nozzle device having such a structure, the following test device was manufactured.

【0016】すなわち、距離Zを例えば、フレキシブル
ダクトなどにより5〜30mmの範囲で伸縮できるよう
にノズルを調整すると共に、多孔板3として、エア吹出
孔4の孔径dが1.5mm、2.0mm、2.5mm、
3.0mm、3.5mmの0.5mm刻みで合計5種類
のものを作り、これをノズル箱2の底部に着脱できるよ
うにした。この場合、多孔板3の表面積Aに対するエア
吹出孔4の総面積Bの比B/Aは、2%とし、エア吹出
孔4での風速は図示しないダンパーと風速計により30
m/sに調節した。このような試験装置を用いて上記孔
径dの異なる5種類の多孔板3毎に距離Zを代えて、シ
ート状物5表面での熱伝達率h(kcAl/m2 hr
℃)を計算して求めたのが図2である。なお、この場合
いずれの多孔板の場合でもダンパ調整により、各ノズル
部1での風量が一定となるように調節した。また、熱伝
達率hの測定は、図3に示すようにノズル部1とほぼ同
程度の平面積を有する発泡シート製の断熱材6の上に1
00℃に加熱した鉄製の金属薄板7を両部材の表面が水
平となるように埋め込み、シート状物5の表面に見立て
た薄板7の表面にノズル部1から室温(Ta=20℃)
のエアを吹き付け、金属薄板7の温度TがT1=80℃
からT2=40℃に冷却されるのに要する時間t(秒)
を測定し、ノズル部1からの熱伝達量Q1と、薄板7に
よる放熱量Q2の熱収支の関係から、熱伝達率hを逆算
して求めた。
That is, the nozzle is adjusted so that the distance Z can be expanded and contracted within a range of 5 to 30 mm by a flexible duct or the like, and the hole diameter d of the air blowout hole 4 as the perforated plate 3 is 1.5 mm and 2.0 mm. , 2.5 mm,
A total of 5 types were made in 0.5 mm increments of 3.0 mm and 3.5 mm, and these were made attachable to and detachable from the bottom of the nozzle box 2. In this case, the ratio B / A of the total area B of the air blowout holes 4 to the surface area A of the perforated plate 3 is set to 2%, and the wind speed at the air blowout holes 4 is set to 30% by a damper and anemometer not shown.
It was adjusted to m / s. Using such a test apparatus, the distance Z is changed for each of the five types of perforated plates 3 having different pore diameters d, and the heat transfer coefficient h (kcAl / m 2 hr) on the surface of the sheet-like material 5 is changed.
FIG. 2 shows the calculated value. In this case, in any of the porous plates, the damper volume was adjusted so that the air volume at each nozzle portion 1 was constant. In addition, the heat transfer coefficient h is measured by placing 1 on a heat insulating material 6 made of a foamed sheet having a plane area substantially the same as that of the nozzle portion 1 as shown in FIG.
A thin iron metal plate 7 made of iron heated to 00 ° C. is embedded so that the surfaces of both members are horizontal, and the surface of the thin plate 7 is regarded as the surface of the sheet-like material 5 from the nozzle portion 1 to room temperature (Ta = 20 ° C.).
Of air, the temperature T of the thin metal plate 7 is T1 = 80 ° C.
To T2 = 40 ° C from time t (sec)
Was measured, and the heat transfer coefficient h was calculated by back calculation from the relationship between the heat transfer amount Q1 from the nozzle part 1 and the heat balance of the heat release amount Q2 from the thin plate 7.

【0017】すなわち、図2は、横軸に多孔板3から薄
板7までの距離Zを、横軸に熱伝達率hを取り、上記孔
径の異なる5種類の多孔板毎に求めた熱伝達率hをイン
プットしたものである。この図から明らかなように、ノ
ズル部1からのエア吹き出し風量が一定でも、多孔板か
らシート状物までの距離Zに対し最も熱伝達率hが高く
なる孔径dが一つ存在することが分る。このように最も
熱伝達率hが高くなる孔径dと距離Zとの関係を一つの
図に纏めてインプットしたのが図4であり、図中の領域
Aを近似式として表してみたところ、下記の式が得られ
た。 d=0.77・Z0.49±0.3 (mm) 図中、斜線部Bは、上記従来技術(特公平4−7269
6号公報)のノズル装置の孔径dと距離Zとの関係式d
/Z=1/3〜1であり、この領域の下方が平坦になっ
ているのは、孔径ピッチが15〜45mm、開孔面積率
が1.5〜3%であるので、孔径dが2.07mmより
も大きい領域に限定されるからである。図から明らかな
ように、従来技術の孔径dの領域Bは、本発明の孔径d
の領域Aとは明らかに異なるものである。
That is, in FIG. 2, the horizontal axis represents the distance Z from the perforated plate 3 to the thin plate 7 and the horizontal axis represents the heat transfer coefficient h, and the heat transfer coefficient is obtained for each of the five kinds of porous plates having different hole diameters. It is an input of h. As is clear from this figure, even if the amount of air blown from the nozzle portion 1 is constant, there is one hole diameter d that maximizes the heat transfer coefficient h with respect to the distance Z from the perforated plate to the sheet-like material. It FIG. 4 shows the relationship between the hole diameter d and the distance Z at which the heat transfer coefficient h is the highest in one figure, and the area A in the figure is expressed as an approximate expression. Was obtained. d = 0.77 · Z 0.49 ± 0.3 (mm) In the figure, the shaded portion B indicates the above-mentioned conventional technique (Japanese Patent Publication No. 4-7269).
No. 6), the relational expression d between the hole diameter d of the nozzle device and the distance Z.
/ Z = 1/3 to 1, and the lower part of this region is flat because the hole diameter pitch is 15 to 45 mm and the opening area ratio is 1.5 to 3%, so the hole diameter d is 2 This is because it is limited to a region larger than 0.07 mm. As is apparent from the figure, the area B of the hole diameter d of the prior art is the hole diameter d of the present invention.
It is clearly different from the area A of.

【0018】因みに、上記試験装置において、多孔板3
からシート状物5までの距離Zを10mmに固定し、多
孔板3の表面積Aに対するエア吹出孔4の総面積Bの比
B/Aを2%、エア吹出孔4より吐出されるエアの風量
が等しいこと(平均風速30m/s)を条件に、多孔板
3のエア吹出孔4の孔径dを上式から求めた2.5mm
と、上式から外れた1.5mm、3.5mmとした計3
種類の多孔板3について熱伝達率hを求めた。これを示
したのが次の表1である。
Incidentally, in the above test apparatus, the perforated plate 3 is used.
The distance Z from the sheet material 5 to the sheet material 5 is fixed to 10 mm, the ratio B / A of the total area B of the air blowing holes 4 to the surface area A of the perforated plate 3 is 2%, and the amount of air discharged from the air blowing holes 4 is 2.5 mm obtained by the above equation for the hole diameter d of the air blow-out holes 4 of the perforated plate 3 under the condition that the values are equal (average wind speed 30 m / s).
And a total of 3 with 1.5 mm and 3.5 mm out of the above formula
The heat transfer coefficient h was determined for each type of porous plate 3. This is shown in Table 1 below.

【表1】 この表1から明らかなように、エア吹出孔4の孔径dが
2.5mmの実施例1の熱伝達率は、143kcAl/
2 hr℃であるのに対し、エア吹出孔4の孔径dが上
式から外れた比較例1の1.5mmと比較例2の3.5
mmの場合は、それぞれ138kcAl/m2 hr℃、
128kcAl/m2 hr℃となり、上式から得られた
実施例1の多孔板の熱伝達率hが最も高いものであっ
た。
[Table 1] As is clear from Table 1, the heat transfer coefficient of Example 1 in which the hole diameter d of the air outlet hole 4 is 2.5 mm is 143 kcAl /
m 2 hr ° C., while the hole diameter d of the air blowout hole 4 was out of the above formula, 1.5 mm in Comparative Example 1 and 3.5 mm in Comparative Example 2.
mm, 138 kcAl / m 2 hr ℃,
It was 128 kcAl / m 2 hr ° C., and the heat transfer coefficient h of the porous plate of Example 1 obtained from the above formula was the highest.

【0019】また、図2の横軸から明らかなように、多
孔板3からシート状物5までの距離Zが30mmを越え
ると非常に熱伝達率が低下するため、距離Zは30mm
よりも小さく設定する必要があることが分った。
Further, as is clear from the horizontal axis of FIG. 2, when the distance Z from the porous plate 3 to the sheet-like material 5 exceeds 30 mm, the heat transfer coefficient is extremely lowered, so the distance Z is 30 mm.
I found that it should be set smaller than.

【0020】[0020]

【発明の効果】本発明のノズル装置によれば、多孔板か
らシート状物までの距離Zに対し、吹出しエアとシート
状物間の熱伝達率hを最大にする多孔板の孔径dが明ら
かとなるので、多孔板の伝熱性能を最大限に発揮するこ
とができる。
According to the nozzle device of the present invention, the hole diameter d of the perforated plate that maximizes the heat transfer coefficient h between the blown air and the sheet-like object is clarified with respect to the distance Z from the perforated plate to the sheet-like object. Therefore, the heat transfer performance of the perforated plate can be maximized.

【0021】従って、シート状物の走行速度の高速化や
ノズル装置からのエア吹き付け動力の省エネルギ化が達
成できる。
Therefore, the traveling speed of the sheet-like material can be increased and the energy consumption of the air blowing power from the nozzle device can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るノズル装置の正面図で
ある。
FIG. 1 is a front view of a nozzle device according to an embodiment of the present invention.

【図2】図1の装置における孔径、距離、熱伝達率間の
関係を示した図である。
FIG. 2 is a diagram showing a relationship among a hole diameter, a distance, and a heat transfer coefficient in the device of FIG.

【図3】図1の装置の熱伝達率測定装置の模式図であ
る。
FIG. 3 is a schematic view of a heat transfer coefficient measuring device of the device of FIG.

【図4】図1の装置における孔径と距離との関係を示し
た図である。
4 is a diagram showing a relationship between a hole diameter and a distance in the device of FIG.

【符号の説明】[Explanation of symbols]

1…ノズル部 2…ノズル箱 3…多孔板 4…エア吹出孔 5…シート状物 6…断熱材 7…金属薄板 A…シート状物の走行方向 DESCRIPTION OF SYMBOLS 1 ... Nozzle part 2 ... Nozzle box 3 ... Perforated plate 4 ... Air blow-out hole 5 ... Sheet-like object 6 ... Heat insulating material 7 ... Metal thin plate A ... Sheet-like object traveling direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ノズル部の多孔板に設けられた複数のエ
ア吹出孔から、走行するシート状物に対してエアを吹き
付けるノズル装置であって、 (イ)多孔板からシート状物までの距離Zは、30mm
よりも小さく設定されており、 (ロ)多孔板の表面積Aに対するエア吹出孔の総面積B
の百分率は、1.5〜4%であり、 (ハ)個々のエア吹出孔の孔径d(mm)は、多孔板か
らシート状物までの距離Z(mm)に対して、下記式よ
りなることを特徴とするノズル装置。◎ d=0.77・Z0.49±0.3 (mm)
1. A nozzle device for blowing air to a traveling sheet-like object from a plurality of air outlets provided in a perforated plate of a nozzle section, comprising: (a) a distance from the porous plate to the sheet-like object. Z is 30 mm
(B) The total area B of the air outlet holes relative to the surface area A of the perforated plate.
Is from 1.5 to 4%, and (c) the hole diameter d (mm) of each air outlet is expressed by the following formula with respect to the distance Z (mm) from the perforated plate to the sheet-like material. A nozzle device characterized in that. ◎ d = 0.77 ・ Z 0.49 ± 0.3 (mm)
JP33513693A 1993-12-28 1993-12-28 Nozzle device Pending JPH07186368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33513693A JPH07186368A (en) 1993-12-28 1993-12-28 Nozzle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33513693A JPH07186368A (en) 1993-12-28 1993-12-28 Nozzle device

Publications (1)

Publication Number Publication Date
JPH07186368A true JPH07186368A (en) 1995-07-25

Family

ID=18285177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33513693A Pending JPH07186368A (en) 1993-12-28 1993-12-28 Nozzle device

Country Status (1)

Country Link
JP (1) JPH07186368A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1044813A2 (en) * 1999-04-16 2000-10-18 Paper Converting Machine Company Dryer for flexographic and gravure printing
JP2012121327A (en) * 2010-12-03 2012-06-28 Heiderberger Druckmaschinen Ag Sheet processing machine, in particular sheet printing machine
DE102021123678A1 (en) 2021-09-14 2023-03-16 Koenig & Bauer Ag Drying device in a printing machine and printing machine with this drying device
WO2023041262A1 (en) 2021-09-14 2023-03-23 Koenig & Bauer Ag Sheet-fed printing press having a dryer for drying sheets printed by a non-impact printing device
DE102023103172B3 (en) 2023-02-09 2023-12-28 Koenig & Bauer Ag Drying device for drying a surface of a sheet-shaped substrate printed and/or painted by a printing press by applying heat
DE102023103173B3 (en) 2023-02-09 2023-12-28 Koenig & Bauer Ag Drying device for drying a surface of a sheet-shaped substrate printed and/or painted by a printing press by applying heat
DE102023116857B3 (en) 2023-06-27 2024-05-02 Koenig & Bauer Ag Conveyor system for conveying consecutive printed sheets in individual layers
DE102023003607A1 (en) 2023-02-09 2024-08-14 Koenig & Bauer Ag Drying device for drying a surface of a sheet-shaped substrate printed and/or varnished by a printing machine by applying heat

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1044813A3 (en) * 1999-04-16 2001-05-02 Paper Converting Machine Company Dryer for flexographic and gravure printing
EP1044813A2 (en) * 1999-04-16 2000-10-18 Paper Converting Machine Company Dryer for flexographic and gravure printing
JP2012121327A (en) * 2010-12-03 2012-06-28 Heiderberger Druckmaschinen Ag Sheet processing machine, in particular sheet printing machine
US11897251B2 (en) 2021-09-14 2024-02-13 Koenig & Bauer Ag Sheet-fed printing press having a dryer for drying sheets printed by a non-impact printing device
DE102021123678A1 (en) 2021-09-14 2023-03-16 Koenig & Bauer Ag Drying device in a printing machine and printing machine with this drying device
WO2023041262A1 (en) 2021-09-14 2023-03-23 Koenig & Bauer Ag Sheet-fed printing press having a dryer for drying sheets printed by a non-impact printing device
CN116669962A (en) * 2021-09-14 2023-08-29 柯尼格及包尔公开股份有限公司 Sheet-fed printing press with dryer for drying sheets printed by a plateless printing unit
CN116669962B (en) * 2021-09-14 2024-07-16 柯尼格及包尔公开股份有限公司 Sheet-fed printing press with dryer for drying sheets printed by a plateless printing unit
DE102023103172B3 (en) 2023-02-09 2023-12-28 Koenig & Bauer Ag Drying device for drying a surface of a sheet-shaped substrate printed and/or painted by a printing press by applying heat
DE102023103173B3 (en) 2023-02-09 2023-12-28 Koenig & Bauer Ag Drying device for drying a surface of a sheet-shaped substrate printed and/or painted by a printing press by applying heat
EP4414179A1 (en) 2023-02-09 2024-08-14 Koenig & Bauer AG Drying device for drying a surface of a sheet-like substrate printed and/or varnished by a printing machine by applying heat
DE102023003607A1 (en) 2023-02-09 2024-08-14 Koenig & Bauer Ag Drying device for drying a surface of a sheet-shaped substrate printed and/or varnished by a printing machine by applying heat
DE102023116857B3 (en) 2023-06-27 2024-05-02 Koenig & Bauer Ag Conveyor system for conveying consecutive printed sheets in individual layers

Similar Documents

Publication Publication Date Title
JPS63311078A (en) Web drier
JPH07186368A (en) Nozzle device
JP2007532857A (en) Stepped airfoil
US5590480A (en) combination air bar and hole bar flotation dryer
US5201132A (en) Strip cooling, heating or drying apparatus and associated method
US4736529A (en) Device for the uniform application of gas on a plane surface
JPS5883175A (en) Drying plant for material web
JP4725718B2 (en) Steel strip cooling device
JP7070685B2 (en) Drying system and manufacturing method of painted metal plate
JP4330324B2 (en) Nozzle for drying
JP2922285B2 (en) Heat treatment furnace for continuous coating line for performing both double-sided and single-sided coating of strip, operating method thereof, and method of controlling heat treatment
JPH11230638A (en) Heat exchanger
JPS5851985Y2 (en) Cooling device for strip coated articles
JPH07218182A (en) Warm water distribution tank for cooling tower
JPH0641649A (en) Heat treatment and continuous heat treatment furnace for aluminum strip
JPH10337848A (en) Dryer
JP7481230B2 (en) Heat Treatment Equipment
JP2006284140A (en) Hot air drying device and method for drying coated layer on band substrate
JPH116638A (en) Air conditioning outlet in ceiling for thermal storage in building frame
JP2005289051A (en) Air blowoff apparatus, tenter oven and thermoplastic resin film obtained by using it
JP2544579B2 (en) Strip floating pressure pad
JPS58190832A (en) Method for tempering plate glass
JP2005106349A (en) Heat exchanger
JPH0421802Y2 (en)
CN110640961A (en) Natural gas pneumatic vertical foaming system