JPH07185554A - Reducing method of concentration of dissolved oxygen in electrolytically generated water - Google Patents

Reducing method of concentration of dissolved oxygen in electrolytically generated water

Info

Publication number
JPH07185554A
JPH07185554A JP35032493A JP35032493A JPH07185554A JP H07185554 A JPH07185554 A JP H07185554A JP 35032493 A JP35032493 A JP 35032493A JP 35032493 A JP35032493 A JP 35032493A JP H07185554 A JPH07185554 A JP H07185554A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
water
concentration
partition walls
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35032493A
Other languages
Japanese (ja)
Inventor
Yukiaki Matsuo
尾 至 明 松
Kokichi Hanaoka
岡 孝 吉 花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUO SEITAI BUTSURI KENKYUSH
MATSUO SEITAI BUTSURI KENKYUSHO KK
TAIYO ENG KK
Original Assignee
MATSUO SEITAI BUTSURI KENKYUSH
MATSUO SEITAI BUTSURI KENKYUSHO KK
TAIYO ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUO SEITAI BUTSURI KENKYUSH, MATSUO SEITAI BUTSURI KENKYUSHO KK, TAIYO ENG KK filed Critical MATSUO SEITAI BUTSURI KENKYUSH
Priority to JP35032493A priority Critical patent/JPH07185554A/en
Publication of JPH07185554A publication Critical patent/JPH07185554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To provide a reducing method of the concentration of dissolved oxygen in an electrolytically generated water to decrease the quantity of ionized dissolved oxygen dissolved in the generated water. CONSTITUTION:In a current water type electrolytic cell with a cathode chamber and an anode chamber separated from each other with a partition, this reducing method has a constitution to control at least one of the flow rate of a raw water flowing in parallel to the partition face and the surface area of the electrode so as to be 2-6ppm in the concentration of dissolved oxygen passing through the partition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解生成水の処理に関
し、詳しくは、電解処理により生成した生成水中に溶存
する酸素の濃度を低下させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of electrolytically produced water, and more particularly to a method for reducing the concentration of oxygen dissolved in the produced water produced by electrolytic treatment.

【0002】[0002]

【従来の技術】隔壁、例えば、半透過性の非荷電膜ある
いはイオン選択性の荷電膜を介して水を電気分解する
際、電解質のうち、アニオンは陰極室側から陽極室側
に、カチオンは陽極室側から陰極室側にそれぞれ輸送さ
れる。従来は使用者の便利さと生産者の製造効率等の面
から、電解装置に設けられる電極面積を小さくするとと
もに、隔壁に沿って流れる源水の流量をできるだけ多く
取るような設計努力が払われており、隔壁を透過するイ
オン種には着目することがなかった。従って、源水中に
溶存している生成水の単位重量当たりの酸素分子の透過
量も非常に少なく、殆ど源水中の溶存酸素濃度と同じく
らいであった。
2. Description of the Related Art When electrolyzing water through a partition wall, for example, a semi-permeable non-charged membrane or an ion-selective charged membrane, among the electrolytes, anions are from the cathode chamber side to the anode chamber side, and cations are Each is transported from the anode chamber side to the cathode chamber side. Conventionally, from the viewpoints of user convenience and production efficiency of producers, design efforts have been made to reduce the electrode area provided in the electrolyzer and to maximize the flow rate of the source water flowing along the partition wall. Therefore, no attention was paid to the ionic species passing through the partition. Therefore, the permeation amount of oxygen molecules per unit weight of the generated water dissolved in the source water was very small, and was almost the same as the dissolved oxygen concentration in the source water.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、塩基性
電解生成水を飲用した場合、生体内での薬理的作用は顕
著には発現しなかった。塩基性電解水生成装置の効率を
良くするため、源水の流量を非常に多くし、また、装置
の小型化をねらって電極面積を小さくしたため、生成水
中の透過イオン種の量が極めて少なくなる結果、得られ
る生成水の溶存酸素濃度を低くすることはできなかっ
た。本発明は、このような問題を解決するためになされ
たものであり、その目的とするところは、源水の流量、
或は、電極面積を大きくすることによって、イオン化し
た溶存酸素量を低減させる溶存酸素濃度の低下方法を提
供するものである。
However, when the basic electrolysis-produced water was drunk, the pharmacological effect in vivo was not significantly exhibited. To improve the efficiency of the basic electrolyzed water generator, the flow rate of the source water was made extremely large, and the electrode area was made small for the purpose of downsizing the device, so the amount of permeated ion species in the generated water was extremely small. As a result, it was not possible to lower the dissolved oxygen concentration of the produced water obtained. The present invention has been made to solve such a problem, and an object thereof is to determine the flow rate of source water,
Alternatively, the invention provides a method for decreasing the dissolved oxygen concentration, which reduces the amount of ionized dissolved oxygen by increasing the electrode area.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明は、それぞれ電極が配置された陰極室および
陽極室が隔壁を介して仕切られた流水形式の電解槽にお
いて、前記隔壁を透過する溶存酸素量が2〜6ppmに
なるように、前記隔壁面に対して平行に流れる源水の流
量と、前記電極の面積との少なくとも一方を制御するこ
とを特徴とするものである。
In order to solve the above-mentioned problems, the present invention provides a running-water type electrolytic cell in which a cathode chamber and an anode chamber in which electrodes are arranged are partitioned by a partition wall, and the partition wall is passed through the partition wall. At least one of the flow rate of the source water flowing parallel to the partition surface and the area of the electrode is controlled so that the dissolved oxygen amount becomes 2 to 6 ppm.

【0005】即ち、本発明では、陰極室および陽極室が
隔壁を介して仕切られた流水形式の電解槽において、隔
壁を透過する酸素分子は、1個の電子が供与されてスー
パーオキシドラジカル化(O’2 )され、陽極へ移動し
た溶存酸素量が2〜6ppmになるように制御されるの
で、これにより生成水の溶存酸素濃度を低下させること
ができる。
That is, according to the present invention, in a flowing water type electrolytic cell in which the cathode chamber and the anode chamber are partitioned by a partition wall, one electron is donated to the oxygen molecule passing through the partition wall to form a superoxide radical ( O '2) it is, since the amount of dissolved oxygen that has moved to the anode is controlled to be 2~6Ppm, thereby lowering the dissolved oxygen concentration in the product water.

【0006】また、本発明は、それぞれ電極が配置され
た陰極室および陽極室が隔壁を介して仕切られた流水形
式の電解槽において、前記隔壁を透過する溶存酸素量が
2〜6ppmで、且つ、酸化還元電位が−100〜−7
50mVになるように、前記隔壁に対して平行に流れる
源水の流量と、前記電極の面積との少なくとも一方を制
御することを特徴とするものである。
Further, according to the present invention, in a running-water type electrolytic cell in which a cathode chamber and an anode chamber in which electrodes are arranged are partitioned by partition walls, the amount of dissolved oxygen passing through the partition walls is 2 to 6 ppm, and , Redox potential is -100 to -7
At least one of the flow rate of the source water flowing parallel to the partition wall and the area of the electrode is controlled so as to be 50 mV.

【0007】更に、それぞれ電極が配置された陰極室お
よび陽極室が隔壁を介して仕切られた流水形式の電解槽
において、前記隔壁を透過する溶存酸素量が2〜6pp
mで、酸化還元電位が−100〜−750mVに、且
つ、水素イオン濃度pHが8〜10になるように、前記
隔壁面に対して平行に流れる源水の流量と、前記電極の
面積との少なくとも一方を制御することを特徴とするも
のである。
Further, in a flowing water type electrolytic cell in which a cathode chamber and an anode chamber in which electrodes are arranged are partitioned by partition walls, the amount of dissolved oxygen passing through the partition walls is 2 to 6 pp.
m, the redox potential is −100 to −750 mV, and the hydrogen ion concentration pH is 8 to 10, and the flow rate of the source water flowing in parallel to the partition surface and the area of the electrode It is characterized by controlling at least one of them.

【0008】[0008]

【作用】本発明の低濃度溶存酸素含有の塩基性電解生成
水は流水形式に於いて、隔壁に対して平行な流れを持つ
源水の流量が多く、電解反応が行なわれる電極面積が少
なければ少ない程絶対印加電流が少なくなり陽極から陰
極への物質透過が少なくなる。また、源水の流量を多く
し、電解反応面積を多くすることにより物質透過量の増
加と両極の生成水に含有する透過物の含有率が高まるこ
とを利用するものである。
The basic electrolyzed water containing a low concentration of dissolved oxygen according to the present invention is a flowing water type, and if the flow rate of the source water having a flow parallel to the partition wall is large and the electrode area where the electrolytic reaction is performed is small. The smaller the amount, the smaller the absolute applied current and the less the substance permeates from the anode to the cathode. Further, it is utilized by increasing the flow rate of the source water and increasing the electrolytic reaction area to increase the permeation amount of the substance and increase the content rate of the permeate contained in the produced water of both electrodes.

【0009】本発明において、隔壁を通して移動する物
質の透過量を規定する際、次式により構成される論理に
基づくものである。実際の系はかなり複雑であり、単純
には計算出来ないが、数種のイオン種が含まれるような
比較的単純なモデルを基に、系全体を等温不連続系とみ
なすと、イオン種の還元輸率τ1 は、以下のようにな
る。
In the present invention, when defining the permeation amount of the substance that moves through the partition wall, it is based on the logic constituted by the following equation. The actual system is quite complicated and cannot be calculated simply, but if the whole system is regarded as an isothermal discontinuous system based on a relatively simple model containing several kinds of ionic species, The reduced transport number τ 1 is as follows.

【0010】[0010]

【数1】 [Equation 1]

【0011】ここで、J1 は膜を通しての体積流束、I
は印加電流、ΔTは温度差、ΔPは圧力差、Δμ1 は化
学ポテンシャル差を表す。また、電極面積をSeとする
と絶対電流I1は、 I1 =ISe (2) 源水の流量Jrは、 Jr =V/tm3 /hr (3) 生成水中の陽極側透過物質濃度ρa は、 ρa =ωt11 /Jr=ωJ1 Se/Jr (4) で表わされる。ただし、ωは膜の性質に基づくパラメー
タである。従って、陰極側の透過物質濃度ρe は、 ρe =Jr −ωJ1e /Jr (5) となり、溶存酸素の還元輸率は、隔壁の性質によりそれ
ぞれ固有の値を持つが、これを一定とすると、電極面積
を大きくし、源水の流束を少なくすることにより、低溶
存酸素濃度の電解生成水が得られる。
Where J 1 is the volumetric flux through the membrane, I
Is the applied current, ΔT is the temperature difference, ΔP is the pressure difference, and Δμ 1 is the chemical potential difference. Further, assuming that the electrode area is Se, the absolute current I 1 is: I 1 = ISe (2) Source water flow rate J r is J r = V / tm 3 / hr (3) Anode-side permeated substance concentration ρ in generated water a is represented by ρ a = ωt 1 I 1 / J r = ωJ 1 Se / J r (4). However, ω is a parameter based on the properties of the film. Thus, permeate concentration [rho e on the cathode side is, ρ e = J r -ωJ 1 S e / J r (5) , and the reduction transport number of dissolved oxygen, respectively by the nature of the partition wall but has a unique value, If this is kept constant, the electrode area is increased and the flux of the source water is reduced, whereby electrolytically generated water with a low dissolved oxygen concentration can be obtained.

【0012】[0012]

【実施例】以下に本発明の実施例を示す。 (実施例1)白金電極の電極面積500cm2 ,電流4
A,源水の流量1リットルの条件で水道水を電解し、陰
極側で得られた電解生成水の溶存酸素、酸化還元電位、
水素イオン濃度を測定した結果は下記のとおりであっ
た。 溶存酸素 5.8ppm 酸化還元電位 −330mV 水素イオン濃度(pH) 8.3
EXAMPLES Examples of the present invention will be shown below. (Example 1) Platinum electrode electrode area 500 cm 2 , current 4
A, tap water is electrolyzed under the condition that the flow rate of source water is 1 liter, and dissolved oxygen and redox potential of electrolyzed water obtained on the cathode side,
The results of measuring the hydrogen ion concentration were as follows. Dissolved oxygen 5.8 ppm Redox potential -330 mV Hydrogen ion concentration (pH) 8.3

【0013】(実施例2)白金電極の電極面積500c
2 ,電流4.5A,源水の流量1リットルの条件で水
道水を電解し、陰極側で得られた電解生成水の溶存酸
素、酸化還元電位、水素イオン濃度を測定した結果は下
記のとおりであった。 溶存酸素 4.2ppm 酸化還元電位 −500mV 水素イオン濃度(pH) 8.7
(Example 2) Electrode area of platinum electrode 500c
Tap water was electrolyzed under the conditions of m 2 , current 4.5 A, and source water flow rate 1 liter, and the dissolved oxygen, redox potential, and hydrogen ion concentration of the electrolytically generated water obtained on the cathode side were measured. It was as it was. Dissolved oxygen 4.2 ppm Redox potential -500 mV Hydrogen ion concentration (pH) 8.7

【0014】(実施例3)白金電極の電極面積500c
2 ,電流5A,源水の流量1リットルの条件で水道水
を電解し、陰極側で得られた電解生成水の溶存酸素、酸
化還元電位、水素イオン濃度を測定した結果は下記のと
おりであった。 溶存酸素 3.3ppm 酸化還元電位 −600mV 水素イオン濃度(pH) 9.3
(Example 3) Electrode area of platinum electrode 500c
Tap water was electrolyzed under the conditions of m 2 , current 5 A, and source water flow rate 1 liter, and the dissolved oxygen, redox potential, and hydrogen ion concentration of the electrolyzed water obtained on the cathode side were measured. there were. Dissolved oxygen 3.3 ppm Redox potential -600 mV Hydrogen ion concentration (pH) 9.3

【0015】(実施例4)白金電極の電極面積500c
2 ,電流5.5A,源水の流量1リットルの条件で水
道水を電解し、陰極側で得られた電解生成水の溶存酸
素、酸化還元電位、水素イオン濃度を測定した結果は下
記のとおりであった。 溶存酸素 2.5ppm 酸化還元電位 −700mV 水素イオン濃度(pH) 9.7
(Embodiment 4) Electrode area of platinum electrode 500c
Tap water was electrolyzed under the conditions of m 2 , current 5.5 A, and source water flow rate 1 liter, and the dissolved oxygen, redox potential, and hydrogen ion concentration of the electrolyzed water obtained on the cathode side were measured. It was as it was. Dissolved oxygen 2.5 ppm Redox potential -700 mV Hydrogen ion concentration (pH) 9.7

【0016】(実施例5)白金電極の電極面積500c
2 ,電流6A,源水の流量1リットルの条件で水道水
を電解し、陰極側で得られた電解生成水の溶存酸素、酸
化還元電位、水素イオン濃度を測定した結果は下記のと
おりであった。 溶存酸素 2ppm 酸化還元電位 −750mV 水素イオン濃度(pH) 10.2
(Embodiment 5) Electrode area of platinum electrode 500c
Tap water was electrolyzed under the conditions of m 2 , current 6 A, and source water flow rate 1 liter, and the dissolved oxygen, redox potential, and hydrogen ion concentration of the electrolyzed water obtained on the cathode side were measured. there were. Dissolved oxygen 2 ppm Redox potential -750 mV Hydrogen ion concentration (pH) 10.2

【0017】[0017]

【発明の効果】以上に説明したとように、本発明方法に
より得られた方法で、流水形式の電解装置における源水
の流量および(または)電極面積を制御しながら電解を
行なうことにより、溶存酸素濃度が低い塩基性電解生成
水を効率よく生成させることができる。このような低溶
存酸素濃度の電解生成水を飲用すれば、生体内の活性酸
素を消去する効果が得られ、種々の疾病に対して有効な
治療手段となりうる。また、人間を含めた全生物に対し
て有効に作用し、動物・植物に対してもホメオスタシア
スに類似した機能作用を保持しているので、副作用のな
い安全な作用水として利用できる。
As described above, by the method obtained by the method of the present invention, by performing electrolysis while controlling the flow rate and / or the electrode area of the source water in the flowing water type electrolyzer, the dissolved water is dissolved. Basic electrolysis generated water having a low oxygen concentration can be efficiently generated. Drinking such electrolyzed water having a low dissolved oxygen concentration has the effect of eliminating active oxygen in the body, and can be an effective therapeutic means for various diseases. Further, since it acts effectively on all living organisms including humans and has a functional action similar to homeostasis on animals and plants, it can be used as safe working water without side effects.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ電極が配置された陰極室および
陽極室が隔壁を介して仕切られた流水形式の電解槽にお
いて、前記隔壁を透過する溶存酸素量が2〜6ppmに
なるように、前記隔壁面に対して平行に流れる源水の流
量と、前記電極の面積との少なくとも一方を制御するこ
とを特徴とする電解生成水の溶存酸素濃度の低下方法。
1. In a running-water type electrolytic cell in which a cathode chamber and an anode chamber in which electrodes are arranged are partitioned by partition walls, the partition walls are adjusted so that the amount of dissolved oxygen passing through the partition walls is 2 to 6 ppm. A method for lowering the dissolved oxygen concentration of electrolyzed water, which comprises controlling at least one of a flow rate of source water flowing parallel to a surface and an area of the electrode.
【請求項2】 それぞれ電極が配置された陰極室および
陽極室が隔壁を介して仕切られた流水形式の電解槽にお
いて、前記隔壁を透過する溶存酸素量が2〜6ppm
で、且つ、酸化還元電位が−100〜−750mVにな
るように、前記隔壁面に対して平行に流れる源水の流量
と、前記電極の面積との少なくとも一方を制御すること
を特徴とする電解生成水の溶存酸素濃度低下方法。
2. A flowing water type electrolytic cell in which a cathode chamber and an anode chamber in which electrodes are arranged are partitioned by partition walls, respectively, and the amount of dissolved oxygen passing through the partition walls is 2 to 6 ppm.
And, at least one of the flow rate of the source water flowing in parallel to the partition wall surface and the area of the electrode is controlled so that the redox potential becomes −100 to −750 mV. Method for reducing dissolved oxygen concentration in generated water.
【請求項3】 それぞれ電極が配置された陰極室および
陽極室が隔壁を介して仕切られた流水形式の電解槽にお
いて、前記隔壁を透過する溶存酸素量が2〜6ppm
で、酸化還元電位が−100〜−750mVに、且つ、
水素イオン濃度pHが8〜10になるように、前記隔壁
面に対して平行に流れる源水の流量と、前記電極の面積
との少なくとも一方を制御することを特徴とする電解生
成水の溶存酸素濃度の低下方法。
3. A flowing water type electrolytic cell in which a cathode chamber and an anode chamber in which electrodes are arranged are partitioned by partition walls, and the amount of dissolved oxygen passing through the partition walls is 2 to 6 ppm.
And the redox potential is -100 to -750 mV, and
Dissolved oxygen of electrolyzed water, characterized in that at least one of the flow rate of source water flowing parallel to the partition wall surface and the area of the electrode is controlled so that the hydrogen ion concentration pH becomes 8 to 10. How to reduce the concentration.
JP35032493A 1993-12-28 1993-12-28 Reducing method of concentration of dissolved oxygen in electrolytically generated water Pending JPH07185554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35032493A JPH07185554A (en) 1993-12-28 1993-12-28 Reducing method of concentration of dissolved oxygen in electrolytically generated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35032493A JPH07185554A (en) 1993-12-28 1993-12-28 Reducing method of concentration of dissolved oxygen in electrolytically generated water

Publications (1)

Publication Number Publication Date
JPH07185554A true JPH07185554A (en) 1995-07-25

Family

ID=18409715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35032493A Pending JPH07185554A (en) 1993-12-28 1993-12-28 Reducing method of concentration of dissolved oxygen in electrolytically generated water

Country Status (1)

Country Link
JP (1) JPH07185554A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623615B1 (en) 1996-08-27 2003-09-23 Nihon Trim Co., Ltd. Electrolytic hydrogen dissolved water and method and apparatus of production thereof
JP2006273730A (en) * 2005-03-28 2006-10-12 Wataru Murota Oxygen-containing reducing physiological saline or oxygen-containing reducing transfusion and its preparing method
JP2007197349A (en) * 2006-01-25 2007-08-09 Ai System Product:Kk Transdermal absorption type pharmaceutical

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623615B1 (en) 1996-08-27 2003-09-23 Nihon Trim Co., Ltd. Electrolytic hydrogen dissolved water and method and apparatus of production thereof
JP2006273730A (en) * 2005-03-28 2006-10-12 Wataru Murota Oxygen-containing reducing physiological saline or oxygen-containing reducing transfusion and its preparing method
JP2007197349A (en) * 2006-01-25 2007-08-09 Ai System Product:Kk Transdermal absorption type pharmaceutical

Similar Documents

Publication Publication Date Title
JP4653708B2 (en) Electrolyzed water generating method and electrolyzed water generating apparatus used therefor
US3616355A (en) Method of generating enhanced biocidal activity in the electroylsis of chlorine containing solutions and the resulting solutions
US6837986B2 (en) Device for producing electrolytic water and process for producing electrolytic water
EP0216413A2 (en) A process and an apparatus for the preparation of a disinfectant for water, such as drinking- or swimming-water
US20080017519A1 (en) Method and device for producing an alkali metal hypochlorite solution
JPH10314740A (en) Electrolytic bath for acidic water production
JPH07505441A (en) Electrolyzer for generating germicidal solutions with high ozone content
BRPI0903853A2 (en) electrolytic device for the generation of aqueous ph-controlled halogenous acid solutions for disinfectant applications
JPH09262583A (en) Preparation of acidic water and alkaline water
JP2004267956A (en) Method for producing mixed electrolytic water
JP2002301476A (en) Ascorbylglucosamine electrolyzed water and method for making the same
JPH10309582A (en) Production method of acidic electrolytic water and acidic electrolytic water
JP3826645B2 (en) Electrolyzed water generator
JP2000226680A (en) Production of sterilizing electrolytic water and device therefor
PL160948B1 (en) Method of obtaining chlorine dioxide and sodium hydroxide
JP3791311B2 (en) Electrolyzed water generator
JPH07185554A (en) Reducing method of concentration of dissolved oxygen in electrolytically generated water
US20100276294A1 (en) Electrolytic sanitization of water
JPH07155765A (en) Production of electrolyzed water and device therefor
FI82078C (en) ELEKTROKEMISKT AVLAEGSNANDE AV HYPOKLORITER UR KLORATCELLOESNINGAR.
JPH0428438B2 (en)
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JPH08257567A (en) Production of silver ion water
JP4068267B2 (en) Electrolyzed water generator
JPH11319831A (en) Production of electrolytic function water and its apparatus