JPH07185465A - Air classifier - Google Patents

Air classifier

Info

Publication number
JPH07185465A
JPH07185465A JP5336493A JP33649393A JPH07185465A JP H07185465 A JPH07185465 A JP H07185465A JP 5336493 A JP5336493 A JP 5336493A JP 33649393 A JP33649393 A JP 33649393A JP H07185465 A JPH07185465 A JP H07185465A
Authority
JP
Japan
Prior art keywords
rotor
chamber
air
rotor chamber
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5336493A
Other languages
Japanese (ja)
Other versions
JP3482504B2 (en
Inventor
Mitsuhiro Ito
光弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP33649393A priority Critical patent/JP3482504B2/en
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to CA002134456A priority patent/CA2134456A1/en
Priority to EP94910553A priority patent/EP0645196A4/en
Priority to PCT/JP1994/000502 priority patent/WO1994022599A1/en
Priority to KR1019940703611A priority patent/KR0186059B1/en
Priority to AU62916/94A priority patent/AU673059C/en
Priority to US08/313,263 priority patent/US5533629A/en
Priority to TW083102743A priority patent/TW257696B/zh
Publication of JPH07185465A publication Critical patent/JPH07185465A/en
Priority to AU64266/96A priority patent/AU679886C/en
Application granted granted Critical
Publication of JP3482504B2 publication Critical patent/JP3482504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

PURPOSE:To reduce the pressure loss of the whole of an air classifier equipped with a rotor chamber, rotor blades and a classifying chamber to a large extent as compared with a conventional example by providing a distribution member concentric to a rotary shaft in the rotor chamber. CONSTITUTION:An air classifer is equipped with a rotor chamber RT having an inlet IN and an exhaust port 30, the rotor blades 6 arranged to the inlet IN of the rotor chamber and the classifying chamber 7 provided to the outer periphery of the inlet IN of the rotor chamber. A distribution member concentric to the rotary shaft of a rotor 5 is provided in the rotor chamber RT. The distribution member is formed to the bottom surface 5a of the rotor 5 of the rotor chamber RT and is a protuberant member 50 rising from the inner periphery radius R3 of the rotor blades 6. By this constitution, the fluid flowing in the inlet IN of the rotor chamber from the classifying chamber 7 passes through the rotor chamber RT to be discharged out of the exhaust port 30 of the rotor chamber and, at this time, the fluid in the rotor chamber RT is smoothly converted in its flow direction by the protuberant member 50.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、セメント、炭酸カル
シウム、セラミックス等の粉粒体原料の分級に用いる渦
流式空気分級機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a swirl type air classifier used for classifying raw materials for powder and granular materials such as cement, calcium carbonate and ceramics.

【0002】[0002]

【従来の技術】従来の渦流式空気分級機では、分級原料
は上部から供給され、分散板で分散されながら分級空間
に入る。一方、分級に必要な空気は、分級機の全周に固
定.配列されたガイドベーンを通して分級機後方のファ
ンにより吸引される。この時、分級空気は、このガイド
ベーンによって均一な渦運動を開始し、さらにロータブ
レードによって分級に必要な速度まで加速される。
2. Description of the Related Art In a conventional vortex type air classifier, a classification raw material is supplied from the upper side and enters a classification space while being dispersed by a dispersion plate. On the other hand, the air required for classification is fixed all around the classifier. It is sucked by the fan behind the classifier through the arranged guide vanes. At this time, the classified air starts a uniform vortex movement by the guide vanes, and is further accelerated by the rotor blade to a speed required for classification.

【0003】すなわち、ガイドベーンとロータブレード
との間の空間を分級空間と定義すると、そこでの気流は
二次元の渦気流と見なすことができる。分級空間に供給
された粒子は、この渦気流とともに渦運動を開始し、そ
のとき粒子に働く遠心力と抗力のバランスによって分級
される。その結果、前記両力のバランスによって定まる
分離粒径より小さい粒子はロータの内部に入り、出口ダ
クトを経由して排出・捕集される。
That is, when the space between the guide vanes and the rotor blade is defined as a classification space, the airflow there can be regarded as a two-dimensional vortex airflow. The particles supplied to the classification space start vortex motion together with this vortex flow, and are classified by the balance of centrifugal force and drag force acting on the particles at that time. As a result, particles smaller than the separated particle size determined by the balance between the two forces enter the rotor and are discharged and collected via the outlet duct.

【0004】 一方、大きな粒子は、分級空間の
中を繰り返し分級作用を受けながら重力によって落下
し、粗粉排出口から排出される。なお、分離粒径のコン
トロールは、ロータの回転数または分級空気流量、すな
わち、粒子に与えられる遠心力または抗力によって行な
われる。
On the other hand, large particles fall by gravity while being repeatedly classified in a classification space and discharged from a coarse powder discharge port. The separated particle size is controlled by the rotation speed of the rotor or the classified air flow rate, that is, the centrifugal force or drag force applied to the particles.

【0005】[0005]

【発明が解決しようとする課題】微粉分級を行う場合に
は粉体粒子に強い遠心力を与える必要があるが、そのた
めにはロータブレードの回転速度を大きくしなければな
らない。
When performing fine powder classification, it is necessary to give a strong centrifugal force to the powder particles. For that purpose, the rotation speed of the rotor blade must be increased.

【0006】しかし、該回転回度が大きくなると、分級
のために必要な空気の旋回と乱流のために該空気分級機
の圧力損失が大きくなるので、空気を吸引するためのフ
ァンの容量を大きくすることが必要となる。そのため、
設備及び投資が過大となり、資源エネルギの節減上大き
な問題となる。
However, as the rotation speed increases, the pressure loss of the air classifier increases due to the swirling and turbulent flow of air required for classification, so the capacity of the fan for sucking air is increased. It is necessary to make it larger. for that reason,
Equipment and investment become excessive, which is a major problem in saving resource energy.

【0007】セメントなどの粉体の分級は微粉分級の範
疇に入るが、その中でも比較的粗い分級である。このた
め、圧力損失は比較的低いが、このような粉体では生産
量が極めて多く、粉体価格に対するエネルギ費の比率の
割り合いも多く、少しの圧力低減であってもその影響は
大きい。
The classification of powder such as cement falls into the category of fine powder classification, but it is a relatively coarse classification. Therefore, although the pressure loss is relatively low, the production amount of such powder is extremely large, the ratio of the energy cost to the powder price is large, and even a slight pressure reduction has a great influence.

【0008】本発明者は、分級機における圧力損失が主
にどこで生じているのかをつきとめるため、分級機全体
の圧力損失とロータブレード外周より外側だけの圧力損
失とを測定したところ、図1に示す結果を得た。
The present inventor measured the pressure loss of the entire classifier and the pressure loss only outside the outer circumference of the rotor blade in order to find out where the pressure loss in the classifier mainly occurs. The results shown were obtained.

【0009】図1において、曲線Aは分級機全体の圧力
損失、曲線Bはロータブレード外周より外側だけの圧力
損失、をそれぞれ示すが、この曲線Bはロータブレード
外周部での動圧と静圧を測定し、その和即ち全圧と分級
機入口の全圧との差を調べたものである。
In FIG. 1, a curve A shows the pressure loss of the entire classifier, and a curve B shows the pressure loss only outside the outer circumference of the rotor blade. This curve B shows the dynamic pressure and static pressure at the outer circumference of the rotor blade. Was measured and the difference between the sum, that is, the total pressure and the total pressure at the classifier inlet was investigated.

【0010】この実験によると圧力損失の大部分はロー
タ内部、即ち、ロータ室内で生じていることがわかっ
た。そこで、該圧力損失の発生原因を究明すると共に、
ロータ室内の圧力損失の低減方法を研究した。
According to this experiment, it was found that most of the pressure loss occurs inside the rotor, that is, inside the rotor chamber. Therefore, while investigating the cause of the pressure loss,
The method of reducing pressure loss in the rotor chamber was studied.

【0011】ロータ室内での圧力損失は、(A)空気の
旋回による遠心力と、(B)隣合う流体粒子間の速度差
などに基ずく流体摩擦損失と、(C)分級機内壁面と流
体の摩擦と によるものと考えられる。この(A)及び
(B)の原因を最小にするためには、ロータブレードの
部分で空気速度の周方向成分がロータブレードのそれと
同じになっていることを考慮すると、ロータブレード内
側での旋回は隣合う流体粒子間の剪断応力即ち流体間摩
擦損失の最も少なく、現実的に可能な遠心力の最も少な
い、ロータ半径位置で回転角速度が一定な強制渦にする
ことが望まれる。
The pressure loss in the rotor chamber is (A) centrifugal force due to swirling of air, (B) fluid friction loss due to velocity difference between adjacent fluid particles, and (C) inner wall surface of the classifier and fluid. It is thought to be due to the friction of. In order to minimize the causes of (A) and (B), considering that the circumferential component of the air velocity in the rotor blade portion is the same as that in the rotor blade, swirling inside the rotor blade is considered. Is desired to be a forced vortex that has the smallest shearing stress between adjacent fluid particles, that is, the friction loss between the fluids and the smallest centrifugal force that is practically possible, and that has a constant rotational angular velocity at the rotor radial position.

【0012】しかし、実際にはロータ内に分級室から流
入する空気は、ロータブレードと同一の周速度をもちな
がらロータブレード間を乱流状態で通過して内側に入
る。そのため、該空気は、その慣性モーメントのために
ロータ軸中心に向かうに従い、ある半径位置迄は周方向
速度成分は大きくなり、そこから強制渦になるBurg
ersの渦を形成するが、その強制渦になる半径位置は
一般にロータ室の出口の半径近くにある。そこで、ロー
タ室内にロータの回転軸と同軸状の整流部材を設けるこ
とにより、Burgersの渦を形成することなく円滑
に流れ方向を変換できることがわかった。
However, in reality, the air flowing into the rotor from the classification chamber passes through between the rotor blades in a turbulent state while having the same peripheral velocity as the rotor blades, and enters the inside. Therefore, due to the moment of inertia of the air, the circumferential velocity component increases up to a certain radial position due to the moment of inertia, and Burg becomes a forced vortex.
A radial position that forms a vortex of ers and becomes the forced vortex is generally near the radius of the outlet of the rotor chamber. Therefore, it has been found that the flow direction can be smoothly changed without forming the Burgers vortex by providing the rectifying member coaxial with the rotation axis of the rotor in the rotor chamber.

【0013】この発明は、上記事情に鑑み圧力損失の低
減を図ることを目的とする。
In view of the above circumstances, the present invention aims to reduce pressure loss.

【0014】[0014]

【課題を解決するための手段】本発明者は、前記研究の
結果、本発明を次のように構成し前記目的を達成しよう
とするものである。入口と排気口とを有するロータ室
と、該ロータ室の入口に配設したロータブレードと、該
ロータ室の入口の外周に設けた分級室と、を備えた空気
分級装置において;前記ロータ室内にロータの回転軸と
同心状の整流部材を設けたことを特徴とする空気分級装
置。
As a result of the above research, the present inventor intends to achieve the above object by constructing the present invention as follows. An air classifying device comprising a rotor chamber having an inlet and an exhaust port, a rotor blade disposed at the inlet of the rotor chamber, and a classifying chamber provided at the outer periphery of the inlet of the rotor chamber; An air classifying device comprising a rectifying member concentric with a rotating shaft of a rotor.

【0015】[0015]

【作 用】分級室からロータ室の入口に流入した流体
は、該ロータ室の内部を通りロータ室の排気口から機外
に排出される。この時、ロータ室内の流体は整流部材に
より流れ方向を円滑に変換されるので、圧力損失が激減
する。
[Operation] The fluid flowing from the classification chamber into the inlet of the rotor chamber passes through the inside of the rotor chamber and is discharged from the exhaust port of the rotor chamber to the outside of the machine. At this time, the flow direction of the fluid in the rotor chamber is smoothly converted by the rectifying member, so that the pressure loss is drastically reduced.

【0016】[0016]

【実施例】この発明の第1実施例を図2〜図4により説
明する。円筒状のケーシング1の下部に円錐状のホッパ
2を設け、該ホッパ2の下部を粗粉排出口3に連通せし
める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. A conical hopper 2 is provided in the lower part of the cylindrical casing 1, and the lower part of the hopper 2 is communicated with the coarse powder discharge port 3.

【0017】ケーシング1内の中央には回転軸4に固定
されたロータ5が配設されている。このロータ5の直径
はDであり、又その高さはHである。
A rotor 5 fixed to a rotary shaft 4 is arranged in the center of the casing 1. The rotor 5 has a diameter D and a height H.

【0018】ロータ室RT内にはロータの回転軸4と同
心状の整流部材が設けられている。、この整流部材はロ
ータ室RTのロータ5の底面5aに形成され、かつ、ロ
ータブレード6の内周半径R3から盛り上がる隆起状体
50である。この隆起状体50は円錐状に形成される
が、この隆起状体50の斜面(母線)50aの底面5a
に対する角度、即ち、立ち上がり角度θは、大き過ぎて
も、又、小さ過ぎてもいけない。
Inside the rotor chamber RT, a rectifying member which is concentric with the rotating shaft 4 of the rotor is provided. The straightening member is a raised body 50 formed on the bottom surface 5a of the rotor 5 in the rotor chamber RT and rising from the inner radius R 3 of the rotor blade 6. The raised body 50 is formed in a conical shape, and the bottom surface 5a of the slope (busbar) 50a of the raised body 50 is formed.
The angle with respect to, that is, the rising angle θ cannot be too large or too small.

【0019】そこで、実験の結果、ロータ5の高さHと
の関係で次式により求められる角度θが最適値であるこ
とがわかった。 θ=tan-1{0.3〜0.6}H/R3
Therefore, as a result of experiments, it was found that the angle θ obtained by the following equation in relation to the height H of the rotor 5 is the optimum value. θ = tan −1 {0.3-0.6} H / R 3 }

【0020】ロータ5の外周部には複数のロータブレー
ド6が取付けられているが、その取付ピッチpは、実験
により求めた次の式(1)、又は、式(2)により決定
される。(特願平5ー74670号参照)。 p≦1.04×Dp(th)0.365 (1)
A plurality of rotor blades 6 are mounted on the outer peripheral portion of the rotor 5, and the mounting pitch p thereof is determined by the following formula (1) or formula (2) obtained by experiment. (See Japanese Patent Application No. 5-74670). p ≦ 1.04 × Dp (th) 0.365 (1)

【0021】[0021]

【数1】 [Equation 1]

【0022】次に下記条件において、粒子の密度ρp=
2700kg/m3 の石灰石を分級する場合のピッチp
について説明する。ロータの直径D=2.1m、ロータ
の高さH=0.3m、温度20°C、1気圧の空気中に
おける空気密度ρf =1.20kg/m3 、空気粘性係
数μ=1.81×10-5 (Pa・s)。
Next, the particle density ρp =
Pitch p when classifying 2700 kg / m 3 limestone
Will be described. Rotor diameter D = 2.1 m, rotor height H = 0.3 m, temperature 20 ° C., air density ρ f = 1.20 kg / m 3 in air at 1 atm, air viscosity coefficient μ = 1.81 × 10- 5 (Pa · s) .

【0023】前記条件において理論上の分離粒径Dp(
th)を達成するために必要なロータブレードの取付ピッ
チpは表1の通りである。このピッチpの値は、前記式
(1)から分級機に適用する最小分離粒径、例えば3μ
mまでの分級に適用する分級機として定めても良い。
Under the above conditions, the theoretical separation particle size D p (
Table 1 shows the mounting pitch p of the rotor blades required to achieve the above ( th ). The value of this pitch p is the minimum separation particle size applied to the classifier from the above formula (1), for example, 3 μ.
It may be determined as a classifier applied to classification up to m.

【表1】 [Table 1]

【0024】尚、Qは分級風量(m3 /s)、Vtはロ
ータブレード先端での周速(m/s)、をそれぞれ示
す。
Note that Q represents the classification air flow (m 3 / s), and Vt represents the peripheral speed (m / s) at the tip of the rotor blade.

【0025】該ロータブレード6の外周には,分級室7
を介して角度調整可能なガイドベーン8が配設されてい
る。このガイドベーン8の取付角度θG、即ち、ガイド
ベーン8の接線Lに対する傾斜角度は次式(3)により
求められる。
A classification chamber 7 is provided on the outer periphery of the rotor blade 6.
A guide vane 8 whose angle can be adjusted is provided via the. The mounting angle θ G of the guide vane 8, that is, the inclination angle of the guide vane 8 with respect to the tangent line L is calculated by the following equation (3).

【0026】[0026]

【数2】 [Equation 2]

【0027】この式(3)の詳細については、原理図で
ある図4に基ずき特願平5ー305599号に開示され
ている。この式(3)及び図4において、R1はロータ
ブレード6の外接円BCの半径、R2はガイドベーン8
の内接円GCの半径、ω1はロータブレード6の角速
度、ω2は分級空間へ入る気流の角速度、Urは空気速
度の分級機半径方向速度成分、ρpは粒子の密度、Sは
分級室7の幅、Oは分級機の中心、をそれぞれ示す。
Details of this equation (3) are disclosed in Japanese Patent Application No. 305599/1993 based on FIG. 4 which is a principle diagram. In this equation (3) and FIG. 4, R1 is the radius of the circumscribed circle BC of the rotor blade 6, and R2 is the guide vane 8
Radius of the inscribed circle GC of ω1, ω1 is the angular velocity of the rotor blade 6, ω2 is the angular velocity of the air stream entering the classification space, Ur is the radial velocity component of the classifier of air velocity, ρp is the particle density, and S is the size of the classification chamber 7. The width and O indicate the center of the classifier, respectively.

【0028】このガイドベーン8の取付角度θGを適切
にしないと、空気速度に対する遅れが生じ、ロータブレ
ードの摩耗やエネルギ消費の過大が起きる。そこで、取
付角度θGを前記式により求め、例えば、取付角度θGを
15度にする。
If the mounting angle θG of the guide vane 8 is not proper, a delay occurs with respect to the air velocity, which causes wear of the rotor blade and excessive energy consumption. Therefore, the mounting angle θG is obtained by the above formula, and for example, the mounting angle θG is set to 15 degrees.

【0029】次に、この分級室7の幅Sの決定は極めて
重要であり、接線方向流速分布の速度勾配が急峻である
程この部分にある凝集体に気流の速度差による剪断力が
強く働いて分級が促進される。しかしながら、該幅Sが
狭すぎると、渦流が乱れる。その結果、粒子が所定の速
度にならず正常な分級ができなくなるのである。
Next, the determination of the width S of the classifying chamber 7 is extremely important. The steeper the velocity gradient of the tangential velocity distribution, the stronger the shearing force due to the difference in velocity of the air flow on the aggregates in this portion. Classification is promoted. However, if the width S is too narrow, the vortex will be disturbed. As a result, the particles do not reach a predetermined speed and normal classification cannot be performed.

【0030】逆に該分級室の幅Sが広すぎると、均一な
渦を形成できず、また、凝集粒は、1次粒子に分散され
る事なく分級室7を出ることになるので、分級効果が悪
くなる。
On the contrary, if the width S of the classification chamber is too wide, a uniform vortex cannot be formed, and the agglomerated particles exit the classification chamber 7 without being dispersed into the primary particles. The effect gets worse.

【0031】そこで分級室7の幅Sの適切な値を決定す
るため種々の実験を行なったところ次の式を得ることが
できた。但し、pはロータブレードのピッチであり、
又、係数K=5〜20(m1/2)である。 S=K√p
Then, various experiments were conducted to determine an appropriate value of the width S of the classifying chamber 7, and the following formula was obtained. However, p is the pitch of the rotor blades,
The coefficient K is 5 to 20 (m 1/2 ). S = K√p

【0032】ロータブレード6の円周方向厚さTの決定
も重要である。この厚さTとピッチpの比T/pを0.
35以下にし、ロータ5の開口面積Mを65%以上に形
成する。
It is also important to determine the circumferential thickness T of the rotor blade 6. The ratio T / p between the thickness T and the pitch p is 0.
35 or less, and the opening area M of the rotor 5 is formed to be 65% or more.

【0033】実験によると、該ロータブレード6の円周
方向の厚さTがこの範囲を越えて厚くなると前記分級室
7の幅S及びロータブレード6の取付ピッチPが上記範
囲内にあっても該ロータブレード6の近傍における渦流
が乱れ、分離粒径以上の粗粉部分の飛び込みが多くな
り、シャープな微粉分級ができなくなる場合がある。
According to an experiment, when the thickness T of the rotor blade 6 in the circumferential direction exceeds the above range, even if the width S of the classification chamber 7 and the mounting pitch P of the rotor blade 6 are within the above range. In some cases, the vortex flow near the rotor blades 6 is disturbed, the number of coarse powder particles having a size larger than the separation particle size is increased, and sharp fine powder classification cannot be performed.

【0034】逆に、開口面積が上記範囲未満になると、
厚さTが異常に薄くなり強度及び施工上の問題がある
が、前記問題が発生しない程度にできるだけ薄いものが
望ましい。
On the contrary, when the opening area is less than the above range,
Although the thickness T becomes abnormally thin and there are problems in strength and construction, it is desirable that the thickness T be as thin as possible without causing the above problems.

【0035】該厚さTと該ピッチpの比T/pは、0.
35以下が望ましいが、現状の技術力からすれば、シャ
ープな微粉分級、例えば3μmカット、を行うときに
は、厚さTはT/Pが0.1であれば充分であることが
わかっている。
The ratio T / p between the thickness T and the pitch p is 0.
It is desirable that the thickness T is 35 or less, but in view of the current technical strength, it is known that the thickness T is sufficient if T / P is 0.1 when sharp fine powder classification, for example, 3 μm cutting is performed.

【0036】ロ−タの開口面積Mは構造、機械的強度と
微粉分級の両面からできるだけ大きい方が分級機内の圧
力損失も少なくなるので、65%以上が望ましい。
The opening area M of the rotor is preferably 65% or more because the pressure loss in the classifier is reduced if the opening area M is as large as possible in terms of structure, mechanical strength and fine powder classification.

【0037】Burgersの渦を形成せずに強制渦に
するためにはロータブレード6のロータ半径方向長さB
w即ちロータブレード外周半径R1からロータブレード
内周半径R3を引いた長さ、は実験によると、ロータブ
レード外周半径R1とロータ室RTの排気口30の半径
R0との差の0.7〜1.0倍の範囲内が最適であるこ
とがわかった。
In order to form a forced vortex without forming a Burgers vortex, the rotor blade 6 has a length B in the radial direction of the rotor.
According to experiments, w, that is, the length obtained by subtracting the rotor blade inner circumference radius R3 from the rotor blade outer circumference radius R1, is 0.7 to 1 which is the difference between the rotor blade outer circumference radius R1 and the radius R0 of the exhaust port 30 of the rotor chamber RT. It was found that the optimum range was 0.0 times.

【0038】次に実施例の作動について説明する。分級
空気を分級空気供給路11からガイドベ−ン8を介して
分級室7に送り、回転軸4を回してロータブレード6を
回転させ、該分級室7内に渦流を形成する。
Next, the operation of the embodiment will be described. Classifying air is sent from the classifying air supply passage 11 to the classifying chamber 7 through the guide vane 8, the rotating shaft 4 is rotated to rotate the rotor blade 6, and a vortex flow is formed in the classifying chamber 7.

【0039】そうすると、渦流は分級室7内を旋回しな
がらロータ室RTの入口INのロータブレード6の間を
通ってロータ室RTに入り旋回しながら隆起状体50に
案内されて上向きに流れ方向を変えられた後、排気口3
0を通り排出ダクト12から機外に排出される。
Then, the vortex flow swirls in the classification chamber 7, passes between the rotor blades 6 at the inlet IN of the rotor chamber RT, enters the rotor chamber RT, is swirled, is guided by the ridge 50, and flows upward. After changing the exhaust port 3
It is discharged from the machine through the discharge duct 12 through 0.

【0040】この状態において、原料入口13から被分
級材料Y、例えば炭酸カルシウムを投入すると、該被分
級材料Yは分散板14に衝突して外周方向に飛散しなが
ら分級室7内に落下する。
In this state, when the material to be classified Y, for example, calcium carbonate, is introduced from the raw material inlet 13, the material to be classified Y collides with the dispersion plate 14 and is scattered in the outer peripheral direction and falls into the classification chamber 7.

【0041】この間に被分級材料の粒子は渦流で加速さ
れ分級室内を旋回する。この時渦流の持つせん断力とそ
れによる粒子同志の衝突摩擦で粒子は分散されながら遠
心力と抗力のバランスによって定まる分離粒径以下の粒
子はロータブレード外周部に達する。
During this time, the particles of the material to be classified are accelerated by the vortex flow and swirl in the classification chamber. At this time, the particles are dispersed by the shearing force of the eddy current and the collision friction of the particles due to the shearing force, while the particles having a size smaller than the separated particle size determined by the balance of the centrifugal force and the drag force reach the outer peripheral portion of the rotor blade.

【0042】この分級された微粉Y2 、例えば5μm以
下の粒径は、ロ−タ室RT内を通り上昇気流に乗り排出
ダクト12に流入するとともに、図示しない空気濾過機
に入り回収される。
The classified fine powder Y 2 , for example, a particle size of 5 μm or less, passes through the rotor chamber RT, flows into the ascending airflow and flows into the exhaust duct 12, and is also collected in an air filter (not shown).

【0043】この時、ロータ室RT内の気流は隆起状体
50に規制されながら流れ方向を円滑に変換されるの
で、ロータ室内における圧力損失は激減する。
At this time, the air flow in the rotor chamber RT is smoothly converted in the flow direction while being regulated by the raised body 50, so that the pressure loss in the rotor chamber is drastically reduced.

【0044】又、粗粉Y1 は分級室7内を旋回しながら
ホッパ2中を落下し、粗粉排出口3から排出される。
The coarse powder Y 1 falls in the hopper 2 while swirling in the classification chamber 7, and is discharged from the coarse powder discharge port 3.

【0045】この発明の第2実施例を図5〜図7により
説明する。この実施例の特徴は整流部材として整流羽根
150を用いることである。この整流羽根150はロー
タ室RTを貫通するロータの回転軸4に同心状に固定さ
れ、4枚の面状整流板151を備えている。
A second embodiment of the present invention will be described with reference to FIGS. The feature of this embodiment is that the flow regulating vanes 150 are used as the flow regulating members. The straightening vanes 150 are concentrically fixed to the rotary shaft 4 of the rotor penetrating the rotor chamber RT and are provided with four planar straightening plates 151.

【0046】各整流板151は逆三角形状に形成され、
それらの面151aを旋回流107に対向する方向に設
けるとともに、下から上に向かって水平から徐々に垂直
に近ずき少なくてもその下半分は螺線状の湾曲面をなし
ている。
Each straightening plate 151 is formed in an inverted triangular shape,
The surfaces 151a are provided in the direction facing the swirl flow 107, and the lower half of the surface 151a has a spiral curved surface at least from the horizontal to the vertical.

【0047】又、該整流板151の幅Wも下方になるに
従い徐々に小さくなり、最終的には該整流板151の下
端151aの幅は零となり回転軸4と同径となる。
The width W of the straightening vane 151 also gradually decreases as it goes downward, and finally the width of the lower end 151a of the straightening vane 151 becomes zero and has the same diameter as the rotating shaft 4.

【0048】この実施例では、ロータ室RTの入口から
流入した旋回流107は面状整流板151により流れ方
向を規制されて上向きの流れ112に変えられ、ロータ
室RTの排気口30から排出される。この時の流体の方
向変換は円滑になされるので圧力損失は少ない。
In this embodiment, the swirling flow 107 flowing from the inlet of the rotor chamber RT is regulated in its flow direction by the planar straightening plate 151 to be changed to the upward flow 112, and is discharged from the exhaust port 30 of the rotor chamber RT. It At this time, the direction of the fluid is smoothly changed so that the pressure loss is small.

【0049】この発明の第3実施例を図8により説明す
る。この実施例と第2実施例との相違点は、整流羽根1
50が、ロータの回転軸4に遊嵌合され、かつ、排気ダ
クト12に固定されていることである。この実施例では
整流羽根150は回転しないが、整流効果は前記第2実
施例よりも大である。
A third embodiment of the present invention will be described with reference to FIG. The difference between this embodiment and the second embodiment is that the rectifying blade 1
50 is loosely fitted to the rotary shaft 4 of the rotor and fixed to the exhaust duct 12. In this embodiment, the rectifying blade 150 does not rotate, but the rectifying effect is larger than that in the second embodiment.

【0050】この発明の第4実施例を図9により説明す
る。この実施例は第1実施例と第2実施例とを組み合わ
せたものである。即ち、ロータ室RTの底面5aに立ち
上がり角θの隆起部材50を設け、その上部にロータの
回転軸4と同心状に整流羽根150を固定したものであ
る。
A fourth embodiment of the present invention will be described with reference to FIG. This embodiment is a combination of the first and second embodiments. That is, the ridge member 50 having a rising angle θ is provided on the bottom surface 5a of the rotor chamber RT, and the rectifying blades 150 are fixed to the upper portion of the ridge member 50 concentrically with the rotary shaft 4 of the rotor.

【0051】一般にロータRTの入口INに流入する流
体は、その入口INにおける流入位置により流線位置が
異なる。即ち、入口INの下部YAから入った空気Ar
はロータの回転軸4付近を旋回しながら上昇し、入口の
上の部分YBから入った空気Arは排気ダクト12の壁
面付近を旋回上昇するが、これらは決して交わることは
ない。
Generally, the fluid flowing into the inlet IN of the rotor RT has different streamline positions depending on the inlet position at the inlet IN. That is, the air Ar entering from the lower portion YA of the inlet IN
Rises while swirling around the rotation axis 4 of the rotor, and the air Ar entering from the portion YB above the inlet swirls up near the wall surface of the exhaust duct 12, but these never intersect.

【0052】本実施例の整流部材では、この流体の特性
に忠実に従い、無駄な旋回を与えず、又、流れの淀みを
作ることがないので圧力損失は極めて少なくなる。
In the straightening member of this embodiment, the characteristics of the fluid are faithfully followed, no unnecessary swirling is given, and no stagnation of the flow is made, so that the pressure loss becomes extremely small.

【0053】この発明の第5実施例を図10により説明
する。この実施例と第4実施例との相違点は、整流部材
100が円錐体110と面状整流板111とから構成さ
れていることである。
A fifth embodiment of the present invention will be described with reference to FIG. The difference between this embodiment and the fourth embodiment is that the rectifying member 100 is composed of a conical body 110 and a planar rectifying plate 111.

【0054】この円錐体100の外周面に複数好ましく
は4〜6枚の面状整流板111を、それらの面111a
を旋回流107に対向する方向に、かつ、その長さ方向
を上下方向に沿うように設ける。
A plurality of, preferably 4 to 6, sheet-shaped straightening vanes 111 are provided on the outer peripheral surface of the cone 100, and their surfaces 111a.
Are provided so as to face the swirl flow 107, and the length direction thereof is along the vertical direction.

【0055】又、その面状整流板111の上部111b
をロータ室RTの排気口30より突出させ、それらの各
面状整流板111の上部111bを残してその余の部分
111Cを旋回流107の上流側に向けて滑らかに湾曲
して湾曲面111dを形成する。
Further, the upper part 111b of the planar straightening plate 111
Are protruded from the exhaust port 30 of the rotor chamber RT, and the remaining portions 111C of the planar straightening vanes 111 are left to smoothly curve toward the upstream side of the swirling flow 107 to form curved surfaces 111d. Form.

【0056】この実施例では、ロータ室の入口INから
流入した旋回流体は、湾曲面111dの面111aに案
内され旋回流107から上向きの流れ112に徐々に変
化する。その際、旋回流107の持っている接線分速度
を軸方向のみの速度に変換され、その状態で排気口30
から機外に排出される。
In this embodiment, the swirling fluid flowing from the inlet IN of the rotor chamber is guided by the surface 111a of the curved surface 111d and gradually changes from the swirling flow 107 to the upward flow 112. At that time, the tangential line velocity of the swirling flow 107 is converted into a velocity only in the axial direction, and in that state, the exhaust port 30
Is discharged from the aircraft.

【0057】この発明の第6実施例を図11により説明
する。この実施例と第5実施例との相違点は整流羽根2
10の面状整流板211が垂直状に円錐体110上に立
設されており、該整流板211の上半部が回転軸4に固
定され、又、その下半部が円錐体110の斜面に母線方
向に固定されていることである。
The sixth embodiment of the present invention will be described with reference to FIG. The difference between this embodiment and the fifth embodiment is that the rectifying blade 2
10 planar straightening vanes 211 are vertically installed upright on the cone 110, the upper half of the straightening vanes 211 are fixed to the rotary shaft 4, and the lower half is the slope of the cone 110. It is fixed in the busbar direction.

【0058】[0058]

【発明の効果】この発明は以上の様にロータ室内にロー
タの回転軸と同心状の整流部材を設けたので、ロータ室
内を流れる流体は、滑らかに方向変換されながら排気口
に向かう。そのため、ロータ室内において大きな圧力損
失を生じることが無いので、従来例に比し分級機全体の
圧力損失が大幅に低減する。
As described above, according to the present invention, since the rectifying member concentric with the rotating shaft of the rotor is provided in the rotor chamber, the fluid flowing in the rotor chamber is directed to the exhaust port while being smoothly redirected. Therefore, a large pressure loss does not occur in the rotor chamber, so that the pressure loss of the entire classifier is significantly reduced as compared with the conventional example.

【0059】又、空気分級機に要するエネルギのうち空
気を吸引するファンの比率は高くフアンに要するエネル
ギは圧力損失に比例するため、従来例に比しファンの動
力は数十%低減できる。
Further, of the energy required for the air classifier, the ratio of the fan sucking air is high, and the energy required for the fan is proportional to the pressure loss, so that the power of the fan can be reduced by several tens of percent as compared with the conventional example.

【図面の簡単な説明】[Brief description of drawings]

【図1】渦流式空気分級機全体の圧力損失とロータブレ
ードの外側における圧力損失を示す図である。
FIG. 1 is a diagram showing a pressure loss of an entire vortex type air classifier and a pressure loss outside a rotor blade.

【図2】本発明の第1実施例を示す分級機の正面図の一
部断面図である。
FIG. 2 is a partial cross-sectional view of the front view of the classifier showing the first embodiment of the present invention.

【図3】図2のIII-III線縦断面図である。FIG. 3 is a vertical sectional view taken along line III-III in FIG.

【図4】分級室断面における気流モデルを示す図であ
る。
FIG. 4 is a diagram showing an airflow model in a cross section of the classification chamber.

【図5】本発明の第2実施例を示す縦断面図である。FIG. 5 is a vertical cross-sectional view showing a second embodiment of the present invention.

【図6】第2実施例の整流羽根の拡大平面図である。FIG. 6 is an enlarged plan view of a flow straightening vane according to a second embodiment.

【図7】第3実施例の整流羽根の拡大正面図図である。FIG. 7 is an enlarged front view of the flow straightening vanes of the third embodiment.

【図8】本発明の第3実施例を示す縦断面図である。FIG. 8 is a vertical cross-sectional view showing a third embodiment of the present invention.

【図9】本発明の第4実施例を示す縦断面図である。FIG. 9 is a vertical cross-sectional view showing a fourth embodiment of the present invention.

【図10】本発明の第5実施例を示す斜視図である。FIG. 10 is a perspective view showing a fifth embodiment of the present invention.

【図11】本発明の第6実施例を示す斜視図である。FIG. 11 is a perspective view showing a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

4 ロータの回転軸 5 ロ−タ 6 ロータブレード 7 分級室 30 ロータ室の排気口 50 隆起状体 100 整流羽根 150 整流羽根 RT ロータ室 R1 ロータブレードの内周半径 4 Rotor Rotor 5 Rotor 6 Rotor Blade 7 Classification Chamber 30 Rotor Chamber Exhaust Port 50 Raised Body 100 Rectifying Blade 150 Rectifying Blade RT Rotor Chamber R1 Inner Radius of Rotor Blade

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】入口と排気口とを有するロータ室と、該ロ
ータ室の入口に配設したロータブレードと、該ロータ室
の入口の外周に設けた分級室と、を備えた空気分級装置
において;前記ロータ室内にロータの回転軸と同心状の
整流部材を設けたことを特徴とする空気分級装置。
1. An air classifier comprising: a rotor chamber having an inlet and an exhaust port; a rotor blade disposed at the inlet of the rotor chamber; and a classification chamber provided at the outer periphery of the inlet of the rotor chamber. An air classifying device characterized in that a rectifying member concentric with a rotating shaft of the rotor is provided in the rotor chamber.
【請求項2】整流部材が、隆起状体であることを特徴と
する請求項1記載の空気分級装置。
2. The air classifying device according to claim 1, wherein the rectifying member is a raised body.
【請求項3】整流部材が、ロータの回転軸に固定した整
流羽根であることを特徴とする請求項1記載の空気分級
装置。
3. The air classifying device according to claim 1, wherein the rectifying member is a rectifying blade fixed to the rotating shaft of the rotor.
【請求項4】整流部材が、ロータの回転軸に遊嵌合し、
かつ、ケーシングに固定した整流羽根であることを特徴
とする請求項1記載の空気分級装置。
4. A straightening member is loosely fitted to a rotating shaft of a rotor,
The air classifier according to claim 1, wherein the air classifier is a straightening vane fixed to the casing.
【請求項5】整流部材が、ロータの底面に設けた隆起状
体と、該隆起状体の上方に設けた整流羽根とからなるこ
とを特徴とする請求項1記載の空気分級装置。
5. The air classifying device according to claim 1, wherein the rectifying member comprises a ridged body provided on the bottom surface of the rotor and a rectifying vane provided above the ridged body.
【請求項6】整流部材が、ロータの底面に設けた隆起状
体と、少なくともその下半部を該隆起状体の斜面に固定
した整流羽根と、からなることを特徴とする請求項1記
載の空気分級装置。
6. The rectifying member comprises a raised body provided on the bottom surface of the rotor, and a rectifying blade having at least a lower half portion thereof fixed to the slope of the raised body. Air classifier.
【請求項7】整流羽根が、下半部に湾曲面を形成した逆
三角形の面状整流板であることを特徴とする請求項3、
4、5、又は、6記載の空気分級装置。
7. The straightening vane is an inverted triangular planar straightening vane having a curved surface formed in the lower half thereof.
The air classifier according to 4, 5, or 6.
【請求項8】整流羽根が、垂直状に形成した面状整流板
であることを特徴とする請求項3、4、5、又は、6記
載の空気分級装置。
8. The air classifier according to claim 3, 4, 5 or 6, wherein the straightening vanes are vertically formed planar straightening vanes.
【請求項9】隆起状体が、円錐状体であることを特徴と
する請求項1記載の空気分級装置。
9. The air classification device according to claim 1, wherein the raised body is a conical body.
【請求項10】円錐状体が、ロータブレード内周円から
ロータの回転軸に向かって円錐状に盛り上がっているこ
とを特徴とする請求項9記載の空気分級装置。
10. The air classifying device according to claim 9, wherein the conical body rises in a conical shape from the inner circumference circle of the rotor blade toward the rotation axis of the rotor.
【請求項11】円錐状体の斜面の底面に対する角度θ
が、ロータの高さH、ロータブレード内径R3との関係
から次式で求められることを特徴とする請求項9記載の
渦流式空気分級装置。 θ=tan-1{(0.3〜0.6)
H/R3
11. An angle θ of a slope of a conical body with respect to a bottom surface.
10. The vortex type air classifier according to claim 9, wherein is determined from the relationship between the rotor height H and the rotor blade inner diameter R3 by the following equation. θ = tan −1 {(0.3-0.6)
H / R 3 }
JP33649393A 1993-03-31 1993-12-28 Air classifier Expired - Lifetime JP3482504B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP33649393A JP3482504B2 (en) 1993-12-28 1993-12-28 Air classifier
EP94910553A EP0645196A4 (en) 1993-03-31 1994-03-29 Vortex type air classifier.
PCT/JP1994/000502 WO1994022599A1 (en) 1993-03-31 1994-03-29 Vortex type air classifier
KR1019940703611A KR0186059B1 (en) 1993-03-31 1994-03-29 Vortex type air classifier
CA002134456A CA2134456A1 (en) 1993-03-31 1994-03-29 Vortex pneumatic classifier
AU62916/94A AU673059C (en) 1993-03-31 1994-03-29 Vortex type air classifier
US08/313,263 US5533629A (en) 1993-03-31 1994-03-29 Vortex pneumatic classifier
TW083102743A TW257696B (en) 1993-03-31 1994-03-30
AU64266/96A AU679886C (en) 1993-03-31 1996-08-26 Vortex type air classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33649393A JP3482504B2 (en) 1993-12-28 1993-12-28 Air classifier

Publications (2)

Publication Number Publication Date
JPH07185465A true JPH07185465A (en) 1995-07-25
JP3482504B2 JP3482504B2 (en) 2003-12-22

Family

ID=18299705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33649393A Expired - Lifetime JP3482504B2 (en) 1993-03-31 1993-12-28 Air classifier

Country Status (1)

Country Link
JP (1) JP3482504B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101270A1 (en) * 2009-03-03 2010-09-10 Ricoh Company, Ltd. Classifying apparatus, classifying method, and method for producing toner
JP5048646B2 (en) * 2006-02-24 2012-10-17 太平洋セメント株式会社 Centrifugal air classifier
JP6160884B1 (en) * 2016-08-29 2017-07-12 株式会社修美工業 Separator, separator and blasting method
WO2020066046A1 (en) * 2018-09-26 2020-04-02 佐竹化学機械工業株式会社 Classifying rotor and classifying device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101947443B1 (en) * 2018-05-25 2019-02-13 민경남 Pocket blade air classifier

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048646B2 (en) * 2006-02-24 2012-10-17 太平洋セメント株式会社 Centrifugal air classifier
WO2010101270A1 (en) * 2009-03-03 2010-09-10 Ricoh Company, Ltd. Classifying apparatus, classifying method, and method for producing toner
JP2010227924A (en) * 2009-03-03 2010-10-14 Ricoh Co Ltd Classifier and classifying method
US9004285B2 (en) 2009-03-03 2015-04-14 Ricoh Company, Ltd. Classifying apparatus, classifying method, and method for producing toner
JP6160884B1 (en) * 2016-08-29 2017-07-12 株式会社修美工業 Separator, separator and blasting method
JP2018034212A (en) * 2016-08-29 2018-03-08 株式会社修美工業 Separator, separation unit and blast construction method
WO2020066046A1 (en) * 2018-09-26 2020-04-02 佐竹化学機械工業株式会社 Classifying rotor and classifying device
KR20210043691A (en) * 2018-09-26 2021-04-21 사타케 가가쿠 기카이 고교 가부시키가이샤 Classification rotor and classifier
CN112739461A (en) * 2018-09-26 2021-04-30 佐竹化学机械工业株式会社 Classifying impeller and classifying device
JPWO2020066046A1 (en) * 2018-09-26 2021-11-25 佐竹化学機械工業株式会社 Classification rotor and classification device

Also Published As

Publication number Publication date
JP3482504B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
KR0186059B1 (en) Vortex type air classifier
US6739456B2 (en) Apparatus and methods for separating particles
US5593043A (en) Rotor for mechanical air classifiers
JPS59142877A (en) Air classifier
JP3482504B2 (en) Air classifier
US2754967A (en) Centripetal classifier
US2988220A (en) Turbo-classifier
CN112739461B (en) Classifying impeller and classifying device
US4772255A (en) Method and apparatus for sizing grains smaller than 300μ
JP3482503B2 (en) Eddy current air classifier
JP3448716B2 (en) Eddy current air classifier
JP2002119920A (en) Air flow type classifier
JP2571126B2 (en) Air classifier for fine powder
JP3341088B2 (en) Eddy current air classifier
JPH10323623A (en) Air flow type classifier
KR100235291B1 (en) Air separator and method
JPH08173909A (en) Classifier
JPH03270751A (en) Rectifying part and cyclone
JPH01270982A (en) Air separator
JP2003047880A (en) Pulverization nozzle, auxiliary pulverization nozzle, and jet mill provided with them
JPH0212145B2 (en)
JPS63267487A (en) Air sorter
JPH0538483A (en) Centrifugal air flow classifying device
JPH0924341A (en) Method for classifying powder and granular bodies
JPS59102449A (en) Shaft type mill

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

EXPY Cancellation because of completion of term