JPH03270751A - Rectifying part and cyclone - Google Patents

Rectifying part and cyclone

Info

Publication number
JPH03270751A
JPH03270751A JP6905590A JP6905590A JPH03270751A JP H03270751 A JPH03270751 A JP H03270751A JP 6905590 A JP6905590 A JP 6905590A JP 6905590 A JP6905590 A JP 6905590A JP H03270751 A JPH03270751 A JP H03270751A
Authority
JP
Japan
Prior art keywords
whirling
cylinder
flow
inner cylinder
rectifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6905590A
Other languages
Japanese (ja)
Other versions
JP2722126B2 (en
Inventor
Yoji Kawamura
川村 洋二
Ryosuke Narishima
成島 良輔
Tetsuo Ogiri
哲雄 大桐
Hiroaki Iwakawa
博章 岩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP2069055A priority Critical patent/JP2722126B2/en
Priority to AU68002/90A priority patent/AU629719C/en
Priority to US07/627,462 priority patent/US5180257A/en
Publication of JPH03270751A publication Critical patent/JPH03270751A/en
Application granted granted Critical
Publication of JP2722126B2 publication Critical patent/JP2722126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/12Construction of the overflow ducting, e.g. diffusing or spiral exits
    • B04C5/13Construction of the overflow ducting, e.g. diffusing or spiral exits formed as a vortex finder and extending into the vortex chamber; Discharge from vortex finder otherwise than at the top of the cyclone; Devices for controlling the overflow
    • B04C2005/136Baffles in the vortex finder

Landscapes

  • Cyclones (AREA)

Abstract

PURPOSE:To get rid of unnecessary eddy which is unnecessary for particle separation and causes energy loss and heighten collection efficiency with whirling flow by placing a rectifying part consisting of a rectifying plate installed in the circumference of the surrounding of a conical rectifying body in the space immediately under the lower end part of an inner cylinder. CONSTITUTION:A mixed phase flow 5 of powdered particles and a fluid is supplied toward tangent line from a flowing-in cylinder 3 to a whirling cylinder 1 to generate a whirling flow 7 in the whirling cylinder 1 and the whirling flow is moved to the lower part from the upper part of the whirling cylinder 1. During the time, particles floating in the gas spring out in the wall side of the whirling cylinder 1 owing to the centrifugal force and descend spirally and are discharged out of the apparatus. The remaining fine powder, etc., with small grain size forms the whirling flow with a conveying air, etc., and is converged gradually from the wall side of the whirling cylinder to the axial part of the whirling cylinder and becomes a whirling flow with a small diameter and then moves immediate under an inner cylinder 2 and is led to the lower end part of a planer rectifying plate 11 and changes into an upward flow. A partial speed to the tangent line direction of the whirling flow is converted into a speed to only the axial direction by the rectifying part. As a result, unnecessary eddy is eliminated in the region under the inner cylinder.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、セメント製造装置における原料の予熱装置
として利用されるサスペンションプレータの一部分を構
成するサイクロン、あるいは其の池の一般の粉粒体サイ
クロン、若しくは旋回流式分級機の粗粉排出部に用いら
れる整流部材、およびこの整流部材を用いたサイクロン
に関するものである。
Detailed Description of the Invention [Industrial Field of Application] This invention relates to a cyclone that constitutes a part of a suspension plate used as a preheating device for raw materials in a cement manufacturing device, or a general powder and granular material in a pond thereof. The present invention relates to a rectifying member used in a coarse powder discharge section of a cyclone or a swirling flow classifier, and a cyclone using this rectifying member.

[従来の技術] 整流部材を用いたサイクロンには、特開昭521496
66に示すようなものがある。
[Prior art] A cyclone using a rectifying member is disclosed in Japanese Patent Application Laid-Open No. 521496.
There are some as shown in 66.

すなわち、粉粒体と流体の混相流を旋回筒の上部開口か
ら接線方向に吸入し、該旋回筒内で旋回させて粗粉と微
粉に分離し、粗粉を旋回筒内を下降させてその下部排出
口から排出し、また、その池の一部微粉を含む空気を旋
回筒の上部中央に取り1寸けられ、かつ、旋回筒内に開
口する空気排出用の内筒を経て次工程へ排出するサイク
ロンにおいて、上記空気排出用内筒の任意位置の同一内
周面上に、内筒の内径の2分の1より小さい任意翼高を
有する複数枚の捩じれ翼からなる整流ベーンを、適宜駆
動手段により排出用向筒の軸方向に移動可能に取り1寸
け、その内筒内における旋回流を軸方向の流れに変更す
るものである。
That is, a multiphase flow of powder, granular material and fluid is sucked in tangentially from the upper opening of the rotating cylinder, is swirled within the rotating cylinder to separate coarse powder and fine powder, and the coarse powder is lowered inside the rotating cylinder to separate it. The air containing part of the fine particles in the pond is discharged from the lower discharge port and is taken to the center of the upper part of the rotating cylinder and passes through the inner cylinder for air discharge, which is opened in the rotating cylinder and sent to the next process. In the discharging cyclone, a rectifying vane consisting of a plurality of twisted blades having an arbitrary blade height smaller than one half of the inner diameter of the inner cylinder is placed on the same inner peripheral surface at an arbitrary position of the inner cylinder for air exhaust, as appropriate. The discharge cylinder is movably moved in the axial direction by a driving means, and the swirling flow in the inner cylinder is changed to an axial flow.

[発明が解決しようとする課題] 内筒下の領域においては、サイクロン内の上昇速度の大
小が分離に対して支配的な影響を与えるものと思われ、
内筒下の領域に達した粒子は殆ど空気排出用の内Mi1
1へ搬送さ、系外に排出されてしまうことが推察される
[Problem to be solved by the invention] In the area below the inner cylinder, the magnitude of the rising speed within the cyclone is thought to have a dominant influence on separation.
Most of the particles that have reached the area below the inner cylinder are the inner Mi1 for air exhaust.
1 and is presumably discharged from the system.

つまり、内筒下の渦(強制渦)の領域はエネルギ・ロス
が大きいだけで分離作用には寄与しない無駄な渦である
In other words, the region of the vortex (forced vortex) under the inner cylinder is a useless vortex that only causes a large energy loss and does not contribute to the separation effect.

従来例のサイクロンにおいては、内筒内の先端にli流
ベーンを設けることにより前記内筒内に整流ベーンを設
けない場合と比較して、圧力損失をかなり低減すること
が可能である。
In a conventional cyclone, by providing an Li flow vane at the tip of the inner cylinder, it is possible to considerably reduce pressure loss compared to a case where no rectifying vane is provided within the inner cylinder.

しかし、このサイクロンでは前記無駄な渦を消去できな
いので、圧損低減が必ずしも満足できるものではない、
(特開昭52−149666第第9図参照〉 この発明の目的は、上記事情に鑑み捕集効率を低下する
ことなく圧力損失を極めて大きく低減することができる
整流部材およびサイクロンを提供することである。
However, since this cyclone cannot eliminate the wasteful vortices, the pressure loss reduction is not necessarily satisfactory.
(See Figure 9 of JP-A-52-149666) In view of the above circumstances, an object of the present invention is to provide a rectifying member and a cyclone that can significantly reduce pressure loss without reducing collection efficiency. be.

[課題を解決するための手段] この発明の整流部材は、円錐形整流体の周囲の円錐面に
整流板を設けることにより、また、この発明のサイクロ
ンは、旋回筒の内部上方に内筒を設けると共に該旋回筒
の外周に流入筒を接線方向に設け、該旋回筒の下部に排
出口を設けてなるサイクロンにおいて、該内筒の直下の
空間に円錐形整流体を前記内筒と同心的に配置するとと
もに、該円錐形整流体の周囲の円錐面に整流板を設ける
ことにより、前記目的を達成しようとするものである。
[Means for Solving the Problems] The current regulating member of the present invention is provided with a current regulating plate on the conical surface surrounding the conical flow regulating member, and the cyclone of the present invention is provided with an inner cylinder above the inside of the rotating cylinder. In the cyclone, an inflow cylinder is provided tangentially on the outer periphery of the rotating cylinder, and an outlet is provided at the lower part of the rotating cylinder, and a conical fluid regulator is provided in a space directly below the inner cylinder concentrically with the inner cylinder. The purpose is to achieve the above object by disposing a flow regulating plate on the conical surface around the conical flow regulating body.

[作用コ 流入筒から旋回筒内に向けて粉粒体と流体との混相流を
接線方向に供給し、その旋回筒内に旋回流を発生し、そ
の旋回流を旋回筒の上部から下部に移動し、その間にガ
ス中に浮遊した粒子は遠心力によって旋回筒壁面側へ飛
び出し螺旋状に降下して器外に排出される。
[Operation: A multiphase flow of powder and fluid is supplied tangentially from the inflow tube into the swirl tube to generate a swirl flow inside the swirl tube, and the swirl flow is directed from the top to the bottom of the swirl tube. During the movement, the particles suspended in the gas fly out toward the wall of the rotating cylinder due to centrifugal force, descend in a spiral pattern, and are discharged outside the vessel.

また、残された粒径の小さい微粉等は前記搬送空気等と
共に旋回流を形成しなから、旋回筒の壁面側から次第に
旋回筒の軸心部寄りに集められて小さな径の旋回流にな
って、前記内筒の直下に移動し、そこに位置する整流板
の下端部に案内されて旋回流から上向きの流れに変1ヒ
し、その際旋回流の持っている接線方向の分速度を整流
部材の作用により、軸方向のみの速度に変換しその状態
で内筒内を通って器外に移動する。 上記の工程におい
て内筒下の領域では粒子の分離に不必要でかつエネルギ
・ロスを発生させている不用な渦は消去されている。
In addition, the remaining fine particles with small particle diameters do not form a swirling flow together with the conveying air, etc., but are gradually gathered toward the axis of the swirling tube from the wall side of the swirling tube, and become a swirling flow with a small diameter. The flow then moves directly under the inner cylinder and is guided by the lower end of the rectifying plate located there, changing from a swirling flow to an upward flow, and at this time, the tangential velocity of the swirling flow is By the action of the rectifying member, the velocity is converted to only the axial direction, and in that state it moves through the inner cylinder to the outside of the vessel. In the above process, unnecessary vortices that are unnecessary for particle separation and cause energy loss are eliminated in the region below the inner cylinder.

[実施例] この発明の実施例を添付図面によって説明すると、円筒
1aの下部に逆円錐筒1bを接続してなる旋回筒l内部
の上方に内筒2を同心的に設けると共に、その旋回筒1
の外周に流入筒3を接線方向に設け、また同旋回WJl
の下部に粉粒の落下口4を設け、粉粒体と搬送空気との
混相流5そ流入筒3から旋回筒1内に向けて接線方向に
供給し、その旋回筒1内に旋回流7を発生させなから、
その旋回流7を旋回筒1の上部から下部に移動し、その
間に於いてガス中に浮遊した粒子pは遠心力によって旋
回筒壁面側へ飛び出し、その内壁面に沿って落下して落
下口4から外部に排出される。
[Embodiment] An embodiment of the present invention will be described with reference to the accompanying drawings. An inner cylinder 2 is provided concentrically above the inside of a rotating cylinder l formed by connecting an inverted conical cylinder 1b to the lower part of a cylinder 1a, and 1
An inflow cylinder 3 is provided in the tangential direction on the outer periphery of the
A powder drop port 4 is provided at the bottom of the tube, and a multiphase flow 5 of powder and conveying air is supplied tangentially from the inflow tube 3 into the swirling tube 1, and a swirling flow 7 is created in the swirling tube 1. Because it does not cause
The swirling flow 7 is moved from the upper part of the swirling tube 1 to the lower part, and during this time, the particles p suspended in the gas are thrown out to the wall surface of the swirling tube due to centrifugal force, and fall along the inner wall surface of the swirling tube 1 to fall into the drop port 4. is discharged to the outside.

また、該内筒2の下端部2aの直下の空間8には円錐形
整流体10と面状整流板11とからなる整流部材100
が配設されている。
Further, in the space 8 directly below the lower end 2a of the inner cylinder 2, a flow regulating member 100 consisting of a conical flow regulating member 10 and a planar flow regulating plate 11 is provided.
is installed.

そして、該空間8に円錐形整流体10を前記旋回筒1と
同心的に配置するとともに、その円錐状整流体10の外
壁面に複数、好ましくは4〜6枚の面状整流板11を設
ける。
A conical flow regulating plate 10 is arranged concentrically with the rotating tube 1 in the space 8, and a plurality of, preferably 4 to 6, planar flow regulating plates 11 are provided on the outer wall surface of the conical flow regulating plate 10. .

この整流体10は、第3(2Iに示すように下面10a
が開放されその頂部10bが閉じているので、気流(搬
送空気なと)Aが該整流体10内を貫流することができ
ない、また、整流板11は軸心に対して直角な三角形状
の板である。
This rectifier 10 has a third (lower surface 10a as shown in 2I)
is open and its top 10b is closed, so the airflow (conveying air) A cannot flow through the rectifier 10.The rectifier plate 11 is a triangular plate perpendicular to the axis. It is.

このようにして形成した複数の面状整流板11の外周縁
lieを内筒2の仮想円筒上より内側に位置し、前記旋
回筒1の内壁面寄りの旋回流7で分離された粉体粒より
粒径の小さい粉粒体等は前記搬送空気等と共に旋回流7
全形威しなから前記内筒2の直下の空間Sに移動し、該
整流体10によりその進行を遮られながらそこに配置さ
れている面状整流板11の面11aに案内されて旋回流
7から上向きの流れ12に徐々に変1ヒし、そのg!、
旋回流7の持っている旋回流速を消滅させ軸方向のみの
速度に変換し、その状態で内筒2内を通って次の工程に
移動するものである。
The outer peripheral edges lie of the plurality of planar rectifying plates 11 thus formed are located inside the virtual cylinder of the inner cylinder 2, and the powder particles are separated by the swirling flow 7 near the inner wall surface of the swirling cylinder 1. Powder and granular materials with smaller particle diameters flow into the swirling flow 7 together with the conveying air, etc.
The entire shape moves to the space S directly under the inner cylinder 2, and while its progress is blocked by the flow regulating plate 10, it is guided by the surface 11a of the planar current plate 11 disposed there, and a swirling flow is generated. It gradually changes from 7 to 12 with an upward flow, and that g! ,
The swirling flow velocity of the swirling flow 7 is eliminated and converted to a velocity only in the axial direction, and in this state, the swirling flow passes through the inner cylinder 2 and moves to the next step.

このときにおけるサイクロン15内の流れは、第5図の
鎖線Tの様になり接線方向風速Vθ(m15ee)が最
高となる位置は内筒径、すなわち、内筒の外壁、の下部
となり、粒子の分離作用に寄与するまでの風速■θは変
fヒしていないにもかかわらず、分離作用に寄与しない
内筒内においては殆ど風速Vθが存在していない。
At this time, the flow inside the cyclone 15 is as shown by the chain line T in FIG. Although the wind speed Vθ which does not contribute to the separation effect remains unchanged, there is almost no wind speed Vθ in the inner cylinder which does not contribute to the separation effect.

すなわち1粒子の分離に不必要でエネルギ ロスを発生
させている不2・要な渦は消されているのて′ある。こ
れは、整流部材の作用において、内筒下の空間に設けた
円錐形整流体によりこの円錐形整流体よりも下の部分で
上昇気流を抑え、そこに流入する流体を減少させること
によりこの部分での粒子の分離には不要な流木抵抗を極
力抑える一方、サイクロン内に流れる流体の大部分を内
筒下端部の真下の空間、すなわち、整流板間の空間で整
流部材により軸方向の流れに整流し、サイクロン系外へ
スムーズに排出させることで、前述の作用が得られるも
のである。なお、第5図における実線tは整流部材10
0を設けない場合を示すが、サイクロン外径から中心0
までの距離x (■)が長くなるほど風速Vθは上昇し
内筒2直径りの6割あるいは2/′3位の位置で最高と
なり、その後は消滅しサイクロンの中心0で零となる。
In other words, the unnecessary vortices that cause energy loss and are unnecessary for the separation of one particle have been eliminated. In the action of the flow regulating member, the conical fluid regulating member provided in the space below the inner cylinder suppresses the rising airflow in the area below the conical fluid regulating member, reducing the fluid flowing into this area. While minimizing the driftwood resistance that is unnecessary for particle separation in the cyclone, most of the fluid flowing inside the cyclone is made to flow in the axial direction by a rectifying member in the space directly below the lower end of the inner cylinder, that is, in the space between the rectifying plates. By rectifying the flow and smoothly discharging it out of the cyclone system, the above-mentioned effect can be obtained. Note that the solid line t in FIG. 5 indicates the rectifying member 10.
The case where 0 is not provided is shown, but from the cyclone outer diameter to the center 0
As the distance x (■) increases, the wind speed Vθ increases and reaches its maximum at about 60% or 2/'3 of the diameter of the inner cylinder, after which it disappears and reaches zero at the center of the cyclone.

すなわち、この場合には、内筒内部において粒子の分離
に不必要でエネルギ・ロスを発生させている不用な渦が
消えていないのである。
That is, in this case, the unnecessary vortices that are unnecessary for particle separation and generate energy loss inside the inner cylinder have not disappeared.

また、該整流体10の底面10a側から頂部lob側に
向かい気流Aの通る空間Sが次第に広くなっているので
、気流Aの単位面積当たりの流量は該空間Sの全範囲に
わたってほぼ等しくなる。そのため、エネルギ・ロスが
少なくなると共にコンスタントに搬送空気などを排出す
ることが出来る。
In addition, since the space S through which the airflow A passes gradually becomes wider from the bottom surface 10a side of the flow regulator 10 to the top lob side, the flow rate per unit area of the airflow A becomes approximately equal over the entire range of the space S. Therefore, energy loss is reduced and conveying air etc. can be constantly discharged.

以上本発明を添付図面の実施例について説明したか、こ
の発明は上記実施例に限定されるものでなく、その要旨
の範囲内で部分的な1′N或の変更を行ったり、或は部
分的に他の構成を付加して実施することもでき、例えば
、円錐形整流体の頂部10bを閉じ、その底面10aを
開放するかわりに、第4図に示すように、該頂部10b
を開放し、その底面10aを閉じて気流Aが整流体IO
内を貫涜しないようにしても良い、また、整流板11は
、第6A図、第6B図、第7A図、第7B図に示すよう
に、捩じれた形状のものでも良く、更には、第8図に示
すように、面11aを旋回流7に対する方向に、かつ、
その長さ方向を上下方向に沿うように設け、その面状整
流板11の上部11bを前記内筒2の下端部2aに固定
し、それらの各面状整流板11の上部11bを残してそ
の余の部分11Cを旋回流7の上流側に向けて滑らかに
湾曲して湾曲面11dを形成しても良い。
Although the present invention has been described above with reference to the embodiments shown in the accompanying drawings, the present invention is not limited to the embodiments described above, and may be partially modified or modified within the scope of the gist thereof. For example, instead of closing the top 10b of the conical flow regulator and opening its bottom 10a, as shown in FIG.
is opened and its bottom surface 10a is closed to direct the airflow A to the rectifier IO.
The current plate 11 may have a twisted shape as shown in FIGS. 6A, 6B, 7A, and 7B. As shown in FIG. 8, the surface 11a is directed toward the swirling flow 7, and
The length direction is along the vertical direction, and the upper part 11b of the planar current plate 11 is fixed to the lower end 2a of the inner cylinder 2, leaving the upper part 11b of each planar current plate 11. The remaining portion 11C may be smoothly curved toward the upstream side of the swirling flow 7 to form the curved surface 11d.

また、各種例示した整流部材において円錐形整流体は図
示した側面が直線状のものではなく湾曲した形状のもの
でも良い。
Moreover, in the various illustrated flow regulating members, the conical flow regulating member may have a curved side surface instead of the straight one shown in the drawing.

なお、整流部材100は、サイクロンに限らず旋回式若
しくは強制渦流式の風力分級機における精粉排出部に設
けることも可能である。
Note that the straightening member 100 can be provided not only in a cyclone but also in a fine powder discharge section of a rotating type or forced vortex type wind classifier.

[発明の効果コ この発明は上述の通りであり1円錐形整流体の周囲の円
周面に整流板を設けた整流部材を内筒の下端部の直下の
空間に配置すると、粒子の分離に不必要でエネIレギ・
ロスを発生させている不要な渦を消すことが出来ると共
に整流板は内筒よりも外側の分級に必要な旋回流に影響
を与えることがなく、その旋回流による補集効率を低下
することがない。
[Effects of the Invention] This invention is as described above, and when a rectifying member provided with a rectifying plate on the circumferential surface around the conical flow rectifier is placed in the space directly under the lower end of the inner cylinder, particles can be separated. Unnecessary energy regulation
In addition to being able to eliminate unnecessary vortices that cause loss, the current plate does not affect the swirling flow necessary for classification outside the inner cylinder, and the collection efficiency due to the swirling flow is not reduced. do not have.

また1円錐形整流体は底面側から頂部側に向かって気流
の通る空間が広くなっているので、単位面積当たりの流
量がその全空間においてほぼ等しくなる。そのため、エ
ネルギ・ロスか少なくなると共にコンスタントな搬送空
気等の排出を行うことが出来る。
In addition, since the space through which the airflow passes becomes wider from the bottom side to the top side of the one-conical fluid regulator, the flow rate per unit area is approximately equal in the entire space. Therefore, energy loss is reduced, and conveying air, etc. can be constantly discharged.

従って、この発明によれば第8図に示す円錐型整流部材
を用いた次の実験がら明らかなように、捕集効率を低下
することなく圧力損失を低減することができる。
Therefore, according to the present invention, pressure loss can be reduced without reducing collection efficiency, as is clear from the following experiment using the conical rectifying member shown in FIG.

第9図に示すように、内筒径D、内筒下端2aから整流
部材100の下端100b迄の距離をし、整流部材10
0の下端径をdとし、比L/Dを変化させた場合、圧損
ΔPと捕集効率ηとがどのように変fヒするかを実験し
たところ第10図に示す通りであった。
As shown in FIG.
When the lower end diameter of 0 is set as d and the ratio L/D is changed, an experiment was conducted to examine how the pressure loss ΔP and the collection efficiency η change, as shown in FIG.

この図において、横軸は前記比L/D(−)、左縦軸は
圧損比A=ΔP/′ΔP1、右縦軸は捕集効比B=η/
ηlを、それぞれ整流部材を設けない場合(ΔPI 、
η1ンの比でしめす。
In this figure, the horizontal axis is the ratio L/D(-), the left vertical axis is the pressure drop ratio A = ΔP/'ΔP1, and the right vertical axis is the collection efficiency ratio B = η/
ηl, respectively when no rectifying member is provided (ΔPI,
It is expressed as the ratio of η1.

この図から明らかなように、捕集効率比Bは変1ヒせず
、1.0であり、また、前記距離りが長いほど、すなわ
ち、L 、/ Dの(−)値が大きいほど、圧損比Aが
減少する。
As is clear from this figure, the collection efficiency ratio B remains unchanged at 1.0, and the longer the distance, that is, the greater the (-) value of L,/D, the more Pressure drop ratio A decreases.

ちなみに、前記L /’ Dは1,74以上とし、がっ
、整流部材の下端100bが逆円錐t¥J11bに接し
ない範囲が好ましい。
Incidentally, it is preferable that the L/'D be 1.74 or more and within a range where the lower end 100b of the rectifying member does not touch the inverted cone t\J11b.

また、前記比L/D=1.0にして整流部材の下端径d
と内筒径りとの比d /’ Dを変化させた場合、圧損
比Aと捕集効率比Bがどのように変fヒするかを実験し
たところ、第11図に示す通りであった。
Further, the lower end diameter d of the rectifying member is set to the ratio L/D=1.0.
An experiment was conducted to see how the pressure drop ratio A and collection efficiency ratio B change when the ratio d/' D between .

この図において、横軸は前記d/D (−)、左縦軸は
圧損比A、右縦軸は捕集効率比B、をそれぞれ示す。
In this figure, the horizontal axis shows the d/D (-), the left vertical axis shows the pressure loss ratio A, and the right vertical axis shows the collection efficiency ratio B, respectively.

この図から明らかなように、前記比d /’ Dが1.
0を越乙ると捕集効率比Bが低下し、また、前記d 、
/ Dが大きくなるほど圧損比Aが減少する、すなわち
、前記整流部材100の下端径dは内fiDと同等か若
しくは若干中さいほうが@ましい、
As is clear from this figure, the ratio d/'D is 1.
If it exceeds 0, the collection efficiency ratio B decreases, and the above d,
/ The pressure drop ratio A decreases as D increases, that is, it is preferable that the lower end diameter d of the rectifying member 100 is equal to or slightly medium to the inner fiD.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のサイクロン分級機の縦断面図、第2図
はその平面図、第3図は整流部材の拡大断面図、第4図
は他の実施例の整流部材の拡大断面図で第3図に相当す
る図、第5図は接線方向風速とサイクロン外壁から中心
迄の距離との関f系を示す図、第6AI]、第7A図は
それぞれ他の整流部材を示す平面図、第6B図、第7B
図はそれぞれその正面図、8図は他の実施例を示す平面
図、第9図は第S図の整流部材の拡大斜視図、第10図
、第11図はそれぞれ圧損比と捕集効率比との関係を示
す図、である。 11・・・面状整流板 11a・・・面状整流板の面 lie・・・外周縁 1・・旋回筒 2・・・内筒 3・・・流入筒 4・・・落下口 5・・混相流 7・・・旋回流 8・・・空間 lO・・・円錐形整流体
Fig. 1 is a longitudinal sectional view of the cyclone classifier of the present invention, Fig. 2 is a plan view thereof, Fig. 3 is an enlarged sectional view of a rectifying member, and Fig. 4 is an enlarged sectional view of a rectifying member of another embodiment. A diagram corresponding to FIG. 3, FIG. 5 is a diagram showing the relationship between the tangential wind speed and the distance from the outer wall of the cyclone to the center, FIG. 6AI], and FIG. 7A is a plan view showing other flow regulating members, respectively. Figure 6B, Figure 7B
The figures are respectively front views, Figure 8 is a plan view showing another embodiment, Figure 9 is an enlarged perspective view of the rectifying member in Figure S, Figures 10 and 11 are the pressure loss ratio and collection efficiency ratio, respectively. FIG. 11...Planar current plate 11a...Face of planar current plate...Outer peripheral edge 1...Swivel tube 2...Inner tube 3...Inflow tube 4...Drop port 5... Multiphase flow 7...Swirling flow 8...Space lO...Conical rectifier

Claims (2)

【特許請求の範囲】[Claims] (1)円錐形整流体の周囲の円錐面に整流板を設けたこ
とを特徴とする整流部材
(1) A flow regulating member characterized in that a flow regulating plate is provided on a conical surface around a conical flow regulating member.
(2)旋回筒の内部上方に内筒を設けると共に、その旋
回筒の外周に流入筒を接線方向に設け、また、該旋回筒
の下部に排出口を設けてなるサイクロンにおいて、該内
筒の直下の空間に、円錐形整流体を前記内筒と同心的に
配置するとともに該円錐形整流体の周囲の円錐面に整流
板を設けたことを特徴とするサイクロン
(2) In a cyclone in which an inner cylinder is provided above the inside of the rotating cylinder, an inlet cylinder is provided tangentially on the outer periphery of the rotating cylinder, and an outlet is provided at the bottom of the rotating cylinder, the inner cylinder is A cyclone characterized in that a conical fluid regulator is disposed concentrically with the inner cylinder in a space immediately below, and a current plate is provided on a conical surface surrounding the conical fluid regulator.
JP2069055A 1989-12-16 1990-03-19 Cyclone Expired - Lifetime JP2722126B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2069055A JP2722126B2 (en) 1990-03-19 1990-03-19 Cyclone
AU68002/90A AU629719C (en) 1989-12-16 1990-12-12 Straightening instrument and cyclone
US07/627,462 US5180257A (en) 1989-12-16 1990-12-14 Straightening instrument and cyclone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2069055A JP2722126B2 (en) 1990-03-19 1990-03-19 Cyclone

Publications (2)

Publication Number Publication Date
JPH03270751A true JPH03270751A (en) 1991-12-02
JP2722126B2 JP2722126B2 (en) 1998-03-04

Family

ID=13391503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2069055A Expired - Lifetime JP2722126B2 (en) 1989-12-16 1990-03-19 Cyclone

Country Status (1)

Country Link
JP (1) JP2722126B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249242A (en) * 1997-03-12 1998-09-22 Hitachi Ltd Cyclone system for separating solid component in gas
WO2000064321A1 (en) * 1999-04-23 2000-11-02 Lg Electronics Inc. Device for reducing pressure loss of cyclone dust collector
US7416575B2 (en) 2004-08-23 2008-08-26 Samsung Gwangju Electronics Co., Ltd. Cyclone dust collecting apparatus
JP2010158600A (en) * 2009-01-06 2010-07-22 Panasonic Corp Dust collector
JP2013052392A (en) * 2012-12-19 2013-03-21 Panasonic Corp Dust collector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249242A (en) * 1997-03-12 1998-09-22 Hitachi Ltd Cyclone system for separating solid component in gas
WO2000064321A1 (en) * 1999-04-23 2000-11-02 Lg Electronics Inc. Device for reducing pressure loss of cyclone dust collector
AU758453B2 (en) * 1999-04-23 2003-03-20 Lg Electronics Inc. Device for reducing pressure loss of cyclone dust collector
US7416575B2 (en) 2004-08-23 2008-08-26 Samsung Gwangju Electronics Co., Ltd. Cyclone dust collecting apparatus
JP2010158600A (en) * 2009-01-06 2010-07-22 Panasonic Corp Dust collector
JP2013052392A (en) * 2012-12-19 2013-03-21 Panasonic Corp Dust collector

Also Published As

Publication number Publication date
JP2722126B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
KR101289841B1 (en) Process for sifting a mixture of a milled material and a fluid, and mill sifter
US5180257A (en) Straightening instrument and cyclone
US2806551A (en) Centrifugal dust collector with laminar gas flow
US6596170B2 (en) Long free vortex cylindrical telescopic separation chamber cyclone apparatus
US4756729A (en) Apparatus for separating dust from gases
US3885931A (en) Vortex forming apparatus and method
US3720314A (en) Classifier for fine solids
US4260401A (en) Regenerative cyclone-type air/particulate concentrator and collector
WO1994022599A1 (en) Vortex type air classifier
JPH05161861A (en) Cyclone dust collector
JPH07195037A (en) Air classifier
JPH0525717Y2 (en)
JPH03270751A (en) Rectifying part and cyclone
JPH0218904B2 (en)
US4772255A (en) Method and apparatus for sizing grains smaller than 300μ
JP2002119920A (en) Air flow type classifier
JP2011045819A (en) Powder classifying apparatus
JP3336440B2 (en) Low pressure drop cyclone
WO2021079648A1 (en) Separating device and separating system
TWM625640U (en) Gas-phase powder grading equipment
JP2609168B2 (en) Rectifying member and cyclone
CN208839205U (en) It can effectively prevent the inertia separator of reflux
JP6561120B2 (en) Cyclone separation device comprising two cyclones connected by an optimized piping unit
JPH07185465A (en) Air classifier
JPS6256791B2 (en)