JPH07184301A - Controller for battery drive car - Google Patents

Controller for battery drive car

Info

Publication number
JPH07184301A
JPH07184301A JP32771193A JP32771193A JPH07184301A JP H07184301 A JPH07184301 A JP H07184301A JP 32771193 A JP32771193 A JP 32771193A JP 32771193 A JP32771193 A JP 32771193A JP H07184301 A JPH07184301 A JP H07184301A
Authority
JP
Japan
Prior art keywords
motor
battery
control device
power source
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32771193A
Other languages
Japanese (ja)
Other versions
JP3224924B2 (en
Inventor
Yoshishi Nomura
芳士 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32771193A priority Critical patent/JP3224924B2/en
Publication of JPH07184301A publication Critical patent/JPH07184301A/en
Application granted granted Critical
Publication of JP3224924B2 publication Critical patent/JP3224924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Power Conversion In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To reduce the stray capacity between a motor control system and the car body as low as possible by insulating a battery power supply and the zero V of the main circuit for driving a main motor from the car body and insulating the frames of a motor controller body and the main motor from the car body. CONSTITUTION:A power supply, i.e., a battery, is connected in series with a capacitor in a motor controller 2 and elements constituting an H-bridge in an inverter. The controller frame 2 is secured to the car body 101 through an insulating bushing 102 using screws 103. The load shaft of a motor is coupled with a load drive shaft through a flexible coupling 104 of insulating bushing structure. This structure allows insulation of the controller frame and motor frame from the car body and reduces the stray capacity drastically thus reducing the leak current significantly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バッテリーを電源とし
て電動機を駆動するバッテリーカーの制御装置に係り、
特に制御装置の主回路素子のON/OFFスイッチング
に伴う電波障害を改善したバッテリーカーの制御装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery car controller for driving an electric motor using a battery as a power source,
In particular, the present invention relates to a control device for a battery car in which radio interference caused by ON / OFF switching of main circuit elements of the control device is improved.

【0002】[0002]

【従来の技術】バッテリーを電源とし、電動機を駆動し
て走行するバッテリーカーが実用化されている。これ
は、内燃機関による駆動ではNOx ,黒煙等の排出ガス
による公害問題が発生しており、地球的規模の低公害対
策に基づくもので広く普及が期待されている。
2. Description of the Related Art A battery car that uses a battery as a power source and drives an electric motor to travel has been put into practical use. This is due to pollution problems caused by exhaust gas such as NO x and black smoke when driven by an internal combustion engine, and is expected to be widely spread because it is based on a global measure against low pollution.

【0003】図4は従来のバッテリーカーの回路図であ
る。図4において、電源としてバッテリー1は、電動機
制御装置2内のコンデンサ3及びインバータ4内のH型
ブリッヂを構成する素子Q1〜Q4に直接接続されてい
る。
FIG. 4 is a circuit diagram of a conventional battery car. In FIG. 4, the battery 1 as a power source is directly connected to the capacitors 3 in the motor control device 2 and the elements Q1 to Q4 forming the H-shaped bridge in the inverter 4.

【0004】インバータH型ブリッヂは公知技術で、バ
ッテリー電圧EB に対してパルス幅制御(PWM制御:
Pulse Width Modulatior)することによりバッテリーカ
ーの駆動源である直流電動機6に供給する直流平均電圧
M を可変せしめ、電動機電流を制御するものである。
ここでPWM波形を図5に示す。VB はPWM波形の電
圧、T0 はPWM波形の1周期、TはPWM波形の半
周期である。
[0004] Inverter H-type bridge in a known technique, the pulse width control with respect to the battery voltage E B (PWM Control:
Pulse Width Modulatior) makes the DC average voltage E M supplied to the DC motor 6 which is the drive source of the battery car variable, and controls the motor current.
Here, the PWM waveform is shown in FIG. V B is the voltage of the PWM waveform, T 0 is one cycle of the PWM waveform, and T 1 is the half cycle of the PWM waveform.

【0005】ここで、VB をバッテリー電圧EB とし、
変調率M=T1 /T0 とすると、電動機電圧EM
(1)式となる。 EM =EB * M …(1) また電機子誘起電圧をEa 、電機子抵抗をRM 、回転数
をN、電圧係数をK1、電動機電流をIM とすると、E
M は(2)式で表すことができる。 EM =Ea +IM * RM =K1 * N+IM * RM …(2)
Here, V B is the battery voltage E B ,
Assuming that the modulation rate is M = T 1 / T 0 , the motor voltage E M is given by equation (1). E M = E B * M (1) If Ea is the armature induced voltage, R M is the armature resistance, N is the number of revolutions, K 1 is the voltage coefficient, and I M is the motor current, then E
M can be expressed by equation (2). E M = E a + I M * R M = K 1 * N + I M * R M (2)

【0006】従って、電動機出力トルクTは、(3)
式,(4)で示される。但し、K2 はトルク係数であ
る。
Therefore, the motor output torque T is (3)
Equation (4) is given. However, K 2 is a torque coefficient.

【0007】T=K2 ・IM …(3)T = K 2 · I M (3)

【数1】 上記式から分かるように、PWM変調率Mを変える事に
より電動機出力トルクTを制御することができる。
[Equation 1] As can be seen from the above equation, the motor output torque T can be controlled by changing the PWM modulation rate M.

【0008】次に、これに基づく制御について説明す
る。バッテリーカーの運転席に設置されたアクセルペタ
ル8は、踏み込み量に応じて動力基準電圧を出力する。
一方、電動機には回転検出器7を設けており、また内燃
機関による自動車との操作性、並びに運転性の異和感を
なくすため内燃機特性に似た図6に示すような動力特性
を得べくアクセル踏み込み電圧に応じた関数発生器9を
設けている。
Next, the control based on this will be described. The accelerator pedal 8 installed in the driver's seat of the battery car outputs a power reference voltage according to the amount of depression.
On the other hand, the electric motor is provided with the rotation detector 7, and in order to eliminate the discomfort of the operability and drivability of the internal combustion engine with respect to the automobile, it is necessary to obtain a power characteristic similar to that of the internal combustion engine as shown in FIG. A function generator 9 according to the accelerator depression voltage is provided.

【0009】関数発生器9の出力は、電動機6のトルク
基準T* を出力するが、直流機の場合、上述(3)式に
示す通り、電動機6の電流に比例するので、T* 即ち、
電動機電流基準となる。
The output of the function generator 9 outputs the torque reference T * of the electric motor 6, but in the case of a DC machine, it is proportional to the current of the electric motor 6 as shown in the above equation (3), so T *, that is,
It becomes the motor current reference.

【0010】加算器10は、電流基準と、電動機電流検出
器5の電流出力とを加算し、PI増幅器11にて比例積分
増幅される。この値は、即ち、電動機指令電圧であり、
三角波発生器12と比較し、PWM制御値にPWM変換器
13により変換される。PWM出力は、インバータ3のQ
1〜Q4変換素子を駆動するため絶縁型駆動アンプ14に
て増幅される。
The adder 10 adds the current reference and the current output of the electric motor current detector 5, and the PI amplifier 11 performs proportional and integral amplification. This value is the motor command voltage,
Compared with triangular wave generator 12, PWM converter to PWM control value
Converted by 13. The PWM output is the Q of the inverter 3.
It is amplified by the insulation type drive amplifier 14 to drive the 1 to Q4 conversion elements.

【0011】これらインバータ4、電流検出器5、電動
機6、加算器10、PI演算増幅器11、PWM変換器13、
主素子駆動アンプ14の構成は、公知のPWM制御方式の
電流制御閉ループである。
These inverter 4, current detector 5, electric motor 6, adder 10, PI operational amplifier 11, PWM converter 13,
The configuration of the main element drive amplifier 14 is a current control closed loop of a known PWM control system.

【0012】一方、バッテリーカーには、運転ランプ,
ワイヤーやラジオ等、車載補機の補助電源(一般にDC
12V又はDC24V)を必要とするためバッテリー1か
ら、補助電源装置16を設置している。これらの機器への
ワイヤリングは簡素化を目的に、負側即ち0Vを車体本
体とし正側のみ配線しており、接地17を施している。
On the other hand, the battery car has a driving lamp,
Auxiliary power supply (generally DC) for in-vehicle accessories such as wires and radios
Since it requires 12V or 24V DC, an auxiliary power supply device 16 is installed from the battery 1. For simplification of wiring to these devices, only the negative side, that is, 0V is used as the body of the vehicle body, and only the positive side is wired, and grounding 17 is provided.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記従
来装置では、PWM制御に基づくインバータ4の素子Q
1〜Q4のスイッチングに伴なう電波障害によりバッテ
リーカー自身に取り付けられたAMラジオや、他の近隣
車に取り付けられたAMラジオにノイズが乗り、聴聞不
可という問題がある。
However, in the above conventional device, the element Q of the inverter 4 based on the PWM control is used.
There is a problem that the AM radio attached to the battery car itself or the AM radio attached to another neighboring vehicle is noisy due to noise caused by the radio interference caused by the switching of 1 to Q4.

【0014】即ち、素子Q1〜Q4の変調率に相当した
PWMスイッチングすることにより急峻なdV/dtと
なり、(1)素子Q1〜Q4自身と車体0V間の浮遊容
量18を通しての車体への洩れ電流、(2)制御装置と電
動機間の接続ケーブルと車体0V間の浮遊容量19を通し
ての洩れ電流、(3)電動機コイルと車体0V間の浮遊
容量20を通しての洩れ電流、(4)バッテリーと制御装
置との接続ケーブルと車体0V間の浮遊容量21を通して
の洩れ電流、等の洩れ電流が、車体本体に流れる。
That is, steep dV / dt is obtained by PWM switching corresponding to the modulation factor of the elements Q1 to Q4, and (1) leakage current to the vehicle body through the stray capacitance 18 between the elements Q1 to Q4 itself and the vehicle body 0V. , (2) Leakage current through the stray capacitance 19 between the control device and the motor and the vehicle body 0V, (3) Leakage current through the stray capacitance 20 between the motor coil and the vehicle body 0V, (4) Battery and control device Leakage current such as leakage current through the stray capacitance 21 between the connection cable between the vehicle and 0V of the vehicle body flows into the body of the vehicle body.

【0015】このような漏れ電流のうち特に、(1)と
(3)が電波障害の主要因となる。まず上記(1)につ
いては、最近素子が、モールドタイプとなっており、冷
却効率を上げるためチップと冷却板との絶縁材の厚みも
薄くしている。このため冷却フィンと素子間浮遊容量が
大きくなっており、数百PFの値となっている。
Of these leakage currents, (1) and (3) are the main causes of radio interference. First, regarding (1) above, recently, the element is of a mold type, and the thickness of the insulating material between the chip and the cooling plate is also reduced in order to improve the cooling efficiency. For this reason, the stray capacitance between the cooling fin and the element is large, and the value is several hundred PF.

【0016】また、上記(3)については、電動機の小
型化からコイルの絶縁材質も向上し、電動機鉄心と密着
していることから数千PFの値となっている。
As for the above (3), the insulating material of the coil is improved due to the downsizing of the electric motor, and the value is several thousand PF because it is closely attached to the electric motor core.

【0017】この洩れ電流値は機器及びケーブルの分布
定数により一概に求められないが、洩れ電流内に含まれ
る周波数成分との関係でラジオノイズの大小が決まる。
図7にその状況を記す。dV/dtが300V/100
〜150nsの場合、数10MHz帯域の成分を持つ洩
れ電流が車体本体に流れ、車体本体から放射されAMラ
ジオとしての0.5〜2MHz帯に、ノイズとして重畳
し聴聞不可となる。図8は、バッテリー電圧300V、
スイッチング時間200〜600nsで、PWM制御し
た場合のインバータ出力端子電圧の周波数分析例を示
す。
Although the leakage current value cannot be unequivocally determined by the distribution constants of the equipment and cable, the magnitude of radio noise is determined by the relationship with the frequency component contained in the leakage current.
The situation is shown in FIG. dV / dt is 300V / 100
In the case of ˜150 ns, a leakage current having a component of several tens of MHz band flows into the body of the vehicle body, and is radiated from the body of the vehicle body and superposed as noise in the 0.5 to 2 MHz band as AM radio, making it inaudible. FIG. 8 shows a battery voltage of 300V,
An example of frequency analysis of the inverter output terminal voltage when PWM control is performed with a switching time of 200 to 600 ns is shown.

【0018】上記(1)〜(4)の4点の洩れ電流は車
体本体に流れることにより放射ノイズとなってラジオの
電波障害となるという問題であるが、その他に制御装置
本体の誤動作につながる洩れ電流がある。インバータの
素子Q1〜Q4は、数百Vの直流電位を持ち、H型ブリ
ッヂの上段素子Q1とQ3がONすると、素子のエミッ
ター電位がほぼ直流電位迄上昇し、逆に下段素子Q2と
Q4がONすると、上段素子のエミッター電位は0Vに
下がる。
The leakage currents at the four points (1) to (4) described above have a problem that they flow into the body of the vehicle and become radiant noise, which causes radio interference, but it also leads to malfunction of the controller body. There is leakage current. The elements Q1 to Q4 of the inverter have a DC potential of several hundreds of volts, and when the upper stage elements Q1 and Q3 of the H-type bridge are turned on, the emitter potential of the elements rises to almost the DC potential, and conversely the lower stage elements Q2 and Q4 are When turned on, the emitter potential of the upper element drops to 0V.

【0019】制御装置の制御電源は、車内補助電源より
供給されるのが一般的であり、0V電位は、主回路の0
Vと接続されている。PWM制御出力の電位は、この制
御電源の電位であるので、前記素子Q1,Q3に対して
絶縁されており、図9に示すようなフォトカプラー15に
よることが多い。
The control power source of the control device is generally supplied from an auxiliary power source in the vehicle, and 0V potential is 0V of the main circuit.
It is connected to V. Since the electric potential of the PWM control output is the electric potential of this control power supply, it is insulated from the elements Q1 and Q3, and is often a photocoupler 15 as shown in FIG.

【0020】当然、フォトカプラー15の1次と2次間の
浮遊容量が数10PF存在し、インバータの素子Q1〜Q
4のスイッチングON/OFFにより洩れ電流が流れ、
絶縁型ゲート駆動回路が誤動作するという問題がある。
Naturally, there are several tens of PFs of stray capacitance between the primary and secondary sides of the photocoupler 15, and the elements Q1 to Q of the inverter are included.
Leakage current flows due to switching ON / OFF of 4,
There is a problem that the insulated gate drive circuit malfunctions.

【0021】上述したように、いずれの場合も浮遊容量
に起因するもので、洩れ電力は次式で表され、バッテリ
ー電圧が高い程、大きくなる。ここで、fはPWMキャ
リヤ周波数、Cs は浮遊容量(F)、Vは直流電圧
(V)である。 P=2・f・Cs ・V2 (W)
As described above, in any case, the leakage power is caused by the stray capacitance, and the leakage power is expressed by the following equation. The leakage power increases as the battery voltage increases. Here, f is the PWM carrier frequency, C s is the stray capacitance (F), and V is the direct current voltage (V). P = 2 · f · C s · V 2 (W)

【0022】本発明は上記事情に鑑みてなさらたもの
で、洩れ電力が浮遊容量Cs に比例することから、この
浮遊容量Cs を極力小さくする手段と、この浮遊容量C
s に直列に高周波高インピーダンスのリアクタンスを設
け、全体の洩れの閉ループインピーダンスを大きくする
手段にて、洩れ電流を減少させることによりラジオノイ
ズの低減及び制御の誤動作を防止するバッテリーカーの
制御装置を提供することを目的としている。
[0022] The present invention has relied in view of the above circumstances, since the leakage power is proportional to the stray capacitance C s, and means for the stray capacitance C s as small as possible, the stray capacitance C
A high-frequency high-impedance reactance is provided in series with s to increase the closed-loop impedance of the overall leakage, thereby reducing the leakage current to reduce radio noise and prevent control malfunctions. The purpose is to do.

【0023】[0023]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、バッテリー電源として主電動
機を駆動する制御装置と車内補機用低電圧電源を前記バ
ッテリー電源から得る電源回路とを備え前記電源の負側
を車体本体に接地したバッテリーカーの制御装置におい
て、前記補機用電源を1次・2次絶縁型電源とすると共
に、前記バッテリー電源と前記主電動機を駆動する主回
路の零Vを車体本体から絶縁し、かつ電動機制御装置本
体のフレーム及び主電動機フレームを車体本体から絶縁
することにより電動機制御系と車体本体間の浮遊容量を
極力小さくしたことを特徴とするものである。
In order to achieve the above object, the first aspect of the present invention is to provide a control device for driving a main motor as a battery power source and a low voltage power source for in-vehicle auxiliary equipment from the battery power source. A control device for a battery car in which a negative side of the power source is grounded to the body of the vehicle, the auxiliary power source is a primary / secondary insulated power source, and the battery power source and the main motor are driven. It is characterized in that zero voltage of the main circuit is insulated from the vehicle body, and the frame of the motor control device body and the main motor frame are insulated from the vehicle body to minimize the stray capacitance between the motor control system and the vehicle body. It is a thing.

【0024】請求項2は、バッテリー電源として主電動
機を駆動する制御装置と車内補機用低電圧電源を前記バ
ッテリー電源から得る電源回路とを備え前記電源の負側
を車体本体に接地したバッテリーカーの制御装置におい
て、前記補機用電源を1次・2次絶縁型電源とすると共
に、前記バッテリー電源と前記主電動機を駆動する主回
路の零Vを車体本体から絶縁し、かつ電動機制御装置の
電動機出力と絶縁型補機用電源の入力及びインバータ主
回路素子群の素子駆動信号の各々に、コモンノイズフィ
ルターを設けたことを特徴とするものである。
According to a second aspect of the present invention, there is provided a battery car including a control device for driving a main motor as a battery power source and a power supply circuit for obtaining a low voltage power source for in-vehicle auxiliary equipment from the battery power source. In the above control device, the auxiliary power source is a primary / secondary insulated power source, the battery power source and zero V of the main circuit for driving the main motor are insulated from the vehicle body, and A common noise filter is provided for each of the motor output, the input of the insulated auxiliary power supply, and the element drive signal of the inverter main circuit element group.

【0025】請求項3及び請求項4は前記電動機は、内
燃機関に結合され該内燃機関のトルクを補助することを
特徴とし、請求項5は前記電動機は三相交流電動機で構
成されたことを特徴とするものである。
According to claims 3 and 4, the electric motor is connected to an internal combustion engine to assist the torque of the internal combustion engine. According to claim 5, the electric motor is a three-phase AC electric motor. It is a feature.

【0026】[0026]

【作用】本発明によると、インバータ主回路の負側0V
を車体本体から絶縁することで洩れ電流は抑制される
が、交流的にはインバータ装置の素子とフレーム間浮遊
容量18、電動機とフレーム間浮遊容量20等により閉回路
が形成されるため洩れ電流が流れる。
According to the present invention, the negative side of the inverter main circuit is 0V.
The leakage current is suppressed by insulating the vehicle from the body of the vehicle, but in terms of AC, the leakage current is reduced because a closed circuit is formed by the elements of the inverter device and the stray capacitance 18 between the frames, the stray capacitance 20 between the motor and the frame, etc. Flowing.

【0027】更に、これら閉ループの主構成となるイン
バータ装置のフレーム全体及び、電動機フレーム全体を
車体本体から絶縁することにより、従来の浮遊容量に今
回の絶縁浮遊容量が直列につながることになるので、容
量が極端に小さくなり、洩れ電流が大幅に減少する。
Further, by insulating the entire frame of the inverter device, which is the main structure of these closed loops, and the entire motor frame from the body of the vehicle body, the current floating stray capacitance is connected in series to the conventional stray capacitance. The capacity is extremely small and the leakage current is greatly reduced.

【0028】一方、インバータの素子Q1〜Q4の絶縁
付ゲート駆動回路の絶縁部浮遊容量を通しての洩れ電流
が考えられるが、前記の交流的閉ループ構成の一方の浮
遊容量が極端に減少するため、閉ループインピーダンス
が大きくなり、微少電流となるので、ゲート駆動回路が
誤動作することはない。
On the other hand, a leakage current may be considered through the stray capacitance of the insulating portion of the insulated gate drive circuit for the elements Q1 to Q4 of the inverter. Since the impedance becomes large and the current becomes minute, the gate drive circuit does not malfunction.

【0029】さらに、インバータ装置を中心とした交流
的閉ループの主構成となる電動機から車体本体へのルー
プと、補助電源から電源2次側の本体接地ループに、コ
モンノイズフィルターを各々設ける。これにより車体本
体との浮遊容量に直列となり、洩れ電流に対して高イン
ピーダンスなリアクタンスが加算されることになり、洩
れ電流が大幅に減少する。
Further, a common noise filter is provided in each of the loop from the electric motor to the vehicle body, which is the main component of the AC closed loop centering on the inverter device, and the auxiliary power source to the main body ground loop on the secondary side of the power source. As a result, the reactance having a high impedance is added to the stray capacitance in series with the body of the vehicle body, and the reactance having a high impedance is added to the leak current, so that the leak current is significantly reduced.

【0030】一方、インバータの素子Q1〜Q4の絶縁
型ゲート駆動回路の絶縁部を通しての洩れ電流が考えら
れるが、素子Q1〜Q4のゲート・エミッター信号にコ
モンノイズフィルターを設けることにより、洩れ電流に
対して高インピーダンス作用となり洩れ電流が大幅に減
少し、駆動回路が誤動作することはない。
On the other hand, a leakage current may be considered through the insulating portion of the insulated gate drive circuit of the elements Q1 to Q4 of the inverter. However, by providing a common noise filter for the gate / emitter signals of the elements Q1 to Q4, the leakage current is reduced. On the other hand, the high impedance action reduces the leakage current significantly, and the drive circuit does not malfunction.

【0031】[0031]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は本発明のバッテリーカーの制御装置の一実施
例の回路図であり、既に説明した図4のバッテリ回路と
異なる点は、浮遊容量22と23を電気回路的に付加した点
のみであり、その他の構成は同一であるので同一部分に
は同一符号を付して重複説明は省略する。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a circuit diagram of an embodiment of a battery car control device of the present invention. The only difference from the battery circuit of FIG. 4 described above is that stray capacitances 22 and 23 are added in an electric circuit. Since the other configurations are the same, the same portions are denoted by the same reference numerals, and the duplicate description will be omitted.

【0032】図2は制御装置本体フレーム及び電動機フ
レームを車体本体から絶縁する物理的一例を示したもの
であり、これにより図1における浮遊容量を低減するこ
とができる。すなわち、同図に示すように、制御装置フ
レーム2を車体本体 101に絶縁ブッシング 102を介して
ネジ 103にて固定する。電動機フレーム6を制御装置フ
レーム2と同様に固定する。
FIG. 2 shows a physical example in which the control device body frame and the motor frame are insulated from the vehicle body, whereby the stray capacitance in FIG. 1 can be reduced. That is, as shown in the figure, the control device frame 2 is fixed to the vehicle body 101 with the screws 103 via the insulating bushings 102. The motor frame 6 is fixed in the same manner as the control device frame 2.

【0033】また、電動機の負荷軸については、絶縁ブ
ッシング構造のフレキシブルカップリング 104にて負荷
駆動軸と結合させる。このようにして、制御装置フレー
ム及び電動機フレームを車体本体から絶縁することが出
来、浮遊容量を極端に減少することが出来る。この結
果、洩れ電流が大幅に減少する。
The load shaft of the electric motor is connected to the load drive shaft by a flexible coupling 104 having an insulating bushing structure. In this way, the control device frame and the motor frame can be insulated from the vehicle body, and stray capacitance can be extremely reduced. As a result, leakage current is significantly reduced.

【0034】図3は本発明の他の実施例の回路図であ
る。図3において、インバータ4の出力及び補機用絶縁
型定電圧電源16の入力部に、コモンノイズフィルター 1
05, 106を印加することにより、インバータ装置を中心
とした交流的閉ループに対し高インピーダンスとして作
用し、洩れ電流が大幅に減少する。
FIG. 3 is a circuit diagram of another embodiment of the present invention. In FIG. 3, the common noise filter 1 is connected to the output of the inverter 4 and the input of the insulated constant-voltage power supply 16 for auxiliary equipment.
Applying 05 and 106 acts as a high impedance for the AC closed loop centered around the inverter device, and the leakage current is greatly reduced.

【0035】一方、インバータの素子Q1〜Q4のゲー
ト・エミッタ信号に対して、コモンノイズフィルター 1
07〜 110をそれぞれ付加することにより、上記実施例と
同様に洩れ電流に対して高インピーダンスとして作用
し、これにより洩れ電流が減少し、ゲート駆動回路が誤
動作することはない。
On the other hand, a common noise filter 1 is applied to the gate / emitter signals of the inverter elements Q1 to Q4.
By adding each of 07 to 110, it acts as a high impedance against the leakage current as in the above embodiment, whereby the leakage current is reduced and the gate drive circuit does not malfunction.

【0036】以上の説明では、直流電動機6を用いる例
を示したが、交流機を用いても同様に実施することが出
来る。この場合、制御装置2として、4象限運転可能な
3相インバータを用いること、および電動機出力へのコ
モンノイズフィルターも3相コモンノイズフィルターで
あることは言うまでもない。又、低公害自動車として、
内燃機関と電動機を機械的に直結したディーゼル電気ハ
イブリッド自動車につても、電動機部について全く同様
に実施出来る。
In the above description, an example in which the DC motor 6 is used has been shown, but an AC machine can be used in a similar manner. In this case, it goes without saying that a three-phase inverter capable of four-quadrant operation is used as the control device 2, and the common noise filter for the motor output is also a three-phase common noise filter. Also, as a low-pollution automobile,
For a diesel-electric hybrid vehicle in which an internal combustion engine and an electric motor are mechanically directly connected, the same operation can be performed for the electric motor section.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
車体本体への電動機制御に伴なう洩れ電流を抑制するこ
とによりラジオへの電波障害を大幅に軽減し、安定なバ
ッテリーカーの制御装置が得ることができる。
As described above, according to the present invention,
By suppressing the leakage current due to the electric motor control to the body of the vehicle, it is possible to significantly reduce the radio interference to the radio and obtain a stable battery car control device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の回路図。FIG. 1 is a circuit diagram of an embodiment of the present invention.

【図2】図1の制御装置の外観斜視図。FIG. 2 is an external perspective view of the control device shown in FIG.

【図3】本発明の他の実施例の回路図。FIG. 3 is a circuit diagram of another embodiment of the present invention.

【図4】従来のバッテリーカーの回路図。FIG. 4 is a circuit diagram of a conventional battery car.

【図5】PWMの波形図。FIG. 5 is a PWM waveform diagram.

【図6】内燃機特性と同様な動力特性を示す図。FIG. 6 is a diagram showing a power characteristic similar to that of an internal combustion engine.

【図7】従来のバッテリーカーの斜視図。FIG. 7 is a perspective view of a conventional battery car.

【図8】インバータ出力端子電圧の周波数分析図。FIG. 8 is a frequency analysis diagram of an inverter output terminal voltage.

【図9】フォトカプラーの回路図。FIG. 9 is a circuit diagram of a photo coupler.

【符号の説明】[Explanation of symbols]

1…バッテリー電源、2…制御装置、3…コンデンサ、
4…インバータ、5…電流検出器、6…電動機、7…回
転検出器、8…アクセルペタル、9…関数発生器、10…
加算器、11…PI増幅器、12…三角波発振器、13…PW
M発生器、14…絶縁型ゲート増幅器、15…フォトカプ
ラ、16…補助電源、17…接地(車体)、18〜23…浮遊容
量、 100…バッテリーカー、 101…車体本体、 102…絶
縁ブッシング、 103…ネジ、 104…絶縁型フレキシブル
カップリング、 105〜 110…コモンノイズフィルタ。
1 ... Battery power supply, 2 ... Control device, 3 ... Capacitor,
4 ... Inverter, 5 ... Current detector, 6 ... Electric motor, 7 ... Rotation detector, 8 ... Accelerator petal, 9 ... Function generator, 10 ...
Adder, 11 ... PI amplifier, 12 ... Triangular wave oscillator, 13 ... PW
M generator, 14 ... Insulated gate amplifier, 15 ... Photo coupler, 16 ... Auxiliary power supply, 17 ... Ground (vehicle body), 18-23 ... Stray capacitance, 100 ... Battery car, 101 ... Vehicle body, 102 ... Insulation bushing, 103 ... Screw, 104 ... Insulation type flexible coupling, 105-110 ... Common noise filter.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 バッテリー電源として主電動機を駆動す
る制御装置と、車内補機用低電圧電源を前記バッテリー
電源から得る電源回路とを備え、前記電源の負側を車体
本体に接地したバッテリーカーの制御装置において、前
記補機用電源を1次・2次絶縁型電源とすると共に、前
記バッテリー電源と前記主電動機を駆動する主回路の零
電圧を車体本体から絶縁し、かつ電動機制御装置本体の
フレーム及び主電動機フレームを車体本体から絶縁する
ことにより電動機制御系と車体本体間の浮遊容量を極力
小さくしたことを特徴とするバッテリーカーの制御装
置。
1. A battery car comprising: a control device for driving a main motor as a battery power source; and a power supply circuit for obtaining a low-voltage power supply for in-vehicle auxiliary equipment from the battery power supply, the negative side of the power supply being grounded to a vehicle body. In the control device, the auxiliary power source is a primary / secondary insulated power source, and the battery power source and the zero voltage of the main circuit that drives the main motor are insulated from the vehicle body, and the motor controller main body A control device for a battery car, characterized in that the stray capacitance between the electric motor control system and the vehicle body is minimized by insulating the frame and the main motor frame from the vehicle body.
【請求項2】 バッテリー電源として主電動機を駆動す
る制御装置と、車内補機用低電圧電源を前記バッテリー
電源から得る電源回路とを備え、前記電源の負側を車体
本体に接地したバッテリーカーの制御装置において、前
記補機用電源を1次・2次絶縁型電源とすると共に、前
記バッテリー電源と前記主電動機を駆動する主回路の零
電圧を車体本体から絶縁し、かつ電動機制御装置の電動
機出力と絶縁型補機用電源の入力及びインバータ主回路
素子群の素子駆動信号の各々にコモンノイズフィルタを
設けたことを特徴とするバッテリーカーの制御装置。
2. A battery car in which a control device for driving a main electric motor as a battery power source and a power supply circuit for obtaining a low-voltage power source for in-vehicle auxiliary equipment from the battery power source are provided, and a negative side of the power source is grounded to a vehicle body. In the control device, the auxiliary power supply is a primary / secondary isolated power supply, and the battery power supply and the zero voltage of the main circuit that drives the main electric motor are insulated from the vehicle body, and the electric motor of the electric motor control device is used. A control device for a battery car, wherein a common noise filter is provided for each of an output, an input of a power source for an insulation type auxiliary device, and an element drive signal of an inverter main circuit element group.
【請求項3】 前記電動機は内燃機関に結合され、該内
燃機関のトルクを補助することを特徴とする請求項1記
載のバッテリーカーの制御装置。
3. The control system for a battery car according to claim 1, wherein the electric motor is coupled to an internal combustion engine to assist the torque of the internal combustion engine.
【請求項4】 前記電動機は内燃機関に結合され、該内
燃機関のトルクを補助することを特徴とする請求項2記
載のバッテリーカーの制御装置。
4. The control device for a battery car according to claim 2, wherein the electric motor is coupled to an internal combustion engine to assist the torque of the internal combustion engine.
【請求項5】 前記電動機は三相交流電動機で構成され
たことを特徴とする請求項1乃至4記載のバッテリーカ
ーの制御装置。
5. The battery car control device according to claim 1, wherein the electric motor is a three-phase AC electric motor.
JP32771193A 1993-12-24 1993-12-24 Battery car drive Expired - Fee Related JP3224924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32771193A JP3224924B2 (en) 1993-12-24 1993-12-24 Battery car drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32771193A JP3224924B2 (en) 1993-12-24 1993-12-24 Battery car drive

Publications (2)

Publication Number Publication Date
JPH07184301A true JPH07184301A (en) 1995-07-21
JP3224924B2 JP3224924B2 (en) 2001-11-05

Family

ID=18202137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32771193A Expired - Fee Related JP3224924B2 (en) 1993-12-24 1993-12-24 Battery car drive

Country Status (1)

Country Link
JP (1) JP3224924B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067837A (en) * 2000-08-31 2002-03-08 Fuji Electric Co Ltd Electric system of automobile
JP2006311697A (en) * 2005-04-28 2006-11-09 Hitachi Ltd Brushless motor system
JP2013511245A (en) * 2009-11-12 2013-03-28 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング Control circuit device for electric drive device and electric drive device having such control circuit device
JP2016208019A (en) * 2015-04-15 2016-12-08 エルエス産電株式会社Lsis Co., Ltd. Inductor assembly for on-board charger of electric vehicle
US10144435B2 (en) 2016-08-26 2018-12-04 Denso Corporation In-vehicle apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067837A (en) * 2000-08-31 2002-03-08 Fuji Electric Co Ltd Electric system of automobile
JP2006311697A (en) * 2005-04-28 2006-11-09 Hitachi Ltd Brushless motor system
US7701159B2 (en) 2005-04-28 2010-04-20 Hitachi, Ltd. Brushless motor system
US8198847B2 (en) 2005-04-28 2012-06-12 Hitachi, Ltd. Brushless motor system
JP2013511245A (en) * 2009-11-12 2013-03-28 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング Control circuit device for electric drive device and electric drive device having such control circuit device
US8916998B2 (en) 2009-11-12 2014-12-23 Conti Temic Microelectronic Gmbh Control circuit for an electrical drive device, having confined current loops and reduced interference emissions
JP2016208019A (en) * 2015-04-15 2016-12-08 エルエス産電株式会社Lsis Co., Ltd. Inductor assembly for on-board charger of electric vehicle
US10144435B2 (en) 2016-08-26 2018-12-04 Denso Corporation In-vehicle apparatus

Also Published As

Publication number Publication date
JP3224924B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
US8373372B2 (en) Electrical motor/generator drive apparatus and method
US8212505B2 (en) Method and system for creating a vibration in an automobile
JP5567381B2 (en) Power converter
US5517401A (en) Three level pulse width modulated inverter for an electric vehicle
US5552976A (en) EMI filter topology for power inverters
US5506484A (en) Digital pulse width modulator with integrated test and control
US7768228B2 (en) Method and system for converting DC power to AC power
US20090108780A1 (en) Method and system for controlling a power inverter in electric drives
EP1186464A2 (en) A control device for motor/generators
JP4258692B2 (en) Automotive power supply
US20080007197A1 (en) Inverter-driven rotating machine system, rotating machine and inverter used in the same and electric vehicle using the same
CA2555186A1 (en) Power output apparatus and vehicle including the same
JPH0378404A (en) Driver for electric automobile
US10978983B2 (en) Rotary electric machine control device
JP4085744B2 (en) Internal-combustion engine-driven vehicle power supply
CN102130653B (en) Method and system for controlling an electric motor using zero current offset value cancellation
JP3734122B2 (en) Three-phase inverter circuit module
JPH07184301A (en) Controller for battery drive car
JP3254971B2 (en) Motor drive device using inverter
KR0133043B1 (en) Inverter for electric vehicle
JP2000324892A (en) Inverter drive motor
JP3334742B2 (en) Electric system of hybrid electric vehicle
JPH05308778A (en) Inverter for driving electric car
JP2021164338A (en) Power conversion device and power adjustment circuit
JP2004048922A (en) Inverter system for driving polyphase motor, and its control method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080824

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110824

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130824

LAPS Cancellation because of no payment of annual fees