JPH07183A - Production of cyclodextrin glucanotransferase produced by corynebacterium and use of the enzyme - Google Patents

Production of cyclodextrin glucanotransferase produced by corynebacterium and use of the enzyme

Info

Publication number
JPH07183A
JPH07183A JP5097077A JP9707793A JPH07183A JP H07183 A JPH07183 A JP H07183A JP 5097077 A JP5097077 A JP 5097077A JP 9707793 A JP9707793 A JP 9707793A JP H07183 A JPH07183 A JP H07183A
Authority
JP
Japan
Prior art keywords
enzyme
starch
cgtase
cyclodextrin
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5097077A
Other languages
Japanese (ja)
Inventor
Hiroji Tsuji
廣二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Pharmaceutical Co Ltd filed Critical Amano Pharmaceutical Co Ltd
Priority to JP5097077A priority Critical patent/JPH07183A/en
Publication of JPH07183A publication Critical patent/JPH07183A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To provide a process for the industrial production of CGTase acting at a relatively low temperature to produce CD and having broad receptor specificity. CONSTITUTION:This process for the production of CGTase comprises the culture of a microbial strain belonging to the genus Corynebacterium to produce CGTase and the collection of the produced CGTase from the cultured product. This invention also relates to a process for the production of CD using the enzyme and a process for the production of a sugar transfer product using the enzyme.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サイクロデキストリン
・グルカノトランスフェラーゼ(EC 2.4.1.19、以下CGT
aseという)の製造方法並びに該酵素を用いるサイクロ
デキストリン(以下CDという)の製造法及び該酵素を
用いる糖転移生成物の製造法に関する。
The present invention relates to cyclodextrin glucanotransferase (EC 2.4.1.19, hereinafter CGT).
ase), a method for producing cyclodextrin (hereinafter referred to as CD) using the enzyme, and a method for producing a glycosyl transfer product using the enzyme.

【0002】更に詳しくは、コリネバクテリウム(Cory
nebacterium)属に属するCGTase生産能を有する菌株を
培養し、培養物中にCGTaseを産生せしめ、これを採取す
るCGTaseの製造法並びに該CGTaseを澱粉等の溶液に作用
せしめて、主としてβ−CDを生成せしめるCDの製造
法及び該CGTaseを糖供与体溶液に受容体存在下作用せし
めて糖転移生成物を生成せしめる糖転移生成物の製造法
に関する。
[0002] More specifically, Corynebacterium (Cory
nebacterium) belonging to the genus CGTase is cultivated, CGTase is produced in the culture, the production method of CGTase which collects this, and the CGTase is allowed to act on a solution such as starch to mainly produce β-CD. The present invention relates to a method for producing a CD to be produced and a method for producing a glycosyl transfer product by allowing the CGTase to act on a sugar donor solution in the presence of an acceptor to produce a glycosyl transfer product.

【0003】CDは、6〜8個のグルコース分子がα−
1,4−グルコシド結合で環状に結合した非還元性のマル
トオリゴ糖であり、その分子空洞内に種々の物質を取り
込んで包接化合物を形成し、取り込まれた物質の物理、
化学的性質を変化させることができ、そのため、酸化し
易い化合物や光分解し易い化合物の安定化、揮発性化合
物の不揮発化、難溶性化合物の可溶化、臭気性物質の無
臭化が可能であり、医薬品、化粧品、農薬及び食品への
広い分野で利用されている。
In CD, 6-8 glucose molecules are α-
It is a non-reducing maltooligosaccharide that is cyclically linked by a 1,4-glucoside bond, and it forms an inclusion compound by incorporating various substances in its molecular cavity, and the physics of the incorporated substances,
The chemical properties can be changed, so that it is possible to stabilize oxidizable compounds and photodegradable compounds, non-volatile volatile compounds, solubilize sparingly soluble compounds, and deodorize odorous substances. Widely used in medicine, cosmetics, agricultural chemicals and food.

【0004】CGTaseは、澱粉単独に作用させると分子内
転移反応によりCDを合成するが、適当な受容体存在下
で糖供与体に作用させると分子間糖転移反応を触媒し、
受容体への糖転移生成物を合成する。
[0004] CGTase synthesizes CD by an intramolecular transfer reaction when it acts on starch alone, but it catalyzes an intermolecular glycosyl transfer reaction when it acts on a sugar donor in the presence of a suitable acceptor.
Synthesize the glycosyl transfer product to the receptor.

【0005】最近、CGTaseの分子間糖転移反応を利用し
てカップリングシュガーの製造、ヘスペリジン誘導体及
びルチンの溶解度の改善、ステビオシドの味覚の改善及
びL−アスコルビン酸の安定化などの種々の有用物質の
合成や有用配糖体の性質改善等が行われるようになり、
受容体特異性の幅の広いCGTaseが要望されている。
Recently, various useful substances such as production of coupling sugar, improvement of solubility of hesperidin derivative and rutin, improvement of taste of stevioside and stabilization of L-ascorbic acid by utilizing intermolecular transglycosylation reaction of CGTase. And the properties of useful glycosides have been improved,
CGTases with a wide range of receptor specificity are desired.

【0006】[0006]

【従来の技術】これまで、CGTaseの生産菌としては、主
として、バチルス属のものが知られている。
2. Description of the Related Art Up to now, as a CGTase-producing bacterium, a Bacillus genus has been known.

【0007】例えば、バチルス・メガテリウム(Bacill
us megaterium)のCGTase(特開昭48-40996)、バチル
ス・マセランス(Bacillus macerance)のCGTase(特開
昭56-43212)、バチルス・サーキュランス(Bacillus c
irculans)のCGTase(特開昭48-40996)、バチルス・ス
テアロサーモフィラス(Bacillus stearothermophilu
s)のCGTase(特開昭60-120984)等があげられる。
For example, Bacillus megaterium
us megaterium) CGTase (JP-A-48-40996), Bacillus macerance CGTase (JP-A-56-43212), Bacillus circulans (Bacillus c)
irculans) CGTase (JP-A-48-40996), Bacillus stearothermophilu
s) CGTase (JP-A-60-120984) and the like.

【0008】しかしながら、CGTaseの分子間糖転移作用
の面から着目すると、バチルス・メガテリウム(Bacill
us megaterium)、バチルス・マセランス(Bacillus ma
cerance)及びバチルス・サーキュランス(Bacillus ci
rculans)の何れのCGTaseも受容体特異性が狭く、各種
糖転移生成物の合成や性質、物性の改変等に利用するに
は不十分であった。
However, from the viewpoint of the intermolecular glycosyl transfer action of CGTase, Bacillus megaterium (Bacill)
us megaterium), Bacillus macerans
cerance) and Bacillus circulance
All of the CGTases of rculans) had narrow receptor specificity and were insufficient for use in the synthesis, modification of physical properties and physical properties of various glycosyl transfer products.

【0009】そして又、バチルス・ステアロサーモフィ
ラス(Bacillus stearothermophilus)のCGTaseは、L
−ラムノースを受容体としたとき、糖転移効率が低く、
糖転移生成物量が少ない。
Further, CGTase of Bacillus stearothermophilus is L
-When rhamnose is used as an acceptor, the efficiency of transglycosylation is low,
The amount of transglycosylation products is small.

【0010】しかも、この酵素は耐熱性酵素であり、高
温度での反応性に比較して、40〜50℃の比較的低温
度での反応性が低いために、物質の合成や改変に利用す
るには、必ずしも適してはいなかった(例えば、L−ア
スコルビン酸への糖転移にこの酵素を使用しようとして
も、L−アスコルビン酸が高温において不安定なため使
用することが困難である等)。
Moreover, since this enzyme is a thermostable enzyme and has a low reactivity at a relatively low temperature of 40 to 50 ° C. as compared with a reactivity at a high temperature, it is used for the synthesis and modification of substances. Was not always suitable (for example, even if one tries to use this enzyme for glycosyl transfer to L-ascorbic acid, it is difficult to use because L-ascorbic acid is unstable at high temperature). .

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、比較
的低温下で作用してCDを生産すると同時に受容体特異
性の広い性質を併せ持つところのCGTase生産能を有する
微生物を見い出し、該微生物を培養し、培養物中にCGTa
seを産生せしめ、これを採取するCGTaseの製造法を提供
することにある。
DISCLOSURE OF THE INVENTION The object of the present invention is to find a microorganism having a CGTase-producing ability that acts at a relatively low temperature to produce CD and, at the same time, has a broad property of receptor specificity. And CGTa in the culture
It is to provide a method for producing CGTase that produces se and collects it.

【0012】[0012]

【課題を解決するための手段】そこで、本発明者らは、
本目的のCGTase生産能を有する微生物を広く自然界に求
め、鋭意探索を試みた結果、土壌から得られた1菌株
が、本目的のCGTaseを生産することを見い出した。
Therefore, the present inventors have
As a result of extensively searching for natural microorganisms having the objective CGTase-producing ability in the natural world, an attempt was made to find out that one strain obtained from soil produced the objective CGTase.

【0013】そして、本菌株がコリネバクテリウムに属
する新種であること及びコリネバクテリウム属において
これまでCGTaseを生産する報告は、無いことを知ると共
に、本菌株を培養し、培養物中にCGTaseを産生せしめ、
これを採取することにより本発明を完成した。
[0013] Then, while knowing that this strain is a new species belonging to Corynebacterium and that there has been no report of producing CGTase in the genus Corynebacterium up to now, the strain was cultured, and CGTase was cultured in the culture. Produce,
The present invention was completed by collecting this.

【0014】本発明において使用され、新たに土壌から
発見、分離された本菌株の菌学的性質は下記の通りであ
る。
The mycological properties of the strain of the present invention, which was used in the present invention and newly discovered and isolated from soil, are as follows.

【0015】(1)形態 細胞の形および大きさ:多型状桿菌、1.0 × 1.5μ 運動性の有無:無し 胞子の有無:無し グラム染色性:陽性 抗酸性:陰性(1) Morphology Cell shape and size: polymorphic bacillus, 1.0 × 1.5 μ Motility: None Spores: None Gram stainability: positive Antiacidity: negative

【0016】(2)各培地における生育状態 肉汁寒天平板培養:発育は、良好で初期は淡黄の全縁半
透明のコロニーとなる。表面はわずかに鱗片状を示す。
数日後、平坦、不透明且つ黄〜オレンジ色の厚いコロニ
ーとなる。中央部及び周辺部は、円錐状又は隆起状にな
るため特にその部分は強いオレンジ色を示す。 肉汁寒天斜面培養:直状で軟らかく平坦で光沢がある。
周縁は全縁で生育は良好。可溶性色素は産生しないが、
菌苔は黄〜淡橙。弱アルカリ性肉汁寒天で橙色および生
育が著しく高まる。 肉汁液体培養:生育はやや弱いが、一様に混濁後膜状の
沈殿を生ずる。 リトマスミルク培養:還元・消化
(2) Growth state in each medium Meat broth agar plate culture: The growth is good, and in the initial stage, it is a pale yellow semi-transparent colony. The surface is slightly scaly.
After a few days, it becomes flat, opaque, and yellow-orange thick colonies. Since the central portion and the peripheral portion have a conical shape or a ridge-like shape, especially that portion shows a strong orange color. Broth agar slant culture: straight, soft, flat and glossy.
The whole circumference is good and the growth is good. Does not produce soluble pigment,
The moss is yellow to pale orange. A slightly alkaline broth agar with an orange color and marked growth. Broth liquid culture: Growth is slightly weak, but uniform turbidity causes membranous precipitation. Litmus milk culture: reduction / digestion

【0017】(3)生理学的性質 OFテスト:発酵、酸化共になし 酸素に対する態度:好気性 ゼラチンの加水分解:陽性 カゼインの加水分解:陽性(弱) 澱粉の加水分解:陽性 チロシンの加水分解:陰性 エスクリン加水分解:陰性 ツイーン80加水分解:陰性 アルギニンの加水分解:陰性 馬尿酸加水分解:陰性 カタラーゼ:陽性 オキシダーゼ:陰性 レシチナーゼ:陰性 DNAアーゼ:陽性 ウレアーゼ:陰性 硫化水素の生成:陰性 インドールの生成:陰性 3ケト乳糖生成:陰性(黄色) VPテスト:陰性 硝酸塩の還元:陰性 クエン酸の利用:陰性 メチレンブルー還元:陰性 生育pHの範囲:7.0〜9.4 生育温度の範囲:16〜42℃(最適は38℃) 食塩に対する生育性:0.5〜7.0%で陽性、10%で陰性 マッコンキー生育:陰性 サブロウ寒天生育:陰性 糖類からの酸生成の有無: グルコース + L−アラビノース − キシロース − マンニット − ラクトース − トレハロース + ガラクトース + マンノース − マルトース + メリビオース + ソルビット − シュークロース + サリシン +(弱い)(3) Physiological properties OF test: neither fermentation nor oxidation Attitude toward oxygen: aerobic Gelatin hydrolysis: positive Casein hydrolysis: positive (weak) Starch hydrolysis: positive Tyrosine hydrolysis: negative Esculin Hydrolysis: Negative Tween 80 Hydrolysis: Negative Arginine Hydrolysis: Negative Hippuric Acid Hydrolysis: Negative Catalase: Positive Oxidase: Negative Lecithinase: Negative DNAase: Positive Urease: Negative Hydrogen Sulfide Generation: Negative Indole Formation: Negative 3 Ketolactose production: Negative (yellow) VP test: Negative Nitrate reduction: Negative Utilization of citric acid: Negative Methylene blue reduction: Negative Growth pH range: 7.0-9.4 Growth temperature range: 16-42 ° C (optimum 38 ° C ) Salt growth: 0.5-7.0% positive, 10% negative MacConkey growth: negative Sabouraud agar Growth: Presence or absence of acid production from negative sugars: glucose + L-arabinose-xylose-mannitol-lactose-trehalose + galactose + mannose-maltose + melibiose + sorbit-sucrose + salicin + (weak)

【0018】以上の菌学的性質について、Bergey's Man
ual of Determinative Bacteriology第8版(1974)及
びBergey's Manual of Systematic Bacteriology第2巻
(1986)を参照し、その性状を比較したところ、本菌
は、アルカリ性培地で強オレンジ色を産出する多型性細
菌であり、胞子は、染色では認められない比較的耐熱の
細菌であることから、コリネバクテリウム(Corynebact
erium)に属することが分かった。
Regarding the above-mentioned mycological properties, Bergey's Man
The characteristics of this bacterium were compared with those of the ual of Determinative Bacteriology 8th edition (1974) and Bergey's Manual of Systematic Bacteriology 2nd volume (1986). Since spores are relatively thermostable bacteria that cannot be detected by staining, Corynebacterium
erium).

【0019】さらに、本菌は、上記の菌学的諸性質か
ら、Bergey's Manualに記載されないコリネバクテリウ
ム属の新種であることが分かり、それ故、本菌株をコリ
ネバクテリウム・エスピー(Corynebacterium sp.)No.
9616と命名した。
Furthermore, from the above-mentioned mycological properties, the present bacterium was found to be a new species of the genus Corynebacterium not described in Bergey's Manual. Therefore, this strain was designated as Corynebacterium sp. ) No.
It was named 9616.

【0020】本菌株は工業技術院生命工学工業技術研究
所にFERM P-13520として寄託されている。
This strain has been deposited as FERM P-13520 at the Institute of Biotechnology, Institute of Biotechnology, AIST.

【0021】尚、これまでコリネバクテリウム(Coryne
bacterium)に属する菌株において、CGTase生産能を有
する旨の報告はなく、本菌株が初めてである。
[0021] In addition, until now, Corynebacterium (Coryne
This is the first strain of bacterium belonging to the bacterium), and there is no report that it has the ability to produce CGTase.

【0022】本菌株を利用して、CGTaseを製造するため
には、当該微生物が良好に生育し、酵素を順調に生産す
るために必要な炭素源、窒素源、無機塩等の栄養源を含
有する合成培地又は天然培地中でこれを培養する。
In order to produce CGTase using this strain, the microorganism contains a nutritional source such as a carbon source, a nitrogen source, and an inorganic salt, which are required for good growth of the microorganism and favorable production of the enzyme. It is cultivated in a synthetic or natural medium.

【0023】炭素源としては、澱粉又はその組成画分、
焙焼デキストリン、加工澱粉、澱粉誘導体、物理処理澱
粉及びα−澱粉等の炭水化物が使用できる。具体例とし
ては、可溶性澱粉、トウモロコシ澱粉、馬鈴薯澱粉、甘
藷澱粉、デキストリン、アミロペクチン、アミロース等
があげられる。
As the carbon source, starch or its composition fraction,
Carbohydrates such as roasted dextrin, modified starch, starch derivatives, physically treated starch and α-starch can be used. Specific examples thereof include soluble starch, corn starch, potato starch, sweet potato starch, dextrin, amylopectin, amylose and the like.

【0024】窒素源としては、ポリペプトン、カゼイ
ン、肉エキス、酵母エキス、コーンスティープリカー或
いは大豆又は大豆粕などの抽出物等の有機窒素源物質、
硫酸アンモニウム、リン酸アンモニウム等の無機塩窒素
化合物、グルタミン酸等のアミノ酸類が挙げられる。
As the nitrogen source, organic nitrogen source substances such as polypeptone, casein, meat extract, yeast extract, corn steep liquor or soybean or soybean meal extract, etc.,
Examples thereof include inorganic salt nitrogen compounds such as ammonium sulfate and ammonium phosphate, and amino acids such as glutamic acid.

【0025】そして無機塩類としては、リン酸1カリウ
ム、リン酸2カリウム等のリン酸塩、硫酸マグネシウム
等のマグネシウム塩、塩化カルシウム等のカルシウム
塩、炭酸ナトリウム等のナトリウム塩等が用いられる。
As the inorganic salts, phosphates such as 1 potassium phosphate and 2 potassium phosphate, magnesium salts such as magnesium sulfate, calcium salts such as calcium chloride, sodium salts such as sodium carbonate and the like are used.

【0026】培養は、振盪培養若しくは、通気攪拌培養
等の好気的条件下に於いて培地pH7〜11の範囲、好まし
くはpH8〜10の範囲に調整し、温度10〜40℃の範囲、
好ましくは、25〜37℃で実施するのが望ましいが、この
条件以外であっても微生物が生育し、目的とする酵素を
生成する条件であれば特に制限されない。
The culture is carried out under aerobic conditions such as shaking culture or aeration-agitation culture, and the medium is adjusted to a pH range of 7 to 11, preferably a pH range of 8 to 10, and a temperature range of 10 to 40 ° C.
It is preferable to carry out at 25 to 37 ° C., but there is no particular limitation as long as it is a condition under which the microorganism grows and the target enzyme is produced, even under other conditions.

【0027】このようにして培養を行うと、通常は培養
を開始して2〜7日間で培養液中にCGTaseが生産され
る。
When the culture is carried out in this manner, CGTase is usually produced in the culture medium within 2 to 7 days after the culture is started.

【0028】次いで、培養液から菌体を除去し、培養ろ
液を得、限外ろ過膜で脱塩、濃縮した後、硫安塩析又は
有機溶媒沈降等により酵素を回収する。
Then, the cells are removed from the culture broth to obtain a culture filtrate, which is desalted and concentrated with an ultrafiltration membrane, and then the enzyme is recovered by salting out with ammonium sulfate or organic solvent precipitation.

【0029】こうして得られた粗製のCGTaseは、そのま
までもCD生成反応に使用できるが、必要に応じて、更
にDEAE−セファデックス(商品名、ファルマシア社
製)による吸着溶出、セファデックス(商品名、ファル
マシア社製)による分画等により精製して使用する。
The crude CGTase thus obtained can be used as it is for the CD production reaction, but if necessary, it is further adsorbed and eluted by DEAE-Sephadex (trade name, manufactured by Pharmacia) and Sephadex (trade name, It is used after being purified by fractionation (Pharmacia).

【0030】得られた酵素CGTaseの酵素化学的性質を以
下に述べる。
The enzymatic chemical properties of the obtained enzyme CGTase are described below.

【0031】作用及び基質特異性:1%可溶性澱粉液
〔5 mM CaCl2 を含む10 mM 酢酸緩衝液(pH6.0)〕20 m
lに本酵素(乾燥澱粉1g当たり2単位)を加えて、40
℃で反応を行い、経時的に対原料澱粉当たりのCD生成
量を測定した。その結果を図1に示す。
Action and substrate specificity: 1% soluble starch solution [10 mM acetate buffer (pH 6.0) containing 5 mM CaCl 2 ] 20 m
Add the enzyme (2 units per 1 g of dry starch) to 1
The reaction was performed at 0 ° C., and the amount of CD produced per starch based on the raw material was measured with time. The result is shown in FIG.

【0032】図中の白四角はβ−CDの生成量を示すも
のであり、白三角は、α−CDの生成量を示すものであ
り、白丸はγ−CDの生成量を示すものである。
The white squares in the figure show the amount of β-CD produced, the white triangles show the amount of α-CD produced, and the white circles show the amount of γ-CD produced. .

【0033】図1より明かなように本酵素は澱粉に作用
し、主としてβ−CDを生成し、α−CD及びγ−CD
をも生成する。
As is clear from FIG. 1, this enzyme acts on starch and mainly produces β-CD, and α-CD and γ-CD.
Also produces.

【0034】受容体特異性:1mM CaCl2を含む10mMリ
ン酸緩衝液(pH7.0)に10%のα-CD及び10%の各種受
容体をそれぞれ含むものを基質とし、本酵素5単位を加
え、40℃で20時間反応させ、得られた糖転移生成物を
TLCにて分析した。
Receptor specificity: 10 mM phosphate buffer (pH 7.0) containing 10 mM CaCl 2 containing 10% α-CD and 10% various receptors, respectively, was used as a substrate, and 5 units of this enzyme were used. In addition, the mixture was reacted at 40 ° C. for 20 hours, and the obtained glycosyl transfer product was analyzed by TLC.

【0035】同時にバチルス・マセランス(Bacillus m
acerans IFO 3490)由来のCGTase、バチルス・サーキュ
ランス(Bacillus circulans IFO 3329)由来のCGTase
及びバチルス・ステアロサーモフィラス(Bacillus ste
arothermophilus)由来のCGTase(林原社製品)のそれ
ぞれについても、添加する酵素活性を同一とし、受容体
特異性を調べ、本酵素と比較し、その結果を表1に示し
た(但し,この場合の緩衝液には、10 mM 酢酸緩衝液(p
H5.5)を使用した。)。
At the same time, Bacillus macerans
acerans IFO 3490) -derived CGTase, Bacillus circulans IFO 3329-derived CGTase
And Bacillus stearothermophilus
For each of the CGTases (product of Hayashibara Co.) derived from arothermophilus), the enzyme activity to be added was the same, the receptor specificity was investigated, and the results were shown in Table 1 in comparison with this enzyme (however, The buffer should be 10 mM acetate buffer (p
H5.5) was used. ).

【0036】尚、表中の記号のうち+は、糖転移生成物
を生成する場合を(糖転移生成物量は、+の数に比例し
て多くなる。)、(+)は、僅かに糖転移生成物を生成
する場合を、−は、糖転移生成物を生成しない場合をそ
れぞれ表示した。
In the symbols in the table, + means that a glycosyl transfer product is produced (the amount of the glycosyl transfer product increases in proportion to the number of +), and (+) means a slight sugar. The case where a transfer product is produced is represented by −, and the case where a glycosyl transfer product is not produced is represented.

【0037】[0037]

【表1】 [Table 1]

【0038】表1から明かなように、本酵素は、受容体
のD−グルコース、D−ガラクトース、D−キシロー
ス、D−アラビノース、L−アラビノース及びL−ラム
ノースに対して糖転移生成物を生成するのみならず、D
−マンノース、D−リボース、D−フコース及びL−フ
コースに対しても糖転移生成物を生成するので、バチル
ス・マセランス及びバチルス・サーキュランス由来のCG
Taseに比較してより受容体特異性の幅が広いことは明ら
かであり、そしてまた、L−ラムノースに対する糖転移
生成物は、バチルス・ステアロサーモフィラス由来のCG
Taseより多く生成していることも分かる。
As is clear from Table 1, this enzyme produces a glycosyl transfer product with respect to the receptors D-glucose, D-galactose, D-xylose, D-arabinose, L-arabinose and L-rhamnose. Not only do D
-CGs derived from Bacillus macerans and Bacillus circulans because they also produce glycosyl transfer products for mannose, D-ribose, D-fucose and L-fucose
It is clear that there is a broader range of receptor specificity compared to Tase, and also the glycosyl transfer product for L-rhamnose is CG from Bacillus stearothermophilus.
You can also see that it is generating more than Tase.

【0039】尚、D−グルコース、D−キシロース及び
L−ラムノースを受容体とし、本酵素、バチルス・マセ
ランス由来のCGTase及びバチルス・ステアロサーモフィ
ラス由来のCGTaseを用いたときのそれぞれの糖転移生成
物を、TLCにて分析したクロマトグラムを図2に示
す。
[0039] When D-glucose, D-xylose and L-rhamnose are used as receptors and the present enzyme, CGTase derived from Bacillus macerans and CGTase derived from Bacillus stearothermophilus are used, the respective glycosyl transfer is performed. The chromatogram of the product analyzed by TLC is shown in FIG.

【0040】図中、Bはブランク(受容体のみの場合)
であり、Xは本酵素の場合であり、Mはバチルス・マセ
ランス由来のCGTaseの場合であり、Sはバチルス・ステ
アロサーモフィラス由来のCGTaseの場合をそれぞれ示
し、またRはグルコース及びマルトオリゴ糖を示す。
In the figure, B is a blank (when only the receptor is used)
X is the case of the present enzyme, M is the case of CGTase derived from Bacillus macerans, S is the case of CGTase derived from Bacillus stearothermophilus, and R is glucose and maltooligosaccharides. Indicates.

【0041】至適pH:本酵素を1.5%可溶性澱粉溶
液に40℃にてpH3〜13のpH条件下で、30分間作用させ、
それぞれの活性を測定し、その結果を図3に示す。
Optimum pH: The enzyme is allowed to act on a 1.5% soluble starch solution at 40 ° C. under pH conditions of pH 3 to 13 for 30 minutes,
Each activity was measured and the results are shown in FIG.

【0042】尚、図中の白丸はマッキルバイン(McIlva
ine)緩衝液の、白三角はアトキンス・パンチン(Atkin
s & Pantin)緩衝液のpH曲線を示すものであり、図3
から明かなように本酵素の至適pHは、5〜6付近であ
る。
The white circles in the figure are McIlvain (McIlva
ine) buffer, open triangles are Atkins Pantin (Atkin
s & Pantin) buffer solution pH curve.
As is clear from this, the optimum pH of this enzyme is around 5-6.

【0043】至適温度:本酵素を1.5%可溶性澱粉溶
液に各種温度にてpH6の条件下で30分間作用させ、それ
ぞれの活性を測定し、その結果を図4に示す。
Optimum temperature: This enzyme was allowed to act on a 1.5% soluble starch solution at various temperatures for 30 minutes under the condition of pH 6, and the respective activities were measured. The results are shown in FIG.

【0044】図4から明かなように本酵素の至適温度
は、60℃付近である。
As is apparent from FIG. 4, the optimum temperature of this enzyme is around 60 ° C.

【0045】安定pH:本酵素液をpH4〜10のpH条件下
で、40℃で30分間保持し、その残存活性を測定し、その
結果を図5に示す。
Stable pH: This enzyme solution was kept at 40 ° C. for 30 minutes under pH conditions of pH 4 to 10, and its residual activity was measured. The results are shown in FIG.

【0046】尚、図中の白丸はマッキルバイン(McIlva
ine)緩衝液の、 白三角はアトキンス・パンチン(Atki
ns & Pantin)緩衝液の安定pH曲線を示すものであ
り、図5から明かなように安定pH範囲は、pH5.5〜9.5
である。
The white circles in the figure represent McIlvain (McIlva
ine) buffer, white triangles are Atkins Pantin (Atki
ns & Pantin) buffer solution stable pH curve. As is clear from FIG. 5, the stable pH range is pH 5.5 to 9.5.
Is.

【0047】温度安定性:本酵素液を各種温度下で、
pH6.0〔0.1M マッキルバイン(McIlvain)緩衝液〕にて
30分間放置後、それぞれの残存活性を測定し、その結果
を図6に示す。
Temperature stability: The enzyme solution is subjected to various temperatures at various temperatures.
At pH 6.0 [0.1M McIlvain buffer]
After being left for 30 minutes, each residual activity was measured, and the results are shown in FIG.

【0048】図6の実線から明かなように本酵素は、50
℃で90%の残存活性を示した。尚、本酵素は、カルシウ
ム塩の添加により安定化され、10mMのカルシウム塩によ
り50℃の処理においても、100%の残存活性を示した
(図6中の破線で示す。)。
As can be seen from the solid line in FIG.
The residual activity was 90% at 90 ° C. The enzyme was stabilized by the addition of calcium salt and showed 100% residual activity even after treatment with 50 mM of 10 mM calcium salt (shown by the broken line in FIG. 6).

【0049】活性測定法:基質〔1.5%可溶性澱粉、
0.1M リン酸緩衝液(pH7.0)〕0.5mlに酵素液0.05mlを
添加し、40℃にて30分間反応し、その後、0.1N塩酸5m
lを加え反応を停止し、その0.5mlを採り、0.05%ヨウ素
−0.05%ヨウ化カリウム溶液5mlを加え、発色させ、66
0nmでの吸光度の減少を測定した。
Activity measurement method: Substrate [1.5% soluble starch,
0.1M Phosphate buffer (pH 7.0)] 0.5ml to which 0.05ml of enzyme solution was added and reacted at 40 ° C for 30 minutes, then 0.1N hydrochloric acid 5m
The reaction was stopped by adding l, and 0.5 ml was taken, and 5 ml of 0.05% iodine-0.05% potassium iodide solution was added to develop color.
The decrease in absorbance at 0 nm was measured.

【0050】この測定条件にて、1分間に660nmの吸光
度を1%減少させる酵素量を1単位とした。
Under these measurement conditions, the amount of enzyme that reduces the absorbance at 660 nm by 1% per minute was defined as 1 unit.

【0051】本発明方法によりCDを製造するには、例
えば、先ず1〜30%の澱粉(澱粉又はその組成画分、加
工澱粉等を含む)を含有する水溶液に本酵素液(精製品
又は粗製品)を0.5〜20単位(乾燥澱粉1g当たり)加
えてpH4〜10、温度20〜70℃にて、1〜50時間酵素反応
を行う。
In order to produce CD by the method of the present invention, for example, the enzyme solution (purified product or crude product) is first added to an aqueous solution containing 1 to 30% of starch (including starch or its composition fraction, modified starch, etc.). 0.5-20 units (product) (per 1 g of dry starch) is added and the enzyme reaction is carried out at pH 4-10 and temperature 20-70 ° C for 1-50 hours.

【0052】そして又、本発明方法により糖転移生成物
を製造するには、例えば、先ず1〜30%の糖供与体(澱
粉又はその組成画分、加工澱粉、CD等を含む)を含有
する水溶液に1〜30%の各種糖類受容体存在下、本酵素
液(精製品又は粗製品)を0.5〜20単位(乾燥澱粉1g
当たり)加えてpH4〜10、温度20〜70℃にて、1〜50時
間酵素反応を行う。
To produce a glycosyl transfer product by the method of the present invention, for example, 1 to 30% of sugar donor (including starch or its composition fraction, modified starch, CD, etc.) is first contained. 0.5 to 20 units (dry starch 1 g) of this enzyme solution (purified product or crude product) in the presence of 1 to 30% of various sugar receptors in the aqueous solution
In addition, the enzyme reaction is performed at pH 4-10 and temperature 20-70 ° C for 1-50 hours.

【0053】以下に、実施例にて本発明を具体的に説明
するが、本発明はこれらによって限定されるものではな
い。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.

【0054】[0054]

【実施例】【Example】

実施例1 可溶性澱粉 1.0%、ポリペプトン 0.5%、酵母エキス
0.25%、硫酸アンモニウム 0.1%、K2HPO4 0.05%、MgS
O4・7H2O 0.025%、CaCl2 0.01%からなる培地(pH7.0)
100 mlを500 ml容坂口フラスコに入れ、常法により殺菌
後コリネバクテリウム・エスピー(Corynebacterium s
p.)No.9616 FERM-P 13520を接種し、37℃で40時間振盪
培養した。
Example 1 Soluble starch 1.0%, polypeptone 0.5%, yeast extract
0.25%, ammonium sulfate 0.1%, K 2 HPO 4 0.05%, MgS
O 4 · 7H 2 O 0.025% , the medium consisting CaCl 2 0.01% (pH7.0)
100 ml is put in a 500 ml Sakaguchi flask and sterilized by a conventional method, and Corynebacterium sp.
p.) No. 9616 FERM-P 13520 was inoculated and cultured at 37 ° C. for 40 hours with shaking.

【0055】培養後、培養菌体を遠心分離にて除去し、
酵素液2Lを得、この酵素液を5 mMリン酸緩衝液中(pH
7.0)にて透析後、限外ろ過膜(モジュールSIP,旭
化成社製)にかけ、濃縮液 30ml(CGTase活性は4.6単位
/mlであった。)を得た。
After culturing, the cultured cells were removed by centrifugation,
2 L of enzyme solution was obtained, and this enzyme solution was added to 5 mM phosphate buffer (pH
After dialysis with 7.0), it was applied to an ultrafiltration membrane (Module SIP, manufactured by Asahi Kasei) to obtain 30 ml of a concentrated solution (CGTase activity was 4.6 units / ml).

【0056】実施例2 5%及び10%濃度の可溶性澱粉溶液〔5 mM CaCl2 を含
む10 mM 酢酸緩衝液(pH6.0)〕20 mlに実施例1により
得られたCGTaseの濃縮液を1.0単位(乾燥澱粉1g当た
り)を加え、50℃にて47時間反応させて得られたα−C
D、β−CD及びγ−CDの収率(基質に対する重量比
で示す)は、澱粉濃度5%の場合、それぞれ16.6%、3
4.2%及び7.6%であり、澱粉濃度10%の場合、それぞれ
13.8%、27,0%及び6.6%であった。
Example 2 A solution of soluble starch having a concentration of 5% and 10% [10 mM acetate buffer (pH 6.0) containing 5 mM CaCl 2 ] in 20 ml of the concentrated solution of CGTase obtained in Example 1 was added to 1.0 ml. Α-C obtained by adding a unit (per 1 g of dry starch) and reacting at 50 ° C. for 47 hours
The yields of D, β-CD and γ-CD (indicated by weight ratio to the substrate) were 16.6% and 3%, respectively, when the starch concentration was 5%.
4.2% and 7.6%, and 10% starch concentration, respectively
It was 13.8%, 27.0% and 6.6%.

【0057】実施例3 1mM CaCl2を含む10mMリン酸緩衝液(pH7.0)にα-CD
(10%量)及びD−グルコース、D−キシロース、L−
ラムノースの各種受容体(何れも10%量)をそれぞれ含
むものを基質とし、本酵素5単位を加え、40℃で20時
間反応させ、各種の糖転移生成物をTLCにて分離取得
した。
Example 3 α-CD was added to 10 mM phosphate buffer (pH 7.0) containing 1 mM CaCl 2.
(10% amount) and D-glucose, D-xylose, L-
Using a substrate containing each of various receptors for rhamnose (each 10% amount), 5 units of the present enzyme was added and reacted at 40 ° C. for 20 hours, and various glycosyl transfer products were separated and obtained by TLC.

【0058】[0058]

【発明の効果】本発明は、CGTase産生能を有するコリネ
バクテリウムに属する微生物を培養し、培養物中にCGTa
seを生産せしめ、これを採取するCGTaseの製造法及び本
酵素を用いるCDの製造法である。
INDUSTRIAL APPLICABILITY The present invention cultivates a microorganism belonging to Corynebacterium having the ability to produce CGTase, and prepares CGTa in the culture.
It is a method for producing CGTase which produces se and collects this, and a method for producing CD using this enzyme.

【0059】本願発明は、本酵素を収率よく製造する方
法であり、これによりCDが安価に製造されると共に、
本酵素は、受容体特異性が広く、各種の糖転移生成物を
製造することができるので、物質の合成や性質の改変
等、食品分野、医薬分野及び工業分野等の様々な分野に
利用することができる。
The present invention is a method for producing the present enzyme in a high yield, whereby CD can be produced at low cost, and
Since this enzyme has a wide range of receptor specificity and can produce various glycosyl transfer products, it is used in various fields such as food fields, pharmaceutical fields, and industrial fields such as the synthesis and modification of properties of substances. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本酵素を澱粉に作用させたときの反応時間と各
種サイクロデキストリンの生成量との関係を示す。
FIG. 1 shows the relationship between the reaction time when this enzyme is allowed to act on starch and the production amount of various cyclodextrins.

【図2】本酵素、バチルス・マセランス由来のCGTase及
びバチルス・サーキュランス由来のCGTaseの各種受容体
に対する糖転移生成物をTLCにて分析したクロマトグ
ラムの模式図を示す。
FIG. 2 shows a schematic diagram of chromatograms obtained by TLC analysis of glycosyl transfer products of the present enzyme, CGTase derived from Bacillus macerans and CGTase derived from Bacillus circulans, to various receptors.

【図3】本酵素の至適pH曲線を示す。FIG. 3 shows an optimum pH curve of this enzyme.

【図4】本酵素の至適温度曲線を示す。FIG. 4 shows an optimum temperature curve of this enzyme.

【図5】本酵素の安定pH曲線を示す。FIG. 5 shows a stable pH curve of this enzyme.

【図6】本酵素の温度安定曲線を示す。FIG. 6 shows a temperature stability curve of this enzyme.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】コリネバクテリウム属に属するサイクロデ
キストリン・グルカノトランスフェラーゼ生産能を有す
る微生物を培養し、培養物中にサイクロデキストリン・
グルカノトランスフェラーゼを産生せしめ、これを採取
することを特徴とするサイクロデキストリン・グルカノ
トランスフェラーゼの製造法。
1. A microorganism belonging to the genus Corynebacterium having a cyclodextrin-glucanotransferase-producing ability is cultivated, and the cyclodextrin
A method for producing cyclodextrin-glucanotransferase, which comprises producing glucanotransferase and collecting the glucanotransferase.
【請求項2】澱粉、デキストリン、アミロース、アミロ
ペクチン等の溶液にコリネバクテリウム属の産生するサ
イクロデキストリン・グルカノトランスフェラーゼを反
応させ、反応液中に主としてβ−サイクロデキストリン
を生成せしめ、これを採取することを特徴とするサイク
ロデキストリンの製造法。
2. A solution of starch, dextrin, amylose, amylopectin, etc. is reacted with cyclodextrin-glucanotransferase produced by the genus Corynebacterium to produce β-cyclodextrin mainly in the reaction solution, which is collected. A method for producing cyclodextrin, which is characterized in that
【請求項3】糖供与体を含有する水溶液に、受容体存在
下、コリネバクテリウム属の産生するサイクロデキスト
リン・グルカノトランスフェラーゼを反応させ、反応液
中に糖転移生成物を生成せしめ、これを採取することを
特徴とする糖転移生成物の製造法。
3. An aqueous solution containing a sugar donor is reacted with a cyclodextrin-glucanotransferase produced by Corynebacterium in the presence of an acceptor to form a sugar transfer product in the reaction solution, which is produced. A method for producing a glycosyl transfer product, which comprises collecting.
【請求項4】糖供与体が、澱粉又はその組成画分、焙焼
デキストリン、加工澱粉、澱粉誘導体、物理処理澱粉及
びα−澱粉等の炭水化物、サイクロデキストリンのうち
の何れかである請求項3記載の糖転移生成物の製造法。
4. The sugar donor is any one of starch or a composition fraction thereof, roasted dextrin, processed starch, starch derivative, physically treated starch and carbohydrate such as α-starch, and cyclodextrin. A method for producing the glycosyl transfer product described.
【請求項5】受容体が、D−グルコース、D−ガラクト
ース、D−キシロース、D−マンノース、D−リボー
ス、D−アラビノース、L−アラビノース、D−フコー
ス、L−フコース及びL−ラムノースのうちの何れかで
ある請求項3記載の糖転移生成物の製造法。
5. The receptor is selected from D-glucose, D-galactose, D-xylose, D-mannose, D-ribose, D-arabinose, L-arabinose, D-fucose, L-fucose and L-rhamnose. The method for producing a glycosyl transfer product according to claim 3, which is any one of the following:
JP5097077A 1993-03-30 1993-03-30 Production of cyclodextrin glucanotransferase produced by corynebacterium and use of the enzyme Pending JPH07183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5097077A JPH07183A (en) 1993-03-30 1993-03-30 Production of cyclodextrin glucanotransferase produced by corynebacterium and use of the enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5097077A JPH07183A (en) 1993-03-30 1993-03-30 Production of cyclodextrin glucanotransferase produced by corynebacterium and use of the enzyme

Publications (1)

Publication Number Publication Date
JPH07183A true JPH07183A (en) 1995-01-06

Family

ID=14182586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5097077A Pending JPH07183A (en) 1993-03-30 1993-03-30 Production of cyclodextrin glucanotransferase produced by corynebacterium and use of the enzyme

Country Status (1)

Country Link
JP (1) JPH07183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465486B2 (en) 2003-11-13 2008-12-16 Ngk Insulators, Ltd. Ceramic honeycomb structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465486B2 (en) 2003-11-13 2008-12-16 Ngk Insulators, Ltd. Ceramic honeycomb structure

Similar Documents

Publication Publication Date Title
JP3934851B2 (en) Novel cyclodextrin gluconotransferase, method for producing the same, and method for producing cyclodextrin using the enzyme
EP0017242A1 (en) A process for producing cyclodextrins
EP0327099B1 (en) Cyclomaltodextrin glucanotransferase, process for its preparation and novel microorganism useful for the process
JP3360291B2 (en) Method for Increasing Yield of γ-Cyclodextrin
JPH07183A (en) Production of cyclodextrin glucanotransferase produced by corynebacterium and use of the enzyme
US5334524A (en) Process for producing levan sucrase using Bacillus licheniformis
US5008195A (en) Some novel producers of cyclodextrin glycosyltransferases
JP2987685B2 (en) Novel glucosyl (α1 → 6) branched hydrolase, method for producing and using the enzyme
JP3250852B2 (en) Novel cyclodextrin-glucanotransferase produced by Bacillus megaterium, method for producing the same, and method for producing cyclodextrin using the enzyme
EP0492426B1 (en) Klebsiella oxytoca No. 19-1 and a process for producing alpha-cyclodextrin
US5110734A (en) Purified cyclodextrinase
Iizuka et al. Synthesis of Fructan and Oligosaccharides by Microbial and Plant Fructosyltransf erasest
KR960014108B1 (en) Direct fermentation process for cyclodextrin production by using microorganism
US5492829A (en) Klebsiella oxytoca No. 19-1 capable of producing α-cyclodextrin
US4348481A (en) Method of obtaining glucose isomerase
JPH07107971A (en) Cyclodextrin glucanotransferase stable to alkali and its production
JP3100196B2 (en) Process for producing starch sugar
JP3272416B2 (en) Novel cyclodextrin glucanotransferase, method for producing the same, and method for producing cyclodextrin using the enzyme
JPH0761264B2 (en) Novel cyclomaltodextrinase and method for producing the same
KR100267719B1 (en) A thermostable cyclodextrine biosynthetic enzyme and a producing method thereof from Paenibacillus sp.
JPH0632611B2 (en) γ-Cyclodextrin synthase and method for producing the same
KR830002250B1 (en) Preparation of Cyclodextrine
JPS61274680A (en) Production of cyclodextrin glycosyl transferase
JPH08256766A (en) Cyclodextrin glucanotransferase and its production
WO2001068809A1 (en) Bacillus circulans b-65, cyclodextrin glucanotransferase obtained therefrom and use to produce cyclodextrin