JPH0718377A - Electric resistance welded tube excellent in sulfide stress corrosion cracking resistance - Google Patents

Electric resistance welded tube excellent in sulfide stress corrosion cracking resistance

Info

Publication number
JPH0718377A
JPH0718377A JP16256693A JP16256693A JPH0718377A JP H0718377 A JPH0718377 A JP H0718377A JP 16256693 A JP16256693 A JP 16256693A JP 16256693 A JP16256693 A JP 16256693A JP H0718377 A JPH0718377 A JP H0718377A
Authority
JP
Japan
Prior art keywords
electric resistance
inclusions
hardness
length
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16256693A
Other languages
Japanese (ja)
Inventor
Yasushi Yamamoto
康士 山本
Akihiro Miyasaka
明博 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16256693A priority Critical patent/JPH0718377A/en
Publication of JPH0718377A publication Critical patent/JPH0718377A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce an electric resistance welded tube excellent in sulfide stress corrosion cracking resistance. CONSTITUTION:In an electric resistance welded tube produced by steel having a basal compsn. of 0.05 to 0.35% C, 0.50 to 2.50% Si, 0.30 to 2.00%Mn, 0.0005 to 0.0080% Ca and 0.005 to 0.100% Al and contg., at need, one or <=two kindsamong Mo, Nb, V, Ti, B, Cu, Ni and Cr, among oxide inclusions contained within 100mum on both sides around the electric resistance welded abutting face, as the shape of the inclusions viewed in the cross section, the ratio of the length in the thick plate direction to the length in the circumferential direction is regulated to <=2, furthermore, the number of inclusions having >=10mum major axis to cut the cross section per mm<2> is regulated to <=5, moreover, around the electric resistance welded abutting face, the measured value of the hardness within 30mm on both sides is regulated to <=250 by Vickers hardness, and the hardness of the softest phase in the same area is regulated to >=100 by Vicker hardness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿潤な硫化水素を含む
環境によって引き起こされる硫化物応力腐食割れ(以下
SSCで表す)に対して高い抵抗性を有する電縫鋼管に
関し、特に油井やガス井で使用される構造部材、例えば
油井管やラインパイプとして好適な上記電縫鋼管に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric resistance welded steel pipe having high resistance to sulfide stress corrosion cracking (hereinafter referred to as SSC) caused by an environment containing moist hydrogen sulfide, and particularly to oil wells and gas wells. The present invention relates to the above-mentioned electric resistance welded steel pipe suitable as a structural member used in, for example, an oil well pipe or a line pipe.

【0002】[0002]

【従来の技術】近年における油田やガス田の開発におい
ては、急速に増大しつつある需要と、それに応える技術
の進歩によって、従来放置されていたかあるいは開発困
難であった、地中深く埋蔵され、かつ硫化水素などの硫
化物でかなり汚染された、いわゆるサワー環境下にある
油やガスにまで次第に開発の目が向けられて来ている。
したがって、石油および天然ガスの生産分野において
は、外圧(地層の圧力)や内圧(油やガスの圧力)、あ
るいは鋼材の自重による引っ張り荷重等に耐えるととも
に、サワー環境下で使用しても充分に所望性能を発揮で
きる、高強度にして耐硫化物応力腐食割れ特性(以後耐
SSC特性で示す)に優れた鋼の開発が、一段と要望さ
れている。
2. Description of the Related Art In recent years, in the development of oil and gas fields, due to the rapidly increasing demand and the progress of technology to meet the demand, it has been buried deep in the ground, which was either left unattended or difficult to develop. Moreover, development is gradually being focused on oils and gases that are so contaminated with sulfides such as hydrogen sulfide and that are in so-called sour environments.
Therefore, in the field of oil and natural gas production, it withstands external pressure (pressure in the formation) and internal pressure (pressure of oil and gas), or the tensile load due to the weight of the steel material, and can be used even in sour environments. There is a further demand for the development of a steel capable of exhibiting desired performance and having high strength and excellent sulfide stress corrosion cracking resistance (hereinafter referred to as SSC resistance).

【0003】鋼の耐SSC特性を向上させる手段につい
ては、1950年来種々の検討が加えられ、現在では例
えばNACE Standard MR−01−75に
示された硬度(強度)の上限以下に鋼の強度を抑えるこ
とが耐SSC特性向上に最も有効であるとされ、使用者
の要望に応えるため、これに基づくL−80がAPI規
格に加えられている。
Various means have been studied since 1950 for improving the SSC resistance of steel, and at present, the strength of steel is kept below the upper limit of hardness (strength) shown in NACE Standard MR-01-75, for example. It is said that the suppression is most effective for improving the SSC resistance, and in order to meet the user's request, L-80 based on this is added to the API standard.

【0004】しかしながら、当然上記硬さの上限規制だ
けで耐SSC特性を向上できるわけではなく、他の要因
がいくつかあることがわかっている。この耐SSC特性
向上要因の1つとしてサワー特性の向上が考えられる。
サワー特性の向上は、硫化水素を含む環境中での水素ふ
くれ割れを低減することであり、この破壊は外部からの
負荷応力がなくとも発生が認められるものである。サワ
ー環境中で応力がかかった場合、応力軸と平行にこの水
素ふくれ割れが発生し、これらが連結することによって
破壊に到る場合があり、この水素ふくれ割れの発生を防
止することによって耐SSC特性を向上させるという考
え方である。
However, it is naturally understood that the SSC resistance cannot be improved only by the upper limit of the hardness, and there are some other factors. As one of the factors that improve the SSC resistance, it is considered that the sour property is improved.
The improvement of the sour property is to reduce hydrogen blistering cracks in an environment containing hydrogen sulfide, and this fracture can be recognized even without an external load stress. When stress is applied in a sour environment, hydrogen blistering cracks occur in parallel with the stress axis, and these may connect to cause destruction. By preventing the hydrogen blistering cracks from occurring, SSC resistance can be improved. The idea is to improve the characteristics.

【0005】ところで水素ふくれ割れは、環境中から侵
入した水素が母材中に存在する圧延方向に長く伸びたM
nS等のA系硫化物系介在物と地鉄の境界に集積してガ
ス化し、そのガス圧によって発生するもので、MnS等
のA系硫化物系介在物を割れの核として板面平行割れに
成長し、この板面平行割れが板厚方向に連結されるもの
である。MnSなどのA系硫化物系介在物は、圧延方向
に長く伸びた形状が鋭い切欠となるため割れの核となり
やすく、この種の破壊に最も有害であるとされている。
By the way, hydrogen blistering is a phenomenon in which hydrogen that has penetrated from the environment exists in the base metal and is elongated in the rolling direction.
It is generated by the gas pressure by accumulating at the boundary between A-type sulfide-based inclusions such as nS and the base metal, and is generated by the gas pressure. Parallel cracks on the plate surface using A-type sulfide-based inclusions such as MnS as the nucleus of the crack. And the parallel cracks in the plate surface are connected in the plate thickness direction. A-type sulfide inclusions such as MnS tend to become nuclei for cracks because the shape elongated in the rolling direction forms sharp notches, and is said to be the most harmful to this type of fracture.

【0006】こうした水素ふくれ割れに対する抵抗の高
い鋼について、従来から様々な研究がなされ、種々の鋼
が提案されている。それらは例えば、CaやCo添加に
よる割れ防止、極低S化によるMnSの減少、Caある
いは希土類元素等の添加によるSの固定等を利用するも
のであって、これらの技術によって現在までにかなり厳
しい環境にまで耐え得る鋼が開発されている。また、上
記サワー特性を向上させる種々の手段を用いることによ
って、耐SSC特性を向上させることが可能となってい
る。
[0006] Various studies have heretofore been made on steels having high resistance to hydrogen blistering, and various steels have been proposed. They utilize, for example, cracking prevention by adding Ca and Co, reduction of MnS by extremely low S, fixation of S by addition of Ca or rare earth elements, etc. Steel has been developed that can withstand the environment. Further, it is possible to improve the SSC resistance by using various means for improving the sour property.

【0007】ところで、電縫鋼管はホットコイル等の鋼
板を成形し電縫溶接するものであって、鋼板との決定的
な相違は言うまでもなく溶接部および溶接熱影響部が存
在することである。しかるに、電縫溶接部周辺部分の耐
SSC特性、それもC方向について検討された例は従来
ほとんど見あたらない。これは通常の製造工程において
MnS等のA系硫化物系介在物が多く存在するのは大型
鋼塊では逆偏析部およびV偏析部であり、連鋳片では中
心偏析部であって、鋼板のエッジ部には、非常に少ない
こと、板面平行割れを助長するMn、Pのミクロ偏析が
激しいのもMnSなどのA系硫化物系介在物が多く存在
する部位と同様の部位であってエッジ部にはほとんど存
在しないことなどの理由から、鋼板のエッジ部同士を電
縫溶接して製造するいわゆる単幅材では、電縫溶接部周
辺部分の耐SSC特性は良好であると理解されてきたか
らである。また、1つのホットコイルを幅方向に2以上
に分割した上で製造するいわゆる多条取りの電縫鋼管で
は、電縫溶接部の一方あるいは両方に逆V偏析部や中心
偏析部等のSSC感受性の高い部分が該当するため、S
SCに対する認識はあった。しかしこの場合にも対策と
しては主としてMnS等のA系硫化物系介在物の減少と
いった母材と同様の対策が施されてきた。
By the way, the electric resistance welded steel pipe is for forming a steel plate such as a hot coil and performing electric resistance welding, and needless to say is a definite difference from the steel plate in that a welded portion and a weld heat affected zone are present. However, heretofore, almost no examples have been found in which the SSC resistance characteristics of the peripheral portion of the electric resistance welded portion, and also the C direction, were examined. This is because in the ordinary manufacturing process, a large amount of A-based sulfide inclusions such as MnS are present in the reverse segregation part and the V segregation part in the large steel ingot, and in the central segregation part in the continuous cast piece. The edge part is very small, and the microsegregation of Mn and P that promote parallel cracks on the plate surface is severe. It is the same as the part where many A-type sulfide inclusions such as MnS exist It has been understood that the so-called single width material manufactured by electric resistance welding of the edge portions of the steel sheet has good SSC resistance around the electric resistance welded portion because it is almost absent in the portion. Is. Further, in a so-called multi-strand electric resistance welded steel pipe manufactured by dividing one hot coil into two or more in the width direction, one or both of the electric resistance welded portions are susceptible to SSC such as an inverse V segregation portion or a center segregation portion. Is high, so S
There was recognition for SC. However, also in this case, the same measure as that of the base metal has been taken mainly as a measure, such as reduction of A-based sulfide-based inclusions such as MnS.

【0008】これに対し、本発明者らは電縫鋼管の電縫
溶接部C方向について耐SSC特性を詳細に調査した結
果、MnS等の硫化物系介在物が存在しない場合でも電
縫溶接部の耐SSC特性の劣化する場合のあることを見
出した。ただし、電縫溶接部の場合には板面垂直型の水
素ふくれ割れがSSCの起点となっていることが母材部
とは異なっており、このため母材部に比較してよりSS
Cを起こしやすいことが懸念される。さらに、この種の
水素ふくれ割れを起点としたSSCは、本質的に鋼板エ
ッジ部にミクロ偏析の少ない単幅材であっても発生する
ことがわかった。この板面に垂直な水素ふくれ割れを起
点とした電縫溶接部のSSCは従来知られていないもの
であって、母材の板面平行の水素ふくれ割れを起点とす
るSSC以上に重大な問題である。しかしこの割れは、
従来の水素ふくれ割れに対する対策鋼を使用した電縫鋼
管でも発生し、従来技術では防止できないことがわかっ
た。
On the other hand, as a result of detailed investigation of the SSC resistance in the C direction of the electric resistance welded portion of the electric resistance welded steel pipe, the inventors of the present invention have found that the electric resistance resistance welded portion has no sulfide inclusions such as MnS. It was found that the SSC resistance of No. 1 may deteriorate. However, in the case of the electric resistance welded part, it is different from the base metal part in that the hydrogen swelling crack of the vertical type on the plate surface is the starting point of SSC.
There is concern that C may occur easily. Further, it has been found that SSC originating from this kind of hydrogen blistering crack is generated even in the case of a single-width material having essentially less microsegregation at the steel plate edge portion. The SSC of the electric resistance welded portion starting from the hydrogen blistering perpendicular to the plate surface has not been known so far, and is a more serious problem than the SSC originating from the hydrogen blistering crack parallel to the plate surface of the base metal. Is. But this crack
It has been found that conventional countermeasures against hydrogen blistering also occur in electric resistance welded steel pipes using steel and cannot be prevented by conventional techniques.

【0009】こうした全く新しいタイプの板面垂直型水
素ふくれ割れを起点とするSSCに対する抵抗の高い鋼
管として、特開平4−218799号公報記載のものが
ある。これは、電縫衝合面に含まれる酸化物系介在物の
うち、延伸した介在物の個数を制限するとともに、電縫
衝合面での硬さ測定値の最大値および最大値と最小値の
差を規定したことに特徴を有する。
As a steel pipe having a high resistance to SSC originating from such completely new type plate vertical hydrogen blistering crack, there is a steel pipe described in JP-A-4-218799. This limits the number of stretched inclusions among the oxide inclusions contained in the electric resistance welded surface, and also determines the maximum and maximum and minimum values of hardness measured on the electric resistance welded surface. It is characterized by defining the difference between.

【0010】[0010]

【発明が解決しようとする課題】ところが上記特開平4
−218799号公報の発明においては、電縫衝合面で
の硬さの最大値の規定はともかく、最大値と最小値の差
を減少させることは、実操業上かなりの困難を伴う。ま
たビッカース硬さで示される硬さの測定領域には軟化相
も硬化相も含まれるため、緻密な意味での組織を考慮し
た硬さの規定とは言えない。本発明は、これらを解決し
ようとするものである。
However, the above-mentioned Japanese Unexamined Patent Application Publication No.
In the invention of Japanese Patent No. 218799, aside from the definition of the maximum value of hardness on the electric resistance abutting surface, reducing the difference between the maximum value and the minimum value involves considerable difficulty in actual operation. Further, since the hardness measurement region represented by Vickers hardness includes the softening phase and the hardening phase, it cannot be said that the hardness is defined in consideration of the structure in a precise sense. The present invention seeks to solve these problems.

【0011】[0011]

【課題を解決するための手段】本発明者らは、こうした
問題点を解決すべく研究を続けた結果、電縫衝合面を中
心として両側30mm以内での硬さ測定値の最大値がビ
ッカース硬さで250以下で、かつその領域での最軟化
相の硬さがビッカース硬さで100以上である必要性を
見出した。硬さの最大値の規制は従来からの知見である
が、最軟化相の硬さの下限値規制の必要性に関しては、
最軟化相での応力集中による割れの発生が耐SSC特性
を劣化するためと考えられる。また本発明者らは、最軟
化相の硬さの下限を規定するための方法を種々検討した
結果、Siの固溶によるフェライト相の硬化が有効であ
ることを見出した。
As a result of continuing the research to solve these problems, the present inventors found that the maximum hardness measurement value within 30 mm on both sides of the electric resistance joint surface was Vickers. It was found that the hardness is 250 or less, and the hardness of the softest phase in that region is 100 or more in Vickers hardness. Although the regulation of the maximum value of hardness is a conventional finding, regarding the necessity of the lower limit regulation of the hardness of the softest phase,
It is considered that the occurrence of cracks due to stress concentration in the softest phase deteriorates the SSC resistance. As a result of various studies on the method for defining the lower limit of the hardness of the softest phase, the present inventors have found that hardening of the ferrite phase by solid solution of Si is effective.

【0012】本発明はこうした知見に基づいてなされた
もので、その要旨とするところは以下のとおりである。 (1)C:0.05〜0.35%、Si:0.50〜
2.50%、Mn:0.30〜2.00%に加えてCa
を0.0005〜0.0080%とAlを0.005〜
0.100%含有し、残部Feおよび不可避的不純物か
らなる鋼で製造した電縫鋼管において、電縫衝合面を中
心として両側100μm以内に含まれる酸化物系介在物
のうち横断面でみた介在物の形状として板厚方向の長さ
と円周方向の長さの比が2以上でかつ長径10μm以上
の介在物が1mm2 あたりの横断面を切る個数が5以下
であり、かつ電縫衝合面を中心として両側30mm以内
での硬さ測定値の最大値がビッカース硬さで250以下
であり、かつその領域での最軟化相の硬さがビッカース
硬さで100以上であることを特徴とする耐硫化物応力
腐食割れ性の優れた電縫鋼管。
The present invention has been made based on these findings, and the gist thereof is as follows. (1) C: 0.05 to 0.35%, Si: 0.50
Ca in addition to 2.50%, Mn: 0.30 to 2.00%
0.0005-0.0080% and Al 0.005-
In an electric resistance welded steel pipe made of a steel containing 0.100% of balance Fe and inevitable impurities, an oxide inclusion included within 100 μm on both sides of the electric resistance joint surface as seen from the cross section. As the shape of the object, the ratio of the length in the plate thickness direction to the length in the circumferential direction is 2 or more, and the number of inclusions having a major axis of 10 μm or more that cuts the cross section per 1 mm 2 is 5 or less, and the electric resistance welding The maximum value of hardness measured within 30 mm on both sides of the plane is Vickers hardness of 250 or less, and the hardness of the softest phase in that region is Vickers hardness of 100 or more. ERW steel pipe with excellent resistance to sulfide stress corrosion cracking.

【0013】(2)C:0.05〜0.35%、Si:
0.50〜2.50%、Mn:0.30〜2.00%に
加えてCaを0.0005〜0.0080%とAlを
0.005〜0.100%含有し、さらにMo:0.1
〜2.0%、Nb:0.01〜0.15%、V:0.0
1〜0.30%、Ti:0.001〜0.050%、
B:0.0003〜0.0040%のうち1種または2
種以上を含み、残部Feおよび不可避的不純物からなる
鋼で製造した電縫鋼管において、電縫衝合面を中心とし
て両側100μm以内に含まれる酸化物系介在物のうち
横断面でみた介在物の形状として板厚方向の長さと円周
方向の長さの比が2以上でかつ長径10μm以上の介在
物が1mm2 あたりの横断面を切る個数が5以下であ
り、かつ電縫衝合面を中心として両側30mm以内での
硬さ測定値の最大値がビッカース硬さで250以下であ
り、かつその領域での最軟化相の硬さがビッカース硬さ
で100以上であることを特徴とする耐硫化物応力腐食
割れ性の優れた電縫鋼管。
(2) C: 0.05 to 0.35%, Si:
0.50 to 2.50%, Mn: 0.30 to 2.00%, 0.0005 to 0.0080% of Ca and 0.005 to 0.100% of Al, and Mo: 0. .1
~ 2.0%, Nb: 0.01 to 0.15%, V: 0.0
1 to 0.30%, Ti: 0.001 to 0.050%,
B: 1 or 2 out of 0.0003 to 0.0040%
In an electric resistance welded steel pipe made of a steel containing at least one of the above and consisting of the balance Fe and unavoidable impurities, among oxide inclusions contained within 100 μm on both sides of the electric resistance contact surface, inclusions seen in cross section are included. As a shape, the ratio of the length in the plate thickness direction to the length in the circumferential direction is 2 or more, and the number of inclusions having a major axis of 10 μm or more cuts the cross section per 1 mm 2 is 5 or less, and The maximum value of hardness measured within 30 mm on both sides of the center is 250 or less in Vickers hardness, and the hardness of the softest phase in that region is 100 or more in Vickers hardness. ERW steel pipe with excellent sulfide stress corrosion cracking resistance.

【0014】(3)C:0.05〜0.35%、Si:
0.50〜2.50%、Mn:0.30〜2.00%に
加えてCaを0.0005〜0.0080%とAlを
0.005〜0.100%含有し、さらにCu:0.1
〜2.0%、Ni:0.1〜9.5%、Cr:0.1〜
3.0%のうち1種または2種以上を含み、残部Feお
よび不可避的不純物からなる鋼で製造した電縫鋼管にお
いて、電縫衝合面を中心として両側100μm以内に含
まれる酸化物系介在物のうち横断面でみた介在物の形状
として板厚方向の長さと円周方向の長さの比が2以上で
かつ長径10μm以上の介在物が1mm2 あたりの横断
面を切る個数が5以下であり、かつ電縫衝合面を中心と
して両側30mm以内での硬さ測定値の最大値がビッカ
ース硬さで250以下であり、かつその領域での最軟化
相の硬さがビッカース硬さで100以上であることを特
徴とする耐硫化物応力腐食割れ性の優れた電縫鋼管。
(3) C: 0.05 to 0.35%, Si:
0.50 to 2.50%, Mn: 0.30 to 2.00%, 0.0005 to 0.0080% of Ca and 0.005 to 0.100% of Al, and Cu: 0. .1
~ 2.0%, Ni: 0.1-9.5%, Cr: 0.1
In an electric resistance welded steel pipe made of a steel containing one or more of 3.0% and the balance being Fe and unavoidable impurities, an oxide-based inclusion included within 100 μm on both sides of the electric resistance welding surface as a center. As for the shape of inclusions in the cross section, the ratio of the length in the plate thickness direction to the length in the circumferential direction is 2 or more, and the number of inclusions having a major axis of 10 μm or more cuts the cross section per 1 mm 2 is 5 or less. In addition, the maximum value of hardness measured within 30 mm on both sides of the electric resistance contact surface is Vickers hardness of 250 or less, and the hardness of the softest phase in that region is Vickers hardness. ERW steel pipe excellent in sulfide stress corrosion cracking resistance, which is 100 or more.

【0015】(4)C:0.05〜0.35%、Si:
0.50〜2.50%、Mn:0.30〜2.00%に
加えてCaを0.0005〜0.0080%とAlを
0.005〜0.100%含有し、さらにMo:0.1
〜2.0%、Nb:0.01〜0.15%、V:0.0
1〜0.30%、Ti:0.001〜0.050%、
B:0.0003〜0.0040%のうち1種または2
種以上およびCu:0.1〜2.0%、Ni:0.1〜
9.5%、Cr:0.1〜3.0%のうち1種または2
種以上を含み、残部Feおよび不可避的不純物からなる
鋼で製造した電縫鋼管において、電縫衝合面を中心とし
て両側100μm以内に含まれる酸化物系介在物のうち
横断面でみた介在物の形状として板厚方向の長さと円周
方向の長さの比が2以上でかつ長径10μm以上の介在
物が1mm2 あたりの横断面を切る個数が5以下であ
り、かつ電縫衝合面を中心として両側30mm以内での
硬さ測定値の最大値がビッカース硬さで250以下であ
り、かつその領域での最軟化相の硬さがビッカース硬さ
で100以上であることを特徴とする耐硫化物応力腐食
割れ性の優れた電縫鋼管。
(4) C: 0.05 to 0.35%, Si:
0.50 to 2.50%, Mn: 0.30 to 2.00%, 0.0005 to 0.0080% of Ca and 0.005 to 0.100% of Al, and Mo: 0. .1
~ 2.0%, Nb: 0.01 to 0.15%, V: 0.0
1 to 0.30%, Ti: 0.001 to 0.050%,
B: 1 or 2 out of 0.0003 to 0.0040%
Seed or higher and Cu: 0.1 to 2.0%, Ni: 0.1
9.5%, Cr: 0.1 to 3.0%, one or two
In an electric resistance welded steel pipe made of a steel containing at least one of the above and consisting of the balance Fe and unavoidable impurities, among oxide inclusions contained within 100 μm on both sides of the electric resistance contact surface, inclusions seen in cross section are included. As a shape, the ratio of the length in the plate thickness direction to the length in the circumferential direction is 2 or more, and the number of inclusions having a major axis of 10 μm or more cuts the cross section per 1 mm 2 is 5 or less, and The maximum value of hardness measured within 30 mm on both sides of the center is 250 or less in Vickers hardness, and the hardness of the softest phase in that region is 100 or more in Vickers hardness. ERW steel pipe with excellent sulfide stress corrosion cracking resistance.

【0016】[0016]

【作用】以下に作用とともに本発明を詳細に説明する。
まず本発明は、耐SSC特性に優れた電縫鋼管全般を対
象とするものであるが、上記成分を規定する理由は以下
のとおりである。Cは鋼材の強度を高める作用があり、
0.05%以上添加されるが、0.35%を超えて添加
されると靱性を著しく劣化するため、その含有量を0.
05〜0.35%とした。
The present invention will be described in detail below along with its operation.
First, the present invention is intended for all electric resistance welded steel pipes excellent in SSC resistance, and the reasons for defining the above components are as follows. C has the effect of increasing the strength of the steel material,
If added in excess of 0.35%, the toughness will be significantly deteriorated.
It was set to 05 to 0.35%.

【0017】Siは固溶体強化作用があり、鋼材の強度
および延性を改善する作用がある。特にフェライトの硬
さを向上させるためには、0.50%以上添加する必要
があるが、2.50%を超えて添加されると鋼材の靱性
を劣化するため、その含有量を0.50〜2.50%と
した。MnもCと同様、鋼材の強度を高める作用があ
り、0.30%以上添加されるが、その含有量が2.0
0%を超えると製鋼作業を困難として経済的でないばか
りでなく、溶接性を損害することから、その含有量を
0.30〜2.00%とした。
Si has a solid solution strengthening action, and has an action of improving the strength and ductility of the steel material. In particular, in order to improve the hardness of ferrite, it is necessary to add 0.50% or more, but if added in excess of 2.50%, the toughness of the steel material deteriorates, so its content should be 0.50%. ˜2.50%. Like C, Mn also has the effect of increasing the strength of the steel material and is added in an amount of 0.30% or more, but its content is 2.0.
If it exceeds 0%, not only is the steelmaking operation difficult and uneconomical, but also the weldability is impaired, so the content was made 0.30 to 2.00%.

【0018】Caは硫化物系介在物の形態制御により、
SSCの起点となる水素ふくれ割れを防止するのに有効
で0.0005%以上添加されるが、多くなると鋼中介
在物を形成し鋼の性質を悪化させるため、その含有量を
0.0005〜0.0080%とした。Alは製鋼段階
の脱酸のために必要であり、その下限を0.005%と
した。また0.100%を超えて添加されると介在物の
量が増加して鋼の清浄性が失われること、および製鋼作
業に支障をきたすことなどから、その範囲を0.005
〜0.100%とした。
Ca is controlled by the morphology of sulfide inclusions.
It is effective in preventing hydrogen blistering cracks, which is the starting point of SSC, and is added in an amount of 0.0005% or more. However, if it increases, it forms inclusions in the steel and deteriorates the properties of the steel. It was set to 0.0080%. Al is necessary for deoxidation in the steelmaking stage, and its lower limit was made 0.005%. If added in excess of 0.100%, the amount of inclusions will increase and the cleanliness of the steel will be lost, and the steelmaking operation will be impaired.
˜0.100%.

【0019】Moは強度上昇に有用で、フェライトの硬
さを向上させるために0.10%以上添加されるが、多
くなると溶接性を阻害するため、その範囲を0.10〜
2.0%とした。Nbはオーステナイト粒の細粒化や強
度上昇に有用で0.01%以上添加されるが、多くなる
と溶接性を阻害するため、その範囲を0.01〜0.1
5%とした。
Mo is useful for increasing the strength and is added in an amount of 0.10% or more in order to improve the hardness of ferrite. However, if it increases, it deteriorates the weldability.
It was set to 2.0%. Nb is useful for refining the austenite grains and increasing the strength, and is added in an amount of 0.01% or more, but if it increases, it deteriorates the weldability, so the range is 0.01-0.1.
It was set to 5%.

【0020】Vは析出強化に有用で0.01%以上添加
されるが、多くなると溶接性を阻害するため、その範囲
を0.01〜0.30%とした。Tiはオーステナイト
粒の細粒化に有用で、0.001%以上添加されるが、
多くなると溶接性を阻害するため、その範囲を0.00
1〜0.050%とした。
V is useful for precipitation strengthening and is added in an amount of 0.01% or more, but if it increases, it deteriorates the weldability, so the range was made 0.01 to 0.30%. Ti is useful for making austenite grains finer and is added in an amount of 0.001% or more.
If it increases, the weldability is impaired.
It was set to 1 to 0.050%.

【0021】Bは微量の添加によって鋼の焼入れ性を著
しく高める効果を有する。この効果を有効に得るために
は少なくとも0.0003%のBが必要であるが、過多
に添加するとB化合物を形成して鋼の靱性を劣化させる
ので、その範囲を0.0003〜0.0040%とし
た。Cuは強度上昇、耐食性向上に有効で0.1%以上
添加されるが、2.0%を超えて添加しても強度の上昇
代がほとんどなくなるので、その範囲を0.1〜2.0
%とした。
B has the effect of remarkably enhancing the hardenability of steel by the addition of a trace amount. To obtain this effect effectively, at least 0.0003% of B is necessary, but if added in excess, it forms a B compound and deteriorates the toughness of the steel, so the range is 0.0003 to 0.0040. %. Cu is effective in increasing the strength and improving the corrosion resistance and is added in an amount of 0.1% or more. However, even if added in an amount of more than 2.0%, there is almost no increase in strength.
%.

【0022】Niは低温靱性の改善に有効で0.1%以
上添加されるが、高価な元素であるために、その範囲を
0.1〜9.5%とした。Crは強度上昇や耐食性向上
に有効で0.1%以上添加されるが、多くなると低温靱
性、溶接性を阻害するため、その範囲を0.1〜3.0
%とした。またPは母材の水素ふくれ割れを伝播しやす
くする元素であり、0.03%以下とすべきである。
Ni is effective for improving the low temperature toughness and is added in an amount of 0.1% or more. However, since it is an expensive element, the range is set to 0.1 to 9.5%. Cr is effective in increasing strength and improving corrosion resistance and is added in an amount of 0.1% or more. However, if it increases, it impairs low temperature toughness and weldability, so the range is 0.1 to 3.0.
%. P is an element that facilitates the propagation of hydrogen blistering cracks in the base material, and should be 0.03% or less.

【0023】またSはMnと結合して母材部の水素ふく
れ割れの起点となるMnSをつくるので、0.005%
以下に抑えるべきである。次に、前述のとおり電縫衝合
面を中心として両側100μm以内に含まれる酸化物系
介在物のうち、横断面でみた介在物の形状として板厚方
向の長さと円周方向の長さの比が2以上でかつ長径10
μm以上の介在物が1mm2 あたりの横断面を切る個数
が5以下とする必要があるが、これは次に基づくもので
ある。
Further, S is combined with Mn to form MnS which is a starting point of hydrogen blistering crack in the base metal portion, so 0.005%
Should be kept below. Next, as described above, among the oxide-based inclusions contained within 100 μm on both sides of the electric resistance abutting surface as a center, the shape of the inclusions as seen in the cross section is defined by the length in the plate thickness direction and the length in the circumferential direction. Ratio is 2 or more and major axis is 10
It is necessary that the number of inclusions having a size of μm or more that cuts the cross section per 1 mm 2 be 5 or less, which is based on the following.

【0024】まず、介在物を規定する範囲を電縫衝合部
を中心として両側100μm以内に定めたのは、電縫衝
合面を含む試験片での数多くの耐SSC試験と詳細な観
察の結果、SSC発生の起点となる水素ふくれ割れの発
生しているのは、電縫衝合部の中心から両側100μm
以内であり、その起点となる板状の酸化物系介在物も1
00μm以内にほとんど集合しているからであり、10
0μmを超える範囲には非常に希にしか存在せず、割れ
が核発生しても連結しないので巨視的な割れには成長し
得ないからである。
First, the reason that the range defining the inclusions is set within 100 μm on both sides of the electric resistance abutting portion is that many SSC resistance tests and detailed observations are performed on the test piece including the electric resistance abutting surface. As a result, hydrogen blistering cracks, which are the starting point of SSC generation, are generated at 100 μm on both sides from the center of the electric resistance joint.
And the number of plate-like oxide inclusions as the starting point is 1
This is because most of them are aggregated within 00 μm.
This is because it rarely exists in the range of more than 0 μm, and even if cracks nucleate, they do not connect, and therefore they cannot grow into macroscopic cracks.

【0025】次に、対象とする介在物として酸化物系介
在物に着目したのは、前述のごとく酸化物系介在物は溶
接の熱影響とスクイズ・ロールによる加圧によって変形
し、水素ふくれ割れの原因となるからである。ここで、
本発明でいう酸化物系介在物とは、酸化物および酸化物
を主体として少量の硫化物を含む複合物からなる介在物
を指す。なお参考までに付け加えるならば、本発明はも
とより母材部の耐サワー性確保のため硫化物系介在物量
を著しく減少させた鋼が主たる対象となっているもので
あるから、酸化物系介在物量に着目したものである。
Next, attention was paid to oxide-based inclusions as the target inclusions. As described above, the oxide-based inclusions are deformed by the thermal effect of welding and the pressure applied by the squeeze roll, and hydrogen blistering cracks occur. This will cause here,
The oxide-based inclusions in the present invention refer to inclusions composed of oxides and composites containing oxides as a main component and a small amount of sulfides. In addition, if added for reference, the present invention is not limited to the present invention, and the steel whose amount of sulfide inclusions is remarkably reduced in order to secure the sour resistance of the base metal is the main object. It focuses on.

【0026】介在物の形状として板厚方向の長さと円周
方向の長さとの比を2以上としたのは、詳細な観察の結
果このような板状に変形した介在物が割れの核発生に対
し起点となること、逆に板厚方向の長さと円周方向の長
さとの比が2未満の介在物は割れ発生に対しては有害で
ないことが実験の結果明らかになったためである。な
お、本発明においては酸化物系介在物の変形の方向性を
板厚方向と円周方向について規定しているが、介在物の
変形が溶接加熱時の加熱によって生ずることから、酸化
物系介在物は必ずしも正しく板厚方向に伸びているわけ
ではなく、いくらか斜めになっているものもあるが、も
ちろん少々斜めになっていても割れの起点となることに
全く変わりはないのである。本発明では、このような介
在物については斜めとなった最長方向の長さとそれに直
角な方向の長さとの比が2以上のものについて考える。
また、長径10μm以上の介在物としたのは、長さ比が
2以上であっても長径が10μm未満の微細な介在物は
割れの起点とならないことを実験によって見出したこと
に基づくものである。
As a shape of the inclusion, the ratio of the length in the plate thickness direction to the length in the circumferential direction is set to 2 or more. As a result of a detailed observation, the inclusion deformed into such a plate shape generates a nucleus of a crack. This is because the results of the experiments revealed that inclusions having a ratio of the length in the plate thickness direction to the length in the circumferential direction of less than 2 are not harmful to cracking. In the present invention, the direction of deformation of the oxide-based inclusions is defined in the plate thickness direction and the circumferential direction. However, since the deformation of the inclusions is caused by heating during welding heating, the oxide-based inclusions Objects do not always extend correctly in the plate thickness direction, and there are some that are slightly slanted, but of course, even if they are slightly slanted, there is no change in the origin of cracking. In the present invention, it is considered that such inclusions have a ratio of the length in the longest diagonal direction and the length in the direction perpendicular thereto to 2 or more.
The inclusion having a major axis of 10 μm or more is based on the finding by experiments that even if the length ratio is 2 or more, a fine inclusion having a major axis of less than 10 μm does not become a starting point of cracking. .

【0027】さらに本発明において、これらの介在物が
1mm2 あたりの横断面を切る個数を5以下としたの
は、前述のような形状および寸法の介在物が1mm2
たり5個を超えて横断面を切る場合に、核発生した水素
ふくれ割れが相互に連結されることを実験によって見出
したことに基づくものである。以上のような要件を満足
させるためには、例えば以下に述べるような技術を適用
することによって達成が可能である。まず溶鋼の脱酸、
脱硫あるいはCa添加などの処理後に残留する酸化物系
介在物を徹底的に除去することが有効であり、これは例
えば溶鋼容器の底からの不活性ガスの吹き込みによって
溶鋼介在物の浮上を促進することによって実現できる。
また例えばAlやTiのような高融点酸化物を形成する
元素を多量に添加して、鋼中の酸化物系介在物を単一成
分かつ高融点の化合物に変化させて、溶接時に変形しに
くくすることも有効である。
Further, in the present invention, the number of these inclusions cutting the cross section per 1 mm 2 is set to 5 or less, because the inclusions having the above-mentioned shape and size cross over 5 per 1 mm 2. This is based on the finding by experiments that nucleated hydrogen swelling cracks are interconnected when a plane is cut. In order to satisfy the above requirements, it is possible to achieve them by applying the following techniques, for example. First, deoxidation of molten steel,
It is effective to thoroughly remove oxide-based inclusions remaining after treatment such as desulfurization or Ca addition, which promotes the floating of molten steel inclusions by, for example, blowing an inert gas from the bottom of the molten steel container. It can be realized by
In addition, by adding a large amount of elements that form high-melting-point oxides such as Al and Ti, the oxide inclusions in the steel are changed to single-component and high-melting-point compounds, making it difficult to deform during welding. It is also effective to do.

【0028】あるいは電縫溶接時のスクイズ・ロールに
よる加圧力を低下して、酸化物系介在物の変化を防止す
るか、あるいは減少させることも極めて有効である。た
だしこの場合、電縫溶接欠陥を生じないような溶接条件
および加圧力の制御が必要であることは言うまでもな
い。その他様々な技術を適用することができるが、要す
るに板状の介在物の原因となる母材中の酸化物系介在物
を減少させておくか、溶接時に変形しにくい組成の介在
物を積極的に形成するか、あるいは電縫溶接時の変形の
少ない溶接とするかなどによって本発明の要件を満足さ
せることが可能である。
Alternatively, it is extremely effective to reduce the pressure applied by the squeeze roll during electric resistance welding to prevent or reduce the change of oxide inclusions. However, in this case, needless to say, it is necessary to control welding conditions and applied pressure so as not to cause electric resistance welding defects. Various other techniques can be applied, but in short, oxide inclusions that cause plate-like inclusions in the base metal should be reduced, or inclusions that have a composition that is difficult to deform during welding should be positively applied. It is possible to satisfy the requirements of the present invention by, for example, forming it in the form of a wire, or by welding with less deformation during electric resistance welding.

【0029】本発明の鋼の製造工程としては、熱間圧延
ままでもよく、あるいは圧延材を焼準、焼戻しまたは焼
入れ焼戻しする工程を適用することもできる。また電縫
溶接後、電縫溶接部近傍のみか、あるいは鋼管全体を焼
準、焼戻し、または焼入れ焼戻しする工程を適用しても
良い。その際前述のように硬さ分布に差のある部位での
応力集中による割れ発生を防止するために、電縫衝合面
を中心として両側30mm以内での硬さ測定値の最大値
がビッカース硬さで250以下であり、かつその領域で
の最軟化相の硬さをビッカース硬さで100以上とする
必要がある。通常シーム熱処理された電縫溶接部の最軟
化相はフェライトであるが、管体の熱処理によっては焼
戻しマルテンサイトの場合もある。その際、最軟化相の
硬さの測定方法としては、粒内の硬さを正確に測定する
ために、荷重を1.0gf以下とすることが望ましい。
なお、鋼あるいは鋼管に熱処理を施すか否かは、上述の
硬さの要求以外に、強度、靱性等他の機械的性質確保の
必要に応じて決定すればよい。
As the manufacturing process of the steel of the present invention, hot rolling may be performed as it is, or a process of normalizing, tempering or quenching and tempering a rolled material may be applied. After electric resistance welding, a step of normalizing, tempering, or quenching and tempering only the vicinity of the electric resistance welded portion or the entire steel pipe may be applied. At this time, as described above, in order to prevent cracking due to stress concentration at the part where the hardness distribution is different, the maximum value of the hardness measured within 30 mm on both sides of the electric resistance joint surface is the Vickers hardness. It is necessary that the hardness is 250 or less, and the hardness of the softest phase in that region is 100 or more in Vickers hardness. Usually, the softest phase of the seam heat-treated electric resistance welded portion is ferrite, but it may be tempered martensite depending on the heat treatment of the pipe. At that time, as a method of measuring the hardness of the softest phase, it is desirable to set the load to 1.0 gf or less in order to accurately measure the hardness in the grain.
Whether or not the steel or the steel pipe is subjected to the heat treatment may be determined according to the need to secure other mechanical properties such as strength and toughness, in addition to the above-mentioned requirement for hardness.

【0030】以下本発明の効果を実施例によりさらに詳
細に説明する。
The effects of the present invention will be described in more detail below with reference to examples.

【0031】[0031]

【実施例】表1に示す組成の鋼を13mm厚の鋼板に熱
間圧延後、通常の工程にて電縫鋼管とした。特にA〜C
は不活性ガス吹き込みによって溶鋼中の介在物の除去を
充分に行なったものであり、D〜FはAlを多量に添加
することによって鋼中の介在物をほぼ完全にAl2 3
としたものである。
EXAMPLE Steels having the compositions shown in Table 1 were hot-rolled into a steel plate having a thickness of 13 mm, and then made into an electric resistance welded steel pipe in a usual process. Especially AC
Are those that sufficiently performed to remove the inclusions in the molten steel by blowing an inert gas, D to F in the almost completely inclusions in steel by adding a large amount of Al Al 2 O 3
It is what

【0032】次にこれらの電縫鋼管の電縫溶接部C方向
から、図2に示す要領で定荷重方式のSSC試験片を採
取した。その際、電縫溶接部がサンプルの中央部を横切
るようにした。耐SSC特性を評価する試験としては、
NACE TM−01−77標準試験法により試験し、
限界応力(σth)の絶対値と電縫溶接部C方向の降伏
強度(σy)に対する限界応力(σth)の比で評価
し、σth≧358N/mm2 とσth/σy≧0.7
5の両方を満足すれば良好であるとした。σth≧35
8N/mm2 は、API5LX65の規格降伏強度下限
の80%から算出した。
Next, from the direction of the electric resistance welded portion C of these electric resistance welded steel pipes, SSC test pieces of the constant load method were sampled as shown in FIG. At that time, the electric resistance welded portion was made to cross the central portion of the sample. As a test for evaluating the SSC resistance,
Tested according to the NACE TM-01-77 standard test method,
The absolute value of the critical stress (σth) and the ratio of the critical stress (σth) to the yield strength (σy) in the C direction of the electric resistance welded portion were evaluated, and σth ≧ 358N / mm 2 and σth / σy ≧ 0.7.
If both 5 are satisfied, it is considered to be good. σth ≧ 35
8 N / mm 2 was calculated from 80% of the lower limit of standard yield strength of API5LX65.

【0033】表2中に上記試験結果を示す。A1、B
1、C1、D1が本発明鋼であり、介在物1(電縫衝合
部から100μm以内の1mm2 あたりの横断面を切る
介在物数(個)のうち、長径/短径比2以上かつ長径1
0μm以上の介在物数)が5以下であり、Hvの最大値
が250以下であり、最軟化相の硬さが100以上であ
るため、良好な耐SSC特性(σth/σy≧0.7
5)を示している。これに対し、A2、B2、C2、D
2は介在物1は5以下であり、かつ最軟化相の硬さが1
00以上であるが、Hvの最大値が250超であるため
に、σth/σy<0.75となっている。またE1、
F1は、鋼中Si添加量が0.50%未満であるために
最軟化相であるフェライトの硬さが100未満となり、
σth<358N/mm2 となっている。またG1、H
1、I1、J1、K1は、Hvの最大値が250以下で
あり、最軟化相の硬さが100以上であるが、介在物1
が5個を超えているために、σth/σy<0.75と
なっている。
Table 2 shows the test results. A1, B
1, C1 and D1 are the steels of the present invention, and among inclusions 1 (the number of inclusions that cut the cross-section per 1 mm 2 within 100 μm from the electric resistance abutting portion (pieces), the major axis / minor axis ratio is 2 or more and Major axis 1
The number of inclusions of 0 μm or more) is 5 or less, the maximum value of Hv is 250 or less, and the hardness of the softest softening phase is 100 or more. Therefore, good SSC resistance (σth / σy ≧ 0.7)
5) is shown. On the other hand, A2, B2, C2, D
2 is inclusion 1 is 5 or less, and the hardness of the softest phase is 1
However, since the maximum value of Hv exceeds 250, σth / σy <0.75. Also E1,
In F1, the hardness of ferrite, which is the softest phase, is less than 100 because the Si content in steel is less than 0.50%,
σth <358 N / mm 2 . Also G1, H
1, I1, J1 and K1 have maximum Hv values of 250 or less and hardness of the softest phase of 100 or more, but inclusion 1
Since there are more than five, σth / σy <0.75.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】注1):電縫衝合部から100μm以内の
1mm2あたりの横断面を切る介在物数(個)のうち、
長径/短径比2以上かつ長径10μm以上の介在物数。 注2):電縫衝合部から100μm以内の1mm2あた
りの横断面を切る介在物数(個)のうち、長径/短径比
2以上かつ長径10μm未満の介在物数。 注3):電縫衝合部から100μm以内の1mm2あた
りの横断面を切る介在物数(個)のうち、長径/短径比
2未満の介在物数。 注4)電縫衝合面を中心として両側30mm以内での、
荷重500gのビッカース硬さの最大値。 注5):荷重0.5gで測定した最軟化相のビッカース
硬さ。 注6):単位は、N/mm2。 注7):表中Qは、電縫溶接後電縫溶接部のみ焼入れ処
理したもの。QTは電縫溶接部のみ焼入れ焼戻し処理を
したもの。Nは電縫溶接部のみノルマ処理したもの。ま
たFBNは、電縫溶接後管体をノルマ処理したもの。
Note 1): Of the number of inclusions (pieces) cutting the cross section per 1 mm 2 within 100 μm from the electric resistance abutting portion,
The number of inclusions with a major axis / minor axis ratio of 2 or more and a major axis of 10 μm or more. Note 2): Of the number of inclusions (pieces) within 1 μm 2 within 100 μm from the electric resistance abutting portion, the number of inclusions having a major axis / minor axis ratio of 2 or more and a major axis of less than 10 μm. Note 3): Among the number of inclusions (pieces) that cut the cross section within 1 mm 2 within 100 μm from the electric resistance abutting portion, the number of inclusions with a major axis / minor axis ratio of less than 2. Note 4) Within 30mm on both sides of the electric resistance contact surface.
Maximum Vickers hardness with a load of 500g. Note 5): Vickers hardness of the softest phase measured with a load of 0.5 g. Note 6): The unit is N / mm 2 . Note 7): In the table, Q indicates that only the electric resistance welded portion after the electric resistance welding is quenched. QT has been hardened and tempered only at the electric resistance welded part. N is the electric resistance welded part that has been subjected to normal processing. The FBN is a tube body that has been subjected to normal processing after electric resistance welding.

【0037】[0037]

【発明の効果】前記の試験結果からわかるとおり、本発
明はpHが低く厳しい環境においても耐SSC特性を劣
化することのない電縫鋼管を提供することを可能とした
ものであり、産業の発展に貢献するところ極めて大なる
ものがある。
As can be seen from the above test results, the present invention makes it possible to provide an electric resistance welded steel pipe which does not deteriorate the SSC resistance even in a low pH and severe environment. There is an extremely great contribution to.

【図面の簡単な説明】[Brief description of drawings]

【図1】電縫鋼管の衝合部とその両側の酸化物系介在物
量を制限する領域を示す模式図である。
FIG. 1 is a schematic diagram showing an abutting portion of an electric resistance welded steel pipe and regions on both sides thereof where the amount of oxide inclusions is limited.

【図2】実施例における試験片の採取要領を示す図であ
る。
FIG. 2 is a diagram showing a procedure for collecting test pieces in Examples.

【符号の説明】[Explanation of symbols]

1 電縫鋼管 2 衝合部 3 熱影響部 4 溶接方向 5 試験片 1 ERW steel pipe 2 Abutting part 3 Heat affected zone 4 Welding direction 5 Test piece

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22C 38/16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.05〜0.35%、Si:0.
50〜2.50%、Mn:0.30〜2.00%に加え
てCaを0.0005〜0.0080%とAlを0.0
05〜0.100%含有し、残部Feおよび不可避的不
純物からなる鋼で製造した電縫鋼管において、電縫衝合
面を中心として両側100μm以内に含まれる酸化物系
介在物のうち横断面でみた介在物の形状として板厚方向
の長さと円周方向の長さの比が2以上でかつ長径10μ
m以上の介在物が1mm2 あたりの横断面を切る個数が
5以下であり、かつ電縫衝合面を中心として両側30m
m以内での硬さ測定値の最大値がビッカース硬さで25
0以下であり、かつその領域での最軟化相の硬さがビッ
カース硬さで100以上であることを特徴とする耐硫化
物応力腐食割れ性の優れた電縫鋼管。
1. C: 0.05 to 0.35%, Si: 0.
50 to 2.50%, Mn: 0.30 to 2.00%, 0.0005 to 0.0080% of Ca and 0.0 of Al.
In an electric resistance welded steel pipe made of a steel containing 0.05 to 0.100% of balance Fe and unavoidable impurities, a cross section of an oxide inclusion included within 100 μm on both sides of the electric resistance welding surface as a center. As the shape of inclusions seen, the ratio of the length in the plate thickness direction to the length in the circumferential direction is 2 or more and the major axis is 10 μ.
The number of inclusions of m or more per cross section of 1 mm 2 is 5 or less, and both sides are 30 m centering on the electric resistance abutting surface.
The maximum value of hardness measured within m is 25 in Vickers hardness.
An electric resistance welded steel pipe excellent in sulfide stress corrosion cracking resistance, which is 0 or less and the hardness of the softest phase in that region is 100 or more in Vickers hardness.
【請求項2】 C:0.05〜0.35%、Si:0.
50〜2.50%、Mn:0.30〜2.00%に加え
てCaを0.0005〜0.0080%とAlを0.0
05〜0.100%含有し、さらにMo:0.1〜2.
0%、Nb:0.01〜0.15%、V:0.01〜
0.30%、Ti:0.001〜0.050%、B:
0.0003〜0.0040%のうち1種または2種以
上を含み、残部Feおよび不可避的不純物からなる鋼で
製造した電縫鋼管において、電縫衝合面を中心として両
側100μm以内に含まれる酸化物系介在物のうち横断
面でみた介在物の形状として板厚方向の長さと円周方向
の長さの比が2以上でかつ長径10μm以上の介在物が
1mm2 あたりの横断面を切る個数が5以下であり、か
つ電縫衝合面を中心として両側30mm以内での硬さ測
定値の最大値がビッカース硬さで250以下であり、か
つその領域での最軟化相の硬さがビッカース硬さで10
0以上であることを特徴とする耐硫化物応力腐食割れ性
の優れた電縫鋼管。
2. C: 0.05 to 0.35%, Si: 0.
50 to 2.50%, Mn: 0.30 to 2.00%, 0.0005 to 0.0080% of Ca and 0.0 of Al.
05: 0.100%, and Mo: 0.1-2.
0%, Nb: 0.01 to 0.15%, V: 0.01 to
0.30%, Ti: 0.001 to 0.050%, B:
In an electric resistance welded steel pipe produced from a steel containing one or more of 0.0003 to 0.0040% and the balance Fe and unavoidable impurities, the electric resistance welded steel pipe is contained within 100 μm on both sides of the electric resistance welding surface. Among the oxide inclusions, the shape of the inclusions as viewed in cross section has a ratio of the length in the plate thickness direction to the length in the circumferential direction of 2 or more and the inclusion having a major axis of 10 μm or more cuts the cross section per 1 mm 2. The number is 5 or less, and the maximum value of hardness measured within 30 mm on both sides of the electric resistance joint surface is Vickers hardness of 250 or less, and the hardness of the softest phase in that region is Vickers hardness of 10
ERW steel pipe with excellent resistance to sulfide stress corrosion cracking characterized by being 0 or more.
【請求項3】 C:0.05〜0.35%、Si:0.
50〜2.50%、Mn:0.30〜2.00%に加え
てCaを0.0005〜0.0080%とAlを0.0
05〜0.100%含有し、さらにCu:0.1〜2.
0%、Ni:0.1〜9.5%、Cr:0.1〜3.0
%のうち1種または2種以上を含み、残部Feおよび不
可避的不純物からなる鋼で製造した電縫鋼管において、
電縫衝合面を中心として両側100μm以内に含まれる
酸化物系介在物のうち横断面でみた介在物の形状として
板厚方向の長さと円周方向の長さの比が2以上でかつ長
径10μm以上の介在物が1mm2 あたりの横断面を切
る個数が5以下であり、かつ電縫衝合面を中心として両
側30mm以内での硬さ測定値の最大値がビッカース硬
さで250以下であり、かつその領域での最軟化相の硬
さがビッカース硬さで100以上であることを特徴とす
る耐硫化物応力腐食割れ性の優れた電縫鋼管。
3. C: 0.05 to 0.35%, Si: 0.
50 to 2.50%, Mn: 0.30 to 2.00%, 0.0005 to 0.0080% of Ca and 0.0 of Al.
05: 0.100%, and further Cu: 0.1-2.
0%, Ni: 0.1 to 9.5%, Cr: 0.1 to 3.0
%, And an electric resistance welded steel pipe made of steel containing the balance Fe and unavoidable impurities, containing one or more of
Of the oxide inclusions contained within 100 μm on both sides of the electric resistance abutting surface, the shape of the inclusions as viewed in cross section has a ratio of the length in the plate thickness direction to the length in the circumferential direction of 2 or more and the major axis. The number of inclusions of 10 μm or more that cuts the cross section per 1 mm 2 is 5 or less, and the maximum hardness measurement value within 30 mm on both sides of the electric resistance joint surface is Vickers hardness of 250 or less. An electric resistance welded steel pipe having excellent sulfide stress corrosion cracking resistance, characterized in that the hardness of the softest phase in that region is 100 or more in Vickers hardness.
【請求項4】 C:0.05〜0.35%、Si:0.
50〜2.50%、Mn:0.30〜2.00%に加え
てCaを0.0005〜0.0080%とAlを0.0
05〜0.100%含有し、さらにMo:0.1〜2.
0%、Nb:0.01〜0.15%、V:0.01〜
0.30%、Ti:0.001〜0.050%、B:
0.0003〜0.0040%のうち1種または2種以
上およびCu:0.1〜2.0%、Ni:0.1〜9.
5%、Cr:0.1〜3.0%のうち1種または2種以
上を含み、残部Feおよび不可避的不純物からなる鋼で
製造した電縫鋼管において、電縫衝合面を中心として両
側100μm以内に含まれる酸化物系介在物のうち横断
面でみた介在物の形状として板厚方向の長さと円周方向
の長さの比が2以上でかつ長径10μm以上の介在物が
1mm2 あたりの横断面を切る個数が5以下であり、か
つ電縫衝合面を中心として両側30mm以内での硬さ測
定値の最大値がビッカース硬さで250以下であり、か
つその領域での最軟化相の硬さがビッカース硬さで10
0以上であることを特徴とする耐硫化物応力腐食割れ性
の優れた電縫鋼管。
4. C: 0.05 to 0.35%, Si: 0.
50 to 2.50%, Mn: 0.30 to 2.00%, 0.0005 to 0.0080% of Ca and 0.0 of Al.
05: 0.100%, and Mo: 0.1-2.
0%, Nb: 0.01 to 0.15%, V: 0.01 to
0.30%, Ti: 0.001 to 0.050%, B:
One or more of 0.0003 to 0.0040%, Cu: 0.1 to 2.0%, Ni: 0.1 to 9.
5%, Cr: 0.1 to 3.0% of one or more of 0.1 to 3.0%, and an electric resistance welded steel pipe manufactured from a steel composed of the balance Fe and unavoidable impurities. Of the oxide inclusions contained within 100 μm, the inclusions with a ratio of the length in the plate thickness direction to the length in the circumferential direction of 2 or more and the major axis of 10 μm or more per 1 mm 2 as the shape of the inclusions as seen in the cross section Is less than 5 and the maximum hardness measured within 30 mm on both sides of the electric resistance abutting surface is Vickers hardness of 250 or less, and the softest in that region. The hardness of the phase is Vickers hardness of 10
ERW steel pipe with excellent resistance to sulfide stress corrosion cracking characterized by being 0 or more.
JP16256693A 1993-06-30 1993-06-30 Electric resistance welded tube excellent in sulfide stress corrosion cracking resistance Withdrawn JPH0718377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16256693A JPH0718377A (en) 1993-06-30 1993-06-30 Electric resistance welded tube excellent in sulfide stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16256693A JPH0718377A (en) 1993-06-30 1993-06-30 Electric resistance welded tube excellent in sulfide stress corrosion cracking resistance

Publications (1)

Publication Number Publication Date
JPH0718377A true JPH0718377A (en) 1995-01-20

Family

ID=15757028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16256693A Withdrawn JPH0718377A (en) 1993-06-30 1993-06-30 Electric resistance welded tube excellent in sulfide stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPH0718377A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008174B1 (en) * 2007-09-20 2011-01-13 주식회사 포스코 Steel Plate with high SOHIC resistance at the H2S containing environment
JP2012246548A (en) * 2011-05-30 2012-12-13 Jfe Steel Corp Electric resistance welded steel pipe having excellent hic resistance and low-temperature toughness in electric resistance welded part, and method for manufacturing the same
JP2012246550A (en) * 2011-05-30 2012-12-13 Jfe Steel Corp Electric resistance welded steel pipe having excellent formability, low-temperature toughness and fatigue resistance characteristic in electric resistance welded part, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008174B1 (en) * 2007-09-20 2011-01-13 주식회사 포스코 Steel Plate with high SOHIC resistance at the H2S containing environment
JP2012246548A (en) * 2011-05-30 2012-12-13 Jfe Steel Corp Electric resistance welded steel pipe having excellent hic resistance and low-temperature toughness in electric resistance welded part, and method for manufacturing the same
JP2012246550A (en) * 2011-05-30 2012-12-13 Jfe Steel Corp Electric resistance welded steel pipe having excellent formability, low-temperature toughness and fatigue resistance characteristic in electric resistance welded part, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP2813596B1 (en) High tensile steel plate having excellent low-temperature toughness in weld heat-affected zones, and method for producing same
US7074283B2 (en) Low alloy steel
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
EP2420586A1 (en) High strength steel plate and method for manufacturing the same
EP2942415A1 (en) Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method therefor
WO2005017222A1 (en) High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof
EP3467132B1 (en) Duplex stainless steel and duplex stainless steel manufacturing method
EP0732418B1 (en) Highly corrosion-resistant martensitic stainless steel with excellent weldability and process for producing the same
JP7315097B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP4816642B2 (en) Low alloy steel
EP3144407A1 (en) Seamless steel pipe for line pipe, and method for producing same
EP3425078B1 (en) Steel material and oil-well steel pipe
US20230167522A1 (en) High Strength, High-Temperature Corrosion Resistant Martensitic Stainless Steel and Manufacturing Method Therefor
JP2791804B2 (en) Martensitic stainless steel with high strength and excellent corrosion resistance
EP3626841A1 (en) High strength micro alloyed steel seamless pipe for sour service and high toughness applications
EP3604590A1 (en) Wire rod and flat steel wire
JP2770718B2 (en) High strength hot rolled steel strip excellent in HIC resistance and method for producing the same
JP4432719B2 (en) Thick steel plate for line pipe and manufacturing method thereof
JPH0718377A (en) Electric resistance welded tube excellent in sulfide stress corrosion cracking resistance
JP4952708B2 (en) Martensitic stainless steel and method for producing the same
JP3666388B2 (en) Martensitic stainless steel seamless pipe
JP3451993B2 (en) Cr-containing steel for oil country tubular goods with excellent corrosion resistance to hydrogen sulfide and carbon dioxide
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JPH0641684A (en) Electric-resistance-welded tube excellent in sulfide stress corrosion cracking resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905