JPH07183545A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH07183545A
JPH07183545A JP32554693A JP32554693A JPH07183545A JP H07183545 A JPH07183545 A JP H07183545A JP 32554693 A JP32554693 A JP 32554693A JP 32554693 A JP32554693 A JP 32554693A JP H07183545 A JPH07183545 A JP H07183545A
Authority
JP
Japan
Prior art keywords
region
conductivity type
junction
type
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32554693A
Other languages
Japanese (ja)
Inventor
Noriaki Dosen
典明 道仙
Kaoru Imamura
薫 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32554693A priority Critical patent/JPH07183545A/en
Publication of JPH07183545A publication Critical patent/JPH07183545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a Zener diode from varying in Zener breakdown voltage by a method wherein an N-type or first conductivity-type cathode diffusion region is positioned in a region on the lateral side of a P-type or second conductivity-type anode diffusion region when a Zener diode is put in a breakdown state to use. CONSTITUTION:An end f of a first conductivity-type cathode region 21 is positioned in a second conductivity-type lateral diffusion region 17 of a second conductivity-type anode region 15, the end f of the first conductivity-type cathode region 21 correspondent to the surface of a junction is set lower in impurity concentration than a spot j near a bulk junction under a window. By this setup, a spot highest in impurity concentration in the second conductivity-type anode region 15 adjacent to a junction of a Zener diode is located under the region forming window, and a Zener current Iz beings to flow from a semiconductor substrate as the Zener diode is put in a breakdown state making the above spot a starting point, so that hot carriers are restrained from being injected into an insulating film 12 through a surface adjacent to a PN junction. Therefore, a semiconductor device of this constitution is restrained from varying in Zener voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体基板に形成するダ
イオ−ドに係わり、特に降伏電圧値を基準として使用す
る際に好適する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diode formed on a semiconductor substrate, and is particularly suitable for using a breakdown voltage value as a reference.

【0002】[0002]

【従来の技術】降伏電圧を基準として使用するダイオ−
ドで最も一般的なツェナ−ダイオ−ドを例にとって説明
する。集積回路素子に内蔵するツェナ−ダイオ−ドの基
本的な構造は第1図に示すように、P型のsub基板1
(以下sub基板と略称)に低濃度N型エピタキシャル
層2を堆積し、ここにツェナ−ダイオ−ドを形成する。
集積回路では複数素子を形成するため、その周囲をP型
不純物層3で囲んでGND用として、またN型エピタキ
シャル層2を電源電圧用として機能させると共に素子間
分離を行っている。
2. Description of the Related Art A diode using a breakdown voltage as a reference.
The most common Zener diode will be described as an example. As shown in FIG. 1, the basic structure of a Zener diode incorporated in an integrated circuit device is a P-type sub substrate 1
A low-concentration N-type epitaxial layer 2 is deposited on (hereinafter abbreviated as "sub substrate"), and a Zener diode is formed there.
In order to form a plurality of elements in an integrated circuit, the elements are surrounded by a P-type impurity layer 3 to function as GND and the N-type epitaxial layer 2 as a power supply voltage, and the elements are separated from each other.

【0003】ツェナ−ダイオ−ドをN型エピタキシャル
層2内に設置するためP型アノ−ド領域4を拡散し、更
にN+ 型カソ−ド領域5をN型エピタキシャル層2内に
かつP型アノ−ド領域4に一部が跨がって設ける。P型
アノ−ド領域4ならびにN+型カソ−ド領域5に対応す
る絶縁膜6部分には、コンタクト用として開口後導電性
材料例えばAlまたはAl合金(Al−Si、Al−S
i−Cu)をスパッタリング法や真空蒸着法で堆積して
アノ−ド電極7とカソ−ド電極8を形成しツェナ−ダイ
オ−ドが得られる。
In order to place the Zener diode in the N-type epitaxial layer 2, the P-type anode region 4 is diffused, and the N + -type cathode region 5 is further formed in the N-type epitaxial layer 2 and P-type. It is provided so as to partially extend over the anode region 4. In the portion of the insulating film 6 corresponding to the P-type anode region 4 and the N + -type cathode region 5, a conductive material such as Al or Al alloy (Al-Si, Al-S) after opening is used for contact.
i-Cu) is deposited by a sputtering method or a vacuum evaporation method to form an anode electrode 7 and a cathode electrode 8 to obtain a Zener diode.

【0004】[0004]

【発明が解決しようとする課題】このツェナ−ダイオ−
ドの構造は、NPNトランジスタのエミッタ・Back(VEB
O)を利用しており、図2に示すようにブレ−クダウンす
るポイントがN+ 型即ち第1導電型のカソ−ド領域5と
の接合近くに位置するP型即ち第2導電型アノ−ド領域
4の表面aであり、そこが最も不純物濃度が高く、ここ
を起点にしてブレ−クダウン電流IZ が表面を流れる。
この結果カソ−ド、アノ−ド接合の近傍の絶縁膜6の表
面にホットキャリアが注入され、絶縁膜6中の正電荷に
よりP型アノ−ド領域4表面の空乏層が広がった状態に
なり、ブレ−クダウン電流IZ の通路が表面から次々に
内部の深い部分に移る。従って内部抵抗が増大して縦軸
にIZ 横軸にVZ を採った第3図に明らかにするVZ
形が傾くなどの問題があった。
This Zener-dio-
The structure of the NPN transistor is the emitter / back (VEB
O) is utilized, and as shown in FIG. 2, the point of breaking down is a P type or second conductivity type anode located near the junction with the N + type or first conductivity type cathode region 5. The surface a of the drain region 4 has the highest impurity concentration, and the break-down current I Z flows on the surface starting from this.
As a result, hot carriers are injected into the surface of the insulating film 6 in the vicinity of the cathode and anode junctions, and the positive charge in the insulating film 6 causes the depletion layer on the surface of the P-type anode region 4 to spread. , The path of the break-down current I Z moves from the surface to the deep inside. Therefore there is a problem such as internal resistance is FIG. 3 to reveal V Z waveforms adopted a V Z to I Z horizontal axis is tilted on the vertical axis increases.

【0005】本発明はこのような事情により成されたも
ので、特に集積回路素子に組込まれるツェナ−ダイオ−
ドの構造に依存する表面ブレ−クダウン現象によるツェ
ナ−降伏電圧の変動を防止する。
The present invention has been made in view of the above circumstances, and in particular, a Zener diode incorporated in an integrated circuit device.
The Zener breakdown voltage is prevented from fluctuating due to the surface breakdown phenomenon depending on the structure of the gate.

【0006】[0006]

【課題を解決するための手段】第1導電型の半導体層表
面を選択的に覆う絶縁膜と,露出する前記半導体層表面
部分から内部に向う第2導電型の第1領域と,この第2
導電型の第1領域内に位置しかつ表面を露出する第1導
電型領域と,前記第2導電型の第1領域と前記第2導電
型の半導体層間に位置するPN接合と,このPN接合を
構成する平坦部と,前記絶縁膜により保護する前記PN
接合端と,前記平坦部に連続する前記PN接合の他端
と,この他端に連続する前記PN接合端間の湾曲部と,
前記湾曲部の他端とこれから垂直な前記第2導電型の第
1領域の露出表面間を結ぶ線分とで規定する第2導電型
の横方向領域と,この第2導電型の横方向領域内に位置
する第1導電型領域端とに本発明に係わる半導体素子の
特徴がある。
An insulating film that selectively covers a surface of a semiconductor layer of a first conductivity type, a first region of a second conductivity type that faces inward from an exposed surface portion of the semiconductor layer, and a second region of the second area.
A first-conductivity-type region located in the first-conductivity-type region and exposing a surface; a PN junction located between the second-conductivity-type first region and the second-conductivity-type semiconductor layer; And the PN protected by the insulating film.
A junction end, the other end of the PN junction continuous to the flat portion, and a curved portion between the PN junction ends continuous to the other end,
A lateral region of a second conductivity type defined by the other end of the curved portion and a line segment connecting between exposed surfaces of the first region of the second conductivity type that is perpendicular to the other region, and a lateral region of the second conductivity type The semiconductor element according to the present invention is characterized by the edge of the first conductivity type region located inside.

【0007】更に、前記第1導電型の半導体層表面を選
択的に覆う絶縁膜と,露出する前記半導体層表面部分か
ら内部に向い前記絶縁膜に隣接する第2導電型の第1領
域と,この第2導電型の第1領域端に位置する前記絶縁
膜端と,前記第2導電型の第1領域の深さの2倍以内に
する両絶縁膜端間の距離とにも特徴があり、更にまた前
記第2導電型の第1拡散領域を囲んだ低濃度の第2導電
型の第2領域と、更に加えて前記第2導電型の拡散領域
の露出する表面と,この表面部分から内部に向う高濃度
の第2導電型の第2領域とにも特徴がある。
Furthermore, an insulating film that selectively covers the surface of the first conductive type semiconductor layer, and a second region of the second conductive type that faces inward from the exposed semiconductor layer surface portion and is adjacent to the insulating film, There is also a feature in the insulating film end located at the end of the first region of the second conductivity type and the distance between both insulating film ends that is within twice the depth of the first region of the second conductivity type. , A low concentration second conductivity type second region surrounding the second conductivity type first diffusion region, and an exposed surface of the second conductivity type diffusion region, and from this surface portion. It is also characterized by a second region of the second conductivity type having a high concentration facing inward.

【0008】[0008]

【作用】集積回路素子中に形成するツェナ−ダイオ−ド
をブレ−クダウンさせて使用する際、P型即ち第2導電
型アノ−ド拡散領域の横方向領域内(図7などの17参
照)にN型即ち第1導電型カソ−ド拡散領域端を位置す
る構造とすることにより接合近傍の表面アノ−ド領域よ
りもバルク(Bulk)のアノ−ド領域の不純物濃度が
高くなり、そのバルクを起点にしてツェナ−ブレ−クダ
ウンが発生してツェナ−電流が流れてもホットキャリア
が絶縁物層内に注入されることもなく、ツェナ−電圧の
変動を防止する。
When the zener diode formed in the integrated circuit device is used after being broken down, it is in the lateral region of the P type or second conductivity type anodic diffusion region (see FIG. 7, etc. 17). In this structure, the impurity concentration of the bulk anodic region is higher than that of the surface anodic region in the vicinity of the junction, and the bulk concentration of the bulk anodic region is higher than that of the surface anodic region near the junction. Even if a zener breakdown occurs with the origin as a starting point and a zener current flows, hot carriers are not injected into the insulating layer and the fluctuation of the zener voltage is prevented.

【0009】[0009]

【実施例】本発明に係わる実施例は図4乃至図10によ
り示すが、製造工程を断面で明らかにする図4から図7
により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment according to the present invention is shown in FIGS. 4 to 10, and FIGS.
Will be described.

【0010】例えば電源用ICでρs 0.001Ω程度
の第2導電型のシリコン半導体基板10に、リンの含有
量がほぼ101 5 atoms/cm3 のN- 第1導電型
のエピタキシャル層11を堆積後、その全面に被覆する
絶縁膜12をレジスト13による公知のフォトリソグラ
フィ技術により選択的に除去する。この工程により形成
する窓14(図4参照)からボロン系の第2導電型不純
物をイオン注入工程により注入して(図4矢印参照)か
ら、活性化工程を経て表面濃度が101 8 atoms/
cm3 程度の第2導電型のアノ−ド領域15を形成する
(図5参照)。このイオン注入工程ではフォトリソグラ
フィ工程で残ったレジスト13をイオン注入マスクとし
て利用する。
For example, in an IC for power supply, an N first conductivity type epitaxial layer 11 having a phosphorus content of about 10 15 atoms / cm 3 is formed on a second conductivity type silicon semiconductor substrate 10 having a ρ s of about 0.001 Ω. After depositing, the insulating film 12 covering the entire surface is selectively removed by a known photolithography technique using a resist 13. After the boron-based second conductivity type impurity is implanted through the window 14 (see FIG. 4) formed by this step by the ion implantation step (see the arrow in FIG. 4), the surface concentration is increased to 10 18 atoms / after the activation step.
A second conductivity type anodic region 15 of about 3 cm 3 is formed (see FIG. 5). In this ion implantation process, the resist 13 remaining in the photolithography process is used as an ion implantation mask.

【0011】この工程時の第2導電型不純物の拡散状況
は図5に明らかにするようにシリコン半導体基板10の
厚さ方向だけでなく横方向にも同時に8割程度拡散する
(図5参照)。具体的には図5に示すようにレジスト1
3の真下に連続する絶縁膜12端を起点とする点線bか
ら紙面の左側に向う横方向に拡散し、エピタキシャル層
11に含まれる不純物とで形成するPN接合16端cを
絶縁膜12により保護する。またPN接合16では点線
bに交差する位置dとc間に曲線部eが形成される。
The diffusion state of the second conductivity type impurities at this step is diffused not only in the thickness direction of the silicon semiconductor substrate 10 but also in the lateral direction at the same time by about 80% as shown in FIG. 5 (see FIG. 5). . Specifically, as shown in FIG. 5, the resist 1
3, the PN junction 16 end c formed by the impurities contained in the epitaxial layer 11 is diffused in the lateral direction from the dotted line b starting from the end of the insulating film 12 continuous under 3 and is protected by the insulating film 12. To do. Further, in the PN junction 16, a curved portion e is formed between the positions d and c intersecting the dotted line b.

【0012】本発明では曲線部eと点線bで囲まれる領
域をアノ−ド領域15部分における第2導電型の拡散領
域の横方向領域17と規定する。
In the present invention, the region surrounded by the curved portion e and the dotted line b is defined as the lateral region 17 of the diffusion region of the second conductivity type in the anodic region 15 portion.

【0013】次に第1導電型のカソ−ド領域を形成する
べく絶縁膜12に公知のフォトリソグラフィ技術により
窓を形成する。しかし、第2導電型のアノ−ド領域15
を形成するに際に図5に明らかにするように窓14の部
分に絶縁膜18が成長するために、これを開口する必要
があり、窓19はレジストを利用する公知のフォトリソ
グラフィ技術により除去する。絶縁膜18はイオン注入
工程時500オングストロ−ム程度の絶縁膜を形成して
注入イオンの揮散を防いでおり、これが成長したもので
ある。
Next, a window is formed in the insulating film 12 by a known photolithography technique to form a first conductivity type cathode region. However, the second conductivity type anode region 15
The insulating film 18 grows in the portion of the window 14 when it is formed as shown in FIG. 5, so that it is necessary to open the insulating film 18. The window 19 is removed by a known photolithography technique using a resist. To do. The insulating film 18 is formed by forming an insulating film having a thickness of about 500 angstroms during the ion implantation process to prevent volatilization of implanted ions.

【0014】この際窓19は第2導電型のアノ−ド領域
15の拡散深さ(Xj)より小さくしかも窓18の端よ
り外側即ちPN接合16の曲線部eに近い位置に形成す
る。新たな窓19(図6参照)を形成するのに利用する
レジスト20をインプラマスクとして利用してAsまた
はPをイオン注入後、活性化処理を行って表面濃度が約
102 0 atoms/cm3 の第1導電型のカソ−ド領
域21を形成し、その断面を図7に示した。
At this time, the window 19 is formed at a position smaller than the diffusion depth (Xj) of the second conductivity type anodic region 15 and outside the end of the window 18, that is, near the curved portion e of the PN junction 16. A resist 20 used for forming a new window 19 (see FIG. 6) is used as an implantation mask, As or P is ion-implanted, and then activation treatment is performed to obtain a surface concentration of about 10 20 atoms / cm 3. The first conductivity type cathode region 21 is formed and its cross section is shown in FIG.

【0015】この結果第1導電型のカソ−ド領域21端
fは第2導電型のアノ−ド領域15部分における第2導
電型の拡散領域横方向領域17内に位置させ、従来のツ
エナ−ダイオ−ドのブレ−クダウンが決まる接合の表面
部分に相当するカソ−ド領域21端fの不純物濃度は、
窓19直下のバルク接合付近g(図7参照)のそれの方
が不純物濃度が高くなる。なお図6ならびに図7更に後
述する図8乃至図10では第2導電型の半導体基板10
を省略した。
As a result, the edge f of the first conductivity type cathode region 21 is located in the second conductivity type diffusion region lateral region 17 in the second conductivity type anode region 15 and the conventional Zener. The impurity concentration at the edge f of the cathode region 21 corresponding to the surface portion of the junction that determines the breakdown of the diode is
The impurity concentration is higher near the bulk junction g (see FIG. 7) immediately below the window 19. In addition, in FIGS. 6 and 7 and FIGS. 8 to 10 which will be described later, the semiconductor substrate 10 of the second conductivity type is used.
Was omitted.

【0016】図8は本発明の第2実施例を示しており、
その特徴は第2導電型のアノ−ド領域15形成用の窓1
8を2分割して開けて拡散を行う点にある。分割の間隔
は第2導電型のアノ−ド領域15の拡散深さ(Xj)の
2倍以下とし横方向拡散によって分割した第2導電型の
アノ−ド領域15を電気的に接続する。この数値を越え
た場合はマスク合わせのマ−ジンが取れないために採っ
た手段である。
FIG. 8 shows a second embodiment of the present invention.
The feature is the window 1 for forming the second conductivity type anode region 15
8 is divided into two and opened to diffuse. The division interval is not more than twice the diffusion depth (Xj) of the second-conductivity type anodic region 15, and the second-conductivity type anodic region 15 divided by the lateral diffusion is electrically connected. If this value is exceeded, the margin for mask alignment cannot be removed, and this is the measure taken.

【0017】ちなみに第2導電型のアノ−ド領域15の
拡散深さXjは機種により異なるが大体0.5μm〜
2.5μm以内である。
By the way, the diffusion depth Xj of the second conductivity type anodic region 15 varies depending on the model, but is generally 0.5 μm.
It is within 2.5 μm.

【0018】またこの図には第2導電型のアノ−ド領域
15及び第1導電型のカソ−ド領域21用電極22、2
3を記載する。これは導電性材料例えばAlまたはAl
合金(Al−Si、Al−Si−Cu)をスパッタリン
グ法や真空蒸着法で堆積して設ける。また第2導電型の
アノ−ド領域15部分における第2導電型拡散領域の横
方向領域17内に第1導電型のカソ−ド領域21端fを
位置させる。
Also shown in this drawing are electrodes 22 and 2 for the second conductivity type anode region 15 and the first conductivity type cathode region 21.
3 is described. This is a conductive material such as Al or Al
An alloy (Al-Si, Al-Si-Cu) is deposited and provided by a sputtering method or a vacuum evaporation method. Further, the end f of the first conductivity type cathode region 21 is located in the lateral region 17 of the second conductivity type diffusion region in the second conductivity type anode region 15.

【0019】図9は図7に明らかにした第1実施例の構
造を一部変更した第3実施例であり、深くて濃度が小さ
いP- 第2導電型領域22を第1導電型のエピタキシャ
ル層11に形成し、ここに第2導電型のアノ−ド領域1
5を設ける構造である。これにより従来の技術欄に説明
した空乏層の拡がりによる難点を解消する。
[0019] Figure 9 is a third embodiment, which is a partial modification of the structure of the first embodiment revealed in Figure 7, deep concentration is less P - epitaxial of the second conductivity type region 22 a first conductivity type It is formed on the layer 11 and has an anode region 1 of the second conductivity type.
5 is provided. As a result, the drawbacks due to the expansion of the depletion layer described in the section of the related art are eliminated.

【0020】更に第4実施例は図10に明らかなように
第2導電型のアノ−ド領域15用電極22直下に第2導
電型の高濃度領域24を形成して、電極22のコンタク
ト抵抗や拡散抵抗を減らす。
Furthermore, in the fourth embodiment, as is apparent from FIG. 10, a second conductivity type high concentration region 24 is formed immediately below the electrode 22 for the second conductivity type anode region 15 and the contact resistance of the electrode 22 is formed. And reduce diffusion resistance.

【0021】[0021]

【発明の効果】以上のように本発明に係わる集積回路素
子はツェナ−ダイオ−ドの接合付近の第2導電型のアノ
−ド領域で最も不純物濃度の高いポイントがこの領域形
成用の窓直下となり、これを起点としてブレイクダウン
してツェナ−電流Izが半導体基板側から流れるため
に、PN接合付近の表面から絶縁膜内にホットキャリア
が注入されない。従ってツェナ−電圧が変動しない信頼
性の高い集積回路素子が得られる。
As described above, in the integrated circuit device according to the present invention, the highest impurity concentration point in the second conductivity type anodic region near the junction of the Zener diode is directly under the window for forming this region. Therefore, the Zener current Iz flows from the semiconductor substrate side due to the breakdown from this, and hot carriers are not injected into the insulating film from the surface near the PN junction. Therefore, a highly reliable integrated circuit device in which the Zener voltage does not fluctuate can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のツェナ−ダイオ−ドの断面図である。FIG. 1 is a sectional view of a conventional Zener diode.

【図2】従来のツェナ−ダイオ−ドに生ずるツェナ−ブ
レ−クダウンの説明図である。
FIG. 2 is an explanatory diagram of zener breakdown that occurs in a conventional zener diode.

【図3】従来のツェナ−ダイオ−ドに生ずるツェナ−電
圧の波形図である。
FIG. 3 is a waveform diagram of a Zener voltage generated in a conventional Zener diode.

【図4】本発明のツェナ−ダイオ−ドの製造工程を示す
図である。
FIG. 4 is a diagram showing a manufacturing process of the Zener diode of the present invention.

【図5】図4に続くツェナ−ダイオ−ドの製造工程を示
す図である。
FIG. 5 is a diagram showing a manufacturing process of the Zener diode following FIG. 4;

【図6】図5に続くツェナ−ダイオ−ドの製造工程を示
す図である。
FIG. 6 is a diagram showing a manufacturing process of the Zener diode following that of FIG. 5;

【図7】図6に続くツェナ−ダイオ−ドの製造工程を示
す図である。
FIG. 7 is a diagram showing a manufacturing process of the Zener diode following FIG. 6;

【図8】本発明のツェナ−ダイオ−ドの動作を示す断面
図である。
FIG. 8 is a cross-sectional view showing the operation of the Zener diode of the present invention.

【図9】本発明のツェナ−ダイオ−ドのツェナ−電流の
経路を明らかにする断面図である。
FIG. 9 is a sectional view showing a Zener current path of a Zener diode according to the present invention.

【図10】本発明の他のツェナ−ダイオ−ドのツェナ−
電流の経路を明らかにする断面図である。
FIG. 10 is another zener diode of the present invention.
It is sectional drawing which clarifies the path | route of an electric current.

【符号の説明】[Explanation of symbols]

1、10:半導体基板、 2、11:エビタキシャル層、 3:分離層、 4、15:第2導電型のアノ−ド領域、 5、21:第1導電型のカソ−ド領域、 6、12、18:絶縁膜、 7、22:第2導電型のアノ−ド領域用電極、 8、23:第1導電型のカソ−ド領域用電極、 14、19:窓、 16:PN接合、 17:第2導電型拡散領域の横方向領域。 1, 10: Semiconductor substrate, 2, 11: Epitaxial layer, 3: Separation layer, 4, 15: Second conductive type anode region, 5, 21: First conductive type cathode region, 6, 12, 18: insulating film, 7, 22: second conductivity type anode region electrode, 8, 23: first conductivity type cathode region electrode, 14, 19: window, 16: PN junction, 17: Lateral region of the second conductivity type diffusion region.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体層表面を選択的に覆
う絶縁膜と,露出する前記半導体層表面部分から内部に
向う第2導電型の第1領域と,この第2導電型の第1領
域内に位置しかつ表面を露出する第1導電型領域と,前
記第2導電型の第1領域と前記第2導電型の半導体層間
に位置するPN接合と,このPN接合を構成する平坦部
と,前記絶縁膜により保護する前記PN接合端と,前記
平坦部に連続する前記PN接合の他端と,この他端に連
続する前記PN接合端間の湾曲部と,前記湾曲部の他端
とこれから垂直方向の前記第2導電型の第1領域の露出
表面間を結ぶ線分とで規定する第2導電型の横方向領域
と,この第2導電型の横方向領域内に位置する第1導電
型領域端とを具備することを特徴とする半導体素子
1. An insulating film that selectively covers a surface of a semiconductor layer of a first conductivity type, a first region of a second conductivity type that faces inward from an exposed surface portion of the semiconductor layer, and a second region of the second conductivity type. A first conductivity type region located in the first region and exposing the surface; a PN junction located between the second region of the first conductivity type and the second conductivity type semiconductor layer; and a flat surface forming the PN junction. Section, the PN junction end protected by the insulating film, the other end of the PN junction continuous to the flat portion, a curved portion between the PN junction ends continuous to the other end, and the other curved portion. A lateral region of a second conductivity type defined by an edge and a line segment connecting between exposed surfaces of the first region of the second conductivity type in the vertical direction, and located in the lateral region of the second conductivity type A semiconductor element having a first conductivity type region edge
【請求項2】前記第1導電型の半導体層表面を選択的に
覆う絶縁膜と,露出する前記半導体層表面部分から内部
に向い前記絶縁膜に隣接する第2導電型の第1領域と,
この第2導電型の第1領域端に位置する前記絶縁膜端
と,前記第2導電型の第1領域の深さの2倍以内にする
両絶縁膜端間の距離とを具備することを特徴とする請求
項1記載の半導体素子
2. An insulating film selectively covering the surface of the semiconductor layer of the first conductivity type, and a first region of the second conductivity type facing inward from the exposed surface portion of the semiconductor layer and adjoining the insulating film.
The insulating film edge located at the end of the first region of the second conductivity type and the distance between the insulating film ends that is within twice the depth of the first region of the second conductivity type. The semiconductor device according to claim 1, characterized in that
【請求項3】前記第2導電型の第1拡散領域を囲んだ低
濃度の第2導電型の第2領域とを具備することを特徴と
する請求項1及び請求項2記載の半導体素子
3. A semiconductor device according to claim 1, further comprising a second region of a low concentration second conductivity type surrounding the first diffusion region of the second conductivity type.
【請求項4】前記第2導電型の拡散領域の露出する表面
と,この表面部分から内部に向う高濃度の第2導電型の
第2領域とを具備することを特徴とする請求項1、請求
項2及び請求項3記載の半導体素子
4. An exposed surface of the diffusion region of the second conductivity type, and a second region of the second conductivity type having a high concentration which is inwardly directed from the surface portion. The semiconductor device according to claim 2 or claim 3.
JP32554693A 1993-12-24 1993-12-24 Semiconductor device Pending JPH07183545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32554693A JPH07183545A (en) 1993-12-24 1993-12-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32554693A JPH07183545A (en) 1993-12-24 1993-12-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH07183545A true JPH07183545A (en) 1995-07-21

Family

ID=18178102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32554693A Pending JPH07183545A (en) 1993-12-24 1993-12-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH07183545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232490A (en) * 2009-03-27 2010-10-14 Shindengen Electric Mfg Co Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232490A (en) * 2009-03-27 2010-10-14 Shindengen Electric Mfg Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US4688323A (en) Method for fabricating vertical MOSFETs
EP0057024B1 (en) Semiconductor device having a safety device
US5539237A (en) Schottky diode with guard ring
US5187552A (en) Shielded field-effect transistor devices
US5382536A (en) Method of fabricating lateral DMOS structure
US4952991A (en) Vertical field-effect transistor having a high breakdown voltage and a small on-resistance
US4929991A (en) Rugged lateral DMOS transistor structure
CA1218759A (en) Semiconductor overvoltage suppressor with exactly adjustable triggering voltage
US4454523A (en) High voltage field effect transistor
JPH07115189A (en) Insulated gate type bipolar transistor
KR970060534A (en) Power semiconductor device and manufacturing method thereof
JPH0457111B2 (en)
JPH08330580A (en) High breakdown voltage lateral mosfet semiconductor device
US5869850A (en) Lateral insulated gate bipolar transistor
KR20000040172A (en) Horizontal mos gate type semiconductor device and method for manufacturing the same
GB2045525A (en) Field effect transistor construction
US5714783A (en) Field-effect transistor
US20010030346A1 (en) Power semiconductor device having high breakdown voltge and method for fabricating the same
JP2004356534A (en) Semiconductor device and its manufacturing method
JPH07183545A (en) Semiconductor device
JP2941405B2 (en) Semiconductor device
US6215167B1 (en) Power semiconductor device employing field plate and manufacturing method thereof
JP3744196B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US5962898A (en) Field-effect transistor
JP5021862B2 (en) MOS type semiconductor device including a diode for preventing static electricity between gate and emitter