JPH0718352A - Production of composite reinforcing material for producing functionally gradient metal-based composite material - Google Patents

Production of composite reinforcing material for producing functionally gradient metal-based composite material

Info

Publication number
JPH0718352A
JPH0718352A JP5191617A JP19161793A JPH0718352A JP H0718352 A JPH0718352 A JP H0718352A JP 5191617 A JP5191617 A JP 5191617A JP 19161793 A JP19161793 A JP 19161793A JP H0718352 A JPH0718352 A JP H0718352A
Authority
JP
Japan
Prior art keywords
reinforcing material
slurry
composite
fine particles
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5191617A
Other languages
Japanese (ja)
Other versions
JP3619258B2 (en
Inventor
Junichi Ogawa
純一 小川
Mitsuyuki Wadasako
三志 和田迫
Mitsuo Shinpo
満雄 真保
Takayuki Ohashi
孝行 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nichias Corp
Original Assignee
Nissan Motor Co Ltd
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nichias Corp filed Critical Nissan Motor Co Ltd
Priority to JP19161793A priority Critical patent/JP3619258B2/en
Publication of JPH0718352A publication Critical patent/JPH0718352A/en
Application granted granted Critical
Publication of JP3619258B2 publication Critical patent/JP3619258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To easily produce a composite reinforcing material contg. a powdery reinforcing material disposed with a gradient for producing a functionally gradient metal-based composite material using a powder reinforcing material. CONSTITUTION:A slurry prepd. by dispersing whiskers or inorg. fine particles in water contg. an inorg. binder and a slurry prepd. by dispersing heat resistant inorg. fibers in water contg. an inorg. binder are fed under mixing into a mold for dehydration molding having a horizontal filtering face and dehydration molding is carried out. At this time, the feed ratio between the slurries is varied with the lapse of time. The resulting molded body is dried and fired to obtain a porous molded body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属を基材とする傾斜
機能複合材料の製造に使われる複合強化材を製造する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite reinforcing material used for producing a metal-based functionally gradient composite material.

【0002】[0002]

【従来の技術】鋼やアルミニウム合金に炭素繊維、セラ
ミック繊維等の耐熱性無機質繊維を埋設して補強する
と、その素材金属が通常示す物性をはるかに上回る強度
を示す高物性材料になる。このようにして得られる繊維
強化金属は、航空機や自動車など軽量で高物性の素材を
求める分野で注目され、実用化されつつある。
2. Description of the Related Art When a heat resistant inorganic fiber such as carbon fiber or ceramic fiber is embedded and reinforced in steel or aluminum alloy, it becomes a high physical property material having a strength far exceeding that of the material metal. The fiber-reinforced metal thus obtained is drawing attention and is being put to practical use in the field of demanding lightweight and highly physical materials such as aircraft and automobiles.

【0003】繊維質材料以外のもの、たとえば炭化ケイ
素ウィスカ、窒化ケイ素ウィスカ、チタン酸カリウムウ
ィスカ等のウィスカやアルミナ、ジルコニア、炭化ケイ
素、窒化ケイ素等の耐熱性無機質微粒子を金属中に埋設
してその金属の物性や化学的性質を改良する試みも多数
実施されており、これら補強もしくは改質に有効な配合
材料を2種以上組合せて使用すれば、一層高性能の複合
材料が得られることが多い。
Materials other than fibrous materials, for example, whiskers such as silicon carbide whiskers, silicon nitride whiskers, potassium titanate whiskers, and heat-resistant inorganic fine particles such as alumina, zirconia, silicon carbide, and silicon nitride are embedded in a metal and Many attempts have been made to improve the physical properties and chemical properties of metals, and if two or more compounding materials effective for reinforcement or modification are used in combination, a composite material with higher performance is often obtained. .

【0004】さらに、上述のような複合材料の製造技術
を基盤として近年開発された材料に、傾斜機能金属基複
合材料がある。これは、金属を基材とする複合材料を製
造するに当たり、繊維、ウィスカ、無機質微粒子等を、
それらの体積分率を一定の規則性の下に連続的に変化さ
せながら複合材料中に不均一に配合したものであって、
複数の材料の長所を活用できるという異種材料積層物の
特長を有し、しかも組成が急変する界面が存在しないこ
とにより積層物のように熱応力破壊を起こす恐れがな
い。
Further, a functionally graded metal-based composite material is a material that has been recently developed based on the above-described composite material manufacturing technique. This is to produce fibers, whiskers, inorganic fine particles, etc. when manufacturing a metal-based composite material.
A composition in which the volume fractions of the composite materials are non-uniformly mixed while continuously changing under a certain regularity,
It has the feature of a heterogeneous material laminate that can utilize the advantages of a plurality of materials, and there is no possibility of causing thermal stress fracture unlike the laminate because there is no interface where the composition changes rapidly.

【0005】上述のような傾斜機能金属基複合材料を製
造する方法は、既に多数提案されている。しかしなが
ら、無機質微粒子や事実上粉体であるウィスカを金属製
品の特定の領域から別の領域へ(たとえば板材であれば
一方の表面から他方の表面へ)、体積分率を連続的に変
化させながら配合することは、きわめて困難であった。
すなわち、従来、均一配合を行う場合においては無機質
微粒子やウィスカからまず多孔質成形物を製造し、その
気孔部分に溶融金属を圧入することにより強化された金
属基複合材料を得る方法が一般的であったが、この方法
を傾斜機能複合材料の製造に採用するためには、該複合
材料の設計に応じて無機質微粒子やウィスカの体積分率
を連続的に変化させた多孔質成形物(以下、体積分率傾
斜性複合強化材という)を製造しなければならないとい
う解決困難な課題があった。
A number of methods for producing the above-mentioned functionally gradient metal-based composite material have already been proposed. However, whiskers, which are inorganic fine particles or powder in fact, are changed from one area of a metal product to another area (for example, from one surface to the other surface of a plate material) while continuously changing the volume fraction. It was extremely difficult to compound.
That is, conventionally, in the case of performing uniform blending, a general method is to first produce a porous molded article from inorganic fine particles or whiskers, and obtain a reinforced metal-based composite material by pressing molten metal into the pores. However, in order to adopt this method for producing a functionally gradient composite material, in order to adopt the composite material, a porous molded article in which the volume fraction of inorganic fine particles or whiskers is continuously changed (hereinafter, There is a difficult problem to be solved in that it is necessary to manufacture a volume fraction gradient composite reinforcement material).

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、無機
質微粒子やウィスカ等、実質的に粉体である強化材料
(以下、粉体強化材ということがある)を用いて傾斜機
能金属基複合材料を製造するための、体積分率傾斜性複
合強化材を容易に製造する方法を提供しようとするもの
である。
SUMMARY OF THE INVENTION Therefore, the present invention uses a functionally graded metal-based composite material using a reinforcing material that is substantially a powder (hereinafter, also referred to as a powder reinforcing material) such as inorganic fine particles and whiskers. An object of the present invention is to provide a method for easily producing a volume-gradient composite reinforcing material for producing a.

【0007】[0007]

【課題を解決するための手段】上記目的を達成すること
に成功した本発明は、無機質結合剤を含有する水中にウ
ィスカまたは(および)無機質微粒子を分散させてスラ
リー状にし、別に無機質結合剤を含有する水中に耐熱性
無機繊維を分散させてスラリー状にし、得られた2種類
のスラリーを混合しながら水平な濾過面を有する脱水成
形用型に供給して脱水成形するに当たり無機繊維スラリ
ーに対するウィスカまたは(および)無機質微粒子のス
ラリーの供給比率を経時的に減少させ、得られた脱水成
形物を乾燥後焼成することを特徴とするものである。
The present invention, which succeeds in attaining the above-mentioned object, is to disperse whiskers or (and) inorganic fine particles in water containing an inorganic binder to form a slurry, and separately add an inorganic binder. Whisker for inorganic fiber slurry in dehydration molding by dispersing heat-resistant inorganic fibers in contained water to form a slurry and supplying the resulting two types of slurries to a dehydration molding mold having a horizontal filtration surface Alternatively (and / or) the slurry supply ratio of the inorganic fine particles is decreased with time, and the obtained dehydrated molded product is dried and then fired.

【0008】本発明の製造法においては、ウィスカとし
て炭化ケイ素ウィスカ、ホウ酸アルミニウムウィスカ
(組成:9Al23・2B23)、窒化ケイ素ウィス
カ、チタン酸カリウムウィスカ等、金属材料の補強もし
くは改質に有効なものをいずれも用いることができる。
In the production method of the present invention, silicon carbide whiskers, aluminum borate whiskers (composition: 9Al 2 O 3 .2B 2 O 3 ) whiskers, silicon nitride whiskers, potassium titanate whiskers, and the like are used as reinforcing materials for the whiskers. Any material effective for reforming can be used.

【0009】また、無機質微粒子としては、アルミナ、
ジルコニア、炭化ケイ素、窒化ケイ素等、やはり金属材
料の補強もしくは改質に有効なものを、いずれも用いる
ことができる。ウィスカと耐熱性無機質微粒子は、それ
らを単独で用いるだけでなく、併用してもよい。
As the inorganic fine particles, alumina,
Any material that is also effective for reinforcing or modifying a metal material such as zirconia, silicon carbide, or silicon nitride can be used. The whiskers and the heat-resistant inorganic fine particles may be used alone or in combination.

【0010】ウィスカや無機質微粒子と併用する耐熱性
繊維としては、各種セラミック繊維、たとえばアルミナ
繊維、ジルコニア繊維、アルミノシリケート繊維等を使
用することができる。中でも好ましいのは、アルミナ含
有率が約85重量%以上、特に好ましくは約95重量%
以上の、いわゆる高アルミナ多結晶質繊維である。アル
ミナ含有率が85重量%未満のアルミナ繊維、たとえば
シリカ成分の多いアルミノシリケート質繊維は、金属が
アルミニウムまたはアルミニウム合金の場合、溶融金属
と反応して好ましくない結果を生じる場合がある。
As the heat resistant fiber used together with whiskers and inorganic fine particles, various ceramic fibers such as alumina fiber, zirconia fiber, aluminosilicate fiber and the like can be used. Among them, the alumina content is preferably about 85% by weight or more, particularly preferably about 95% by weight.
These are so-called high-alumina polycrystalline fibers. Alumina fibers having an alumina content of less than 85% by weight, such as aluminosilicate fibers rich in silica, may react with molten metal with undesirable results when the metal is aluminum or an aluminum alloy.

【0011】セラミック繊維はまた、その長さが好まし
くは約1mm以下の、微細化された短繊維であることが望
ましい。断熱材等に使用される通常の短繊維状セラミッ
ク繊維は繊維長が数mm〜50mm程度のものであるから、
本発明の繊維質成形体にはこれを成形用原料スラリー調
製工程において強撹拌するなどの手段により微細化する
ことが望ましい。ただし、繊維長があまりに小さいもの
が多いと成形性が悪化するので、約10μm以下のもの
は約30重量%を超えないことが望ましい。
The ceramic fibers are also preferably finely chopped short fibers, the length of which is preferably less than about 1 mm. Since ordinary short fibrous ceramic fibers used for heat insulation materials have a fiber length of several mm to 50 mm,
It is desirable that the fibrous shaped product of the present invention is made finer by means such as vigorous stirring in the forming raw material slurry preparation step. However, if the fiber length is too small, the moldability is deteriorated. Therefore, it is desirable that the fiber length of about 10 μm or less does not exceed about 30% by weight.

【0012】粉体強化材は、適量の無機質結合剤(たと
えばシリカゾル)を添加した水中に分散させ、スラリー
状にする。耐熱性繊維は、別に用意した無機質結合剤含
有水中に分散させて、これもスラリー状にする。得られ
た2種類のスラリーは、供給管路の途中で混合を生じさ
せながら、脱水成形用の型に供給する。混合を生じさせ
るには、供給管路の途中で二つのスラリーを合流させる
だけでもよいが、各スラリーの貯槽と成形用型との間に
簡単な混合槽を設置して混合することが望ましい。
The powder reinforcing material is dispersed in water to which an appropriate amount of an inorganic binder (eg silica sol) is added to form a slurry. The heat resistant fiber is dispersed in a separately prepared water containing an inorganic binder to form a slurry. The two kinds of slurries thus obtained are supplied to a mold for dehydration molding while being mixed in the supply pipeline. In order to cause mixing, it is sufficient to combine the two slurries in the middle of the supply pipeline, but it is desirable to install a simple mixing tank between the storage tank for each slurry and the molding die to mix them.

【0013】成形用型は底部に水平な濾過面を有するも
ので、濾過面下側を常時減圧状態にしておくことによ
り、供給されたスラリーの水分を逐次吸引除去して固形
分を濾過面上に堆積させ、一定の形状を付与するもので
ある。
The molding die has a horizontal filtering surface at the bottom, and by keeping the lower side of the filtering surface at a constant depressurized state, the water content of the supplied slurry is sequentially sucked and removed, so that the solid content is on the filtering surface. It is deposited on and is given a certain shape.

【0014】この脱水成形工程においては、耐熱性繊維
スラリーに対する粉体強化材スラリーの供給比率を経時
的に減少させ、最終的にはゼロにする(成形開始段階に
おける上記供給比率は特に限定されるものではないが、
耐熱性繊維が粉体強化材の少なくとも5体積%程度にな
るように選定することが望ましい。)。たとえば、耐熱
性繊維スラリーの単位時間当たり供給量を一定にしてお
いて粉体強化材スラリーの供給量を徐々に減らす。供給
比率の経時的変更は連続的に行うことが望ましいが、多
数回に分けて段階的に行なってもよい。
In this dehydration molding step, the supply ratio of the powder reinforcement slurry to the heat resistant fiber slurry is decreased with time and finally becomes zero (the supply ratio at the molding start stage is particularly limited. Not a thing,
It is desirable to select the heat-resistant fiber so that it is at least about 5% by volume of the powder reinforcing material. ). For example, the supply amount of the heat resistant fiber slurry is kept constant per unit time, and the supply amount of the powder reinforcement slurry is gradually reduced. It is desirable to change the supply ratio with time continuously, but it is also possible to change the supply ratio stepwise in multiple steps.

【0015】得られた脱水成形物を、粉体強化材のマイ
グレーションを生じさせないように注意して乾燥し、さ
らに焼成して結合剤を硬化させることにより構造を安定
化する。
The dehydrated molded product thus obtained is dried carefully so as not to cause migration of the powder reinforcing material, and further calcined to harden the binder to stabilize the structure.

【0016】上述のようにして得られる複合強化材にお
いては、全体にわたって分布する耐熱性繊維が全体形状
を維持する骨格の役割をし、その耐熱性繊維に付着する
ようにして(あるいは繊維間間隙を埋めるようにし
て)、粉体強化材が分布している。粉体強化材の分布は
一様ではなく、濾過面に近かった領域から反対側端面に
向かって分布密度が低くなっている。耐熱性繊維の分布
密度は、脱水成形工程における原料スラリー供給比率の
変え方その他の成形条件によって異なり、製品全体にわ
たりほぼ均一に分布する場合や粉体強化材と同様の傾斜
性分布をする場合がある。
In the composite reinforcing material obtained as described above, the heat-resistant fibers distributed throughout serve as a skeleton for maintaining the overall shape, and are adhered to the heat-resistant fibers (or interfiber gaps). , So that the powder reinforcement is distributed. The distribution of the powder reinforcement is not uniform, and the distribution density decreases from the region close to the filtration surface to the opposite end surface. The distribution density of the heat-resistant fiber differs depending on the method of changing the feed ratio of the raw material slurry in the dehydration molding process and other molding conditions, and may be distributed almost uniformly over the entire product or may have a gradient distribution similar to that of the powder reinforcement. is there.

【0017】製品における耐熱性繊維と粉体強化材の体
積分率は、脱水成形の条件を選ぶことにより一定の範囲
で任意に調節することができる。傾斜機能金属基複合材
料の製造に有用な複合強化材であるためには、単に粉体
強化材が傾斜性分布をしているだけでなく、耐熱性繊維
の体積分率が約5〜30%、粉体強化材の体積分率が最
も高い領域で約30〜50%になるように、且つ最も高
密度の領域においても鋳造時に溶融金属が圧入される気
孔が少なくとも約50容積%存在するように、脱水成形
条件を選ぶことが望ましい。
The volume fraction of the heat resistant fiber and the powder reinforcing material in the product can be arbitrarily adjusted within a certain range by selecting the dehydration molding conditions. In order to be a composite reinforcing material useful for the production of a functionally gradient metal-based composite material, not only the powder reinforcing material has a gradient distribution but also the volume fraction of the heat resistant fiber is about 5 to 30%. , So that the volume fraction of the powder reinforcement is approximately 30 to 50% in the highest volume fraction, and even in the highest density area, there are at least about 50 volume% pores into which the molten metal is pressed during casting. First, it is desirable to select dehydration molding conditions.

【0018】製品における耐熱性繊維および粉体強化材
の好ましい分布態様は、成形形状と共に、その複合強化
材を用いて製造しようとする傾斜機能金属基複合材料の
設計に基づき決まるので、成形条件もそれに応じて選定
する。
The preferable distribution mode of the heat-resistant fiber and the powder reinforcement in the product is determined based on the design of the functionally graded metal matrix composite material to be manufactured by using the composite reinforcement together with the molding shape. Select accordingly.

【0019】本発明の製造法により得られた複合強化材
を鋳造用金型内に配置し、高圧を加えて鋳造を行うと、
複合強化材中の気孔部分に溶湯が圧入されて、金属中に
複合強化材構成材料が埋設された状態の複合材料が形成
される。この複合材料においては、埋設された複合強化
材の上記構造上の特徴に基づき、粉体強化材の体積分率
が特定領域から別の領域に向かって連続的に変化してお
り、それにより傾斜機能が示される。
When the composite reinforcing material obtained by the manufacturing method of the present invention is placed in a casting mold and a high pressure is applied to perform casting,
The molten metal is pressed into the pores of the composite reinforcement to form a composite material in which the composite reinforcement constituent material is embedded in the metal. In this composite material, based on the above structural characteristics of the embedded composite reinforcement material, the volume fraction of the powder reinforcement material continuously changes from a specific region to another region, which results in a slope. The function is shown.

【0020】[0020]

【実施例】【Example】

実施例1 アルミナ短繊維(Al23含有率95重量%)とホウ酸
アルミニウムウィスカをそれぞれ別個に、それらの重量
に対して2重量%のシリカゾルを加えた水と混合槽中で
高速撹拌して均一に分散させる。得られたアルミナ短繊
維スラリーとホウ酸アルミニウムウィスカスラリーを、
供給経路において均一に混合しながら、底部が脱水濾過
面である円筒状型に供給し、底部濾板の下面から吸引、
脱水して、円板状成形物を得る。
Example 1 Alumina short fibers (Al 2 O 3 content of 95% by weight) and aluminum borate whiskers were separately stirred at high speed in a mixing tank with water containing 2% by weight of silica sol based on their weight. And evenly disperse. The obtained alumina short fiber slurry and aluminum borate whisker slurry,
While uniformly mixing in the supply route, the bottom part is supplied to a cylindrical mold having a dehydration filtration surface, and suctioned from the lower surface of the bottom filter plate,
It is dehydrated to obtain a disk-shaped molded product.

【0021】上記成形工程において、アルミナ短繊維ス
ラリーの単位時間当たり供給量は最後まで一定にし、一
方ホウ酸アルミニウムウィスカスラリーの供給量は、ホ
ウ酸アルミニウムウィスカ/アルミナ短繊維の体積比が
最初は15/7、最後は0/7になるように、成型中徐
々に減少させた。脱水成形終了後、成形物を型から外
し、熱風で乾燥してから1200℃で1時間焼成した。
得られた厚さ30mmの複合強化材は、密度が0.480g
/cm3、強化材体積分率(全体の平均値)が15%であっ
た。
In the above molding step, the amount of the alumina short fiber slurry supplied per unit time was kept constant until the end, while the amount of the aluminum borate whisker slurry supplied was such that the volume ratio of aluminum borate whiskers / alumina short fibers was 15 at the beginning. It was gradually decreased during molding so that it became / 7 and finally 0/7. After completion of the dehydration molding, the molded product was removed from the mold, dried with hot air, and then baked at 1200 ° C. for 1 hour.
The obtained 30 mm thick composite reinforcement has a density of 0.480 g.
/ cm 3 , and the reinforcing material volume fraction (overall average value) was 15%.

【0022】この複合強化材を上記成形工程における吸
引濾過面に平行な面に沿って切断して5等分し、各切断
片について、アルミナ繊維の体積分率およびホウ酸アル
ミニウムウィスカの体積分率を測定した。その結果は下
記のとおりであって、ホウ酸アルミニウムウィスカが製
品中で傾斜性分布をしていることが確認された(分割片
1が吸引濾過面側端部、分割片5がその反対側端部。後
記実施例2においても同じ)。
This composite reinforcing material was cut along the plane parallel to the suction filtration surface in the above molding step and divided into 5 equal parts, and for each cut piece, the volume fraction of alumina fiber and the volume fraction of aluminum borate whiskers were cut. Was measured. The results were as follows, and it was confirmed that the aluminum borate whiskers had a gradient distribution in the product (the divided piece 1 was the suction filtration surface side end, and the divided piece 5 was the opposite end). The same applies to Example 2 described later).

【0023】 分割片 アルミナ繊維(容積%) ホウ酸アルミウィスカ(容積%) 1 5 15 2 5 12 3 6 7 4 6 5 5 7 1 Divided piece Alumina fiber (volume%) Aluminum borate whisker (volume% ) 1 5 15 2 5 12 3 6 7 4 6 5 5 5 7 1

【0024】次に、上記複合強化材を用いて、傾斜機能
アルミニウム合金基複合材料を製造した。まず複合強化
材を800℃に予熱し、ウィスカの体積分率が高い面を
下にして300℃の金型内に配置、固定した。次いでア
ルミニウム合金AC8Aの溶湯(750℃)を注入し、
プランジャーにより溶湯を1000kgf/cm2に加圧して
複合強化材の気孔部分に溶湯を圧入した。冷却して溶湯
を凝固させたのち、形成された鋳造物を金型から取り出
し、熱処理(T6)を行なった。
Next, a functionally graded aluminum alloy matrix composite material was produced using the above composite reinforcement material. First, the composite reinforcing material was preheated to 800 ° C., and was placed and fixed in a mold at 300 ° C. with the surface of the whisker having a high volume fraction facing down. Then, a molten aluminum alloy AC8A (750 ° C.) was injected,
The molten metal was pressurized to 1000 kgf / cm 2 with a plunger to press the molten metal into the pores of the composite reinforcement. After cooling and solidifying the molten metal, the formed casting was taken out from the mold and heat-treated (T6).

【0025】得られた傾斜機能アルミニウム合金基複合
材料を中心軸線に沿って切断し、中心軸線上の8点にお
いてビッカース硬度を測定した。結果は下記のとおりで
あって、ホウ酸アルミニウムウィスカの体積分率が高い
領域ほど、高い硬度を示した(注:測定点1から測定点
6の方向に、ホウ酸アルミニウムウィスカの体積分率が
減少する。測定点7および8は、複合強化材で補強され
ていないアルミニウム合金だけの領域である。)。
The obtained functionally graded aluminum alloy matrix composite material was cut along the central axis and the Vickers hardness was measured at 8 points on the central axis. The results are as follows, and the higher the volume fraction of aluminum borate whiskers, the higher the hardness (Note: in the direction from measurement point 1 to measurement point 6, the volume fraction of aluminum borate whiskers was (Measurement points 7 and 8 are areas of aluminum alloy only, not reinforced with composite reinforcement).

【0026】測定点 ビッカース硬度 1 200 2 190 3 175 4 160 5 150 6 135 7 130 8 130 Measuring point Vickers hardness 1 200 2 190 3 175 4 160 5 150 150 6 135 7 130 8 130

【0027】さらに、上記と同様の傾斜機能アルミニウ
ム合金基複合材料を、ホウ酸アルミニウムウィスカの体
積分率が最も高い端面(複合強化材の成形工程における
吸引濾過面が存在する)に平行な面に沿って切断して8
等分し、各分割片について、切断面に平行な方向の熱膨
張率を測定した。その結果は下記のとおりであって、複
合材料が熱膨張率に関しても傾斜性を有することが確認
された(注:測定点1から測定点6の方向に、ホウ酸ア
ルミニウムウィスカの体積分率が減少する。測定点7お
よび8は、複合強化材が無い、アルミニウム合金だけの
領域である。)。
Further, the same functionally graded aluminum alloy matrix composite material as described above is formed on a surface parallel to the end surface having the highest volume fraction of aluminum borate whiskers (the suction filtration surface is present in the molding process of the composite reinforcement). Cut along 8
Each of the divided pieces was measured for the coefficient of thermal expansion in the direction parallel to the cut surface. The results are shown below, and it was confirmed that the composite material also has a gradient with respect to the thermal expansion coefficient (Note: in the direction from measurement point 1 to measurement point 6, the volume fraction of aluminum borate whiskers was (Measurement points 7 and 8 are areas of aluminum alloy only, without composite reinforcement).

【0028】測定点 熱膨張率(×10-6/℃) 1 16 2 17 3 19 4 20 5 21 6 22 7 23 8 23 Measurement point coefficient of thermal expansion (× 10 -6 / ° C.) 1 16 2 17 3 19 4 4 20 5 21 6 6 22 7 23 8 23

【0029】実施例2 アルミナ短繊維のスラリーとアルミナ粒子のスラリー
(いずれも対固形物2重量%のシリカゾルを含有)を用
意し、これらを混合しながら実施例1の場合と同様の成
形装置に供給し、脱水成形して、円板状成形物を形成さ
せる。上記成形工程において、アルミナ短繊維スラリー
の単位時間当たり供給量は最後まで一定にし、一方アル
ミナ粒子スラリーの供給量は、アルミナ粒子/アルミナ
短繊維の体積比が最初は30/7、最後は0/7になる
ように、成型中徐々に減少させた。
Example 2 A slurry of alumina short fibers and a slurry of alumina particles (both containing a silica sol of 2% by weight of solid matter) were prepared, and mixed with the same molding apparatus as in Example 1. It is supplied and dehydrated and molded to form a disk-shaped molded product. In the above molding step, the supply amount of the alumina short fiber slurry per unit time was kept constant until the end, while the alumina particle slurry was supplied at a volume ratio of alumina particles / alumina short fibers of 30/7 at the beginning and 0 / at the end. It was gradually reduced to 7 during molding.

【0030】脱水成形終了後、成形物を型から外し、熱
風で乾燥してから1200℃で1時間焼成した。得られ
た厚さ30mmの複合強化材は、密度が0.850g/cm3
強化材体積分率(全体の平均値)が23%であった。こ
の複合強化材を上記成形工程における吸引濾過面に平行
な面に沿って切断して5等分し、各切断片についてアル
ミナ繊維の体積分率およびアルミナ粒子の体積分率を測
定した。その結果は下記のとおりであって、アルミナ繊
維とアルミナ粒子が製品中で傾斜性分布をしていること
が確認された。
After completion of the dehydration molding, the molded product was removed from the mold, dried with hot air, and then baked at 1200 ° C. for 1 hour. The obtained composite reinforcing material having a thickness of 30 mm has a density of 0.850 g / cm 3 ,
The reinforcing material volume fraction (overall average value) was 23%. This composite reinforcing material was cut along a plane parallel to the suction filtration surface in the molding step and divided into 5 equal parts, and the volume fraction of alumina fiber and the volume fraction of alumina particles were measured for each cut piece. The results are as follows, and it was confirmed that the alumina fibers and the alumina particles have a gradient distribution in the product.

【0031】分割片 アルミナ繊維(容積%) アルミナ粒子(容積%) 1 5 31 2 6 24 3 6 17 4 7 9 5 7 3 Divided pieces Alumina fiber (volume%) Alumina particles (volume%) 1 5 31 2 6 24 3 6 17 4 7 9 5 7 3

【0032】次に、上記複合強化材を用い、実施例1の
場合と同様にして傾斜機能アルミニウム合金基複合材料
を製造した。得られた傾斜機能アルミニウム合金基複合
材料を中心軸線に沿って切断し、中心軸線上の8点にお
いてビッカース硬度を測定した結果は下記のとおりであ
って、ホウ酸アルミニウムウィスカの体積分率が高い領
域ほど高い硬度を示した(注:測定点1から測定点6の
方向に、ホウ酸アルミニウムウィスカの体積分率が減少
する。測定点7および8は、複合強化材で補強されてい
ないアルミニウム合金だけの領域である。)。
Next, a functionally graded aluminum alloy matrix composite material was produced in the same manner as in Example 1 using the above composite reinforcement material. The obtained functionally graded aluminum alloy base composite material was cut along the central axis and the Vickers hardness was measured at 8 points on the central axis. The results are as follows, and the volume fraction of aluminum borate whiskers was high. The higher the area, the higher the hardness. (Note: The volume fraction of aluminum borate whiskers decreases in the direction from measurement point 1 to measurement point 6. Measurement points 7 and 8 are aluminum alloys not reinforced with composite reinforcement. It's just an area.)

【0033】測定点 ビッカース硬度 1 340 2 300 3 260 4 220 5 180 6 150 7 130 8 130 Measurement point Vickers hardness 1 340 2 300 3 260 260 4 220 5 180 6 6 150 7 130 8 130

【0034】[0034]

【発明の効果】上述のように、本発明によれば、粉体強
化材を用いて傾斜機能金属基複合材料を製造するため
の、粉体強化材が傾斜配置された複合強化材を容易に製
造することが可能になる。
As described above, according to the present invention, a composite reinforcing material in which the powder reinforcing material is arranged in an inclined manner for easily manufacturing a functionally graded metal matrix composite material using the powder reinforcing material can be easily manufactured. It becomes possible to manufacture.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 孝行 横浜市神奈川区宝町2番地 日産自動車株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takayuki Ohashi 2 Takaracho, Kanagawa-ku, Yokohama-shi Nissan Motor Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無機質結合剤を含有する水中にウィスカ
または(および)無機質微粒子を分散させてスラリー状
にし、別に無機質結合剤を含有する水中に耐熱性無機繊
維を分散させてスラリー状にし、得られた2種類のスラ
リーを混合しながら水平な濾過面を有する脱水成形用型
に供給して脱水成形するに当たり無機繊維スラリーに対
するウィスカまたは(および)無機質微粒子のスラリー
の供給比率を経時的に減少させ、得られた脱水成形物を
乾燥後焼成することを特徴とする傾斜機能金属基複合材
料製造用複合強化材の製造法。
1. A whisker or (and) inorganic fine particles are dispersed in water containing an inorganic binder to form a slurry, and a heat-resistant inorganic fiber is separately dispersed in water containing an inorganic binder to form a slurry. When the two types of slurries thus prepared are mixed and supplied to a dehydration molding die having a horizontal filtration surface to perform dehydration molding, the supply ratio of whisker or (and) inorganic fine particle slurry to inorganic fiber slurry is decreased with time. A method for producing a composite reinforcing material for producing a functionally graded metal-based composite material, which comprises firing the obtained dehydrated molded article after drying.
【請求項2】 無機質微粒子としてアルミナ、ジルコニ
ア、炭化ケイ素、または窒化ケイ素の微粒子を用いる請
求項1記載の複合強化材。
2. The composite reinforcing material according to claim 1, wherein fine particles of alumina, zirconia, silicon carbide, or silicon nitride are used as the inorganic fine particles.
JP19161793A 1993-07-06 1993-07-06 Manufacturing method of composite reinforcement for functionally graded metal matrix composite Expired - Fee Related JP3619258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19161793A JP3619258B2 (en) 1993-07-06 1993-07-06 Manufacturing method of composite reinforcement for functionally graded metal matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19161793A JP3619258B2 (en) 1993-07-06 1993-07-06 Manufacturing method of composite reinforcement for functionally graded metal matrix composite

Publications (2)

Publication Number Publication Date
JPH0718352A true JPH0718352A (en) 1995-01-20
JP3619258B2 JP3619258B2 (en) 2005-02-09

Family

ID=16277621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19161793A Expired - Fee Related JP3619258B2 (en) 1993-07-06 1993-07-06 Manufacturing method of composite reinforcement for functionally graded metal matrix composite

Country Status (1)

Country Link
JP (1) JP3619258B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190546A (en) * 1984-03-12 1985-09-28 Izumi Jidosha Kogyo Kk Inorganic fiber-reinforced composite member
JPS6270036A (en) * 1985-09-25 1987-03-31 キヤノン株式会社 Composite material
JPH0288730A (en) * 1988-09-26 1990-03-28 Izumi Ind Ltd Ceramic whisker reinforced light alloy composite material and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190546A (en) * 1984-03-12 1985-09-28 Izumi Jidosha Kogyo Kk Inorganic fiber-reinforced composite member
JPS6270036A (en) * 1985-09-25 1987-03-31 キヤノン株式会社 Composite material
JPH0288730A (en) * 1988-09-26 1990-03-28 Izumi Ind Ltd Ceramic whisker reinforced light alloy composite material and production thereof

Also Published As

Publication number Publication date
JP3619258B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
US6180258B1 (en) Metal-matrix composites and method for making such composites
US5035724A (en) Sol-gel alumina shaped bodies
US4710480A (en) Method of ceramic molding which produces a porosity gradient and the manufacture of compound moldings using this method
US4818633A (en) Fibre-reinforced metal matrix composites
US6309994B1 (en) Fiber reinforced composite having an aluminum phosphate bonded matrix
EP0217946A1 (en) High density reinforced ceramic bodies and method of making same
CN107553686A (en) A kind of manufacture method of the fiber reinforcement gradient porous ceramics based on 3D printing
EP0417493A2 (en) Fiber reinforced composite having an aluminum phosphate bonded matrix
WO1994000399A1 (en) Method for in situ tailoring the component of ceramic articles and articles made thereby
US5443770A (en) High toughness carbide ceramics by slip casting and method thereof
KR20010050316A (en) Low Volume Fraction Metal Matrix Preforms
US6044894A (en) Method for preparing a light metal or light metal alloy based composite product
EP0410601B1 (en) Composite ceramic material
US5077242A (en) Fiber-reinforced ceramic green body and method of producing same
US5972489A (en) Porous inorganic material and metal-matrix composite material containing the same and process therefor
US5633213A (en) Method for in situ tailoring the component of ceramic articles
JPH0718352A (en) Production of composite reinforcing material for producing functionally gradient metal-based composite material
JPH02194132A (en) Manufacture of metal matrix composite
JPH0625775A (en) Production of functionally gradient material
JPH05186280A (en) Production of ceramic porous body
JPH04350136A (en) Fibrous molding for fiber reinforced metal
JP3439241B2 (en) Manufacturing method of composite reinforcement for manufacturing functionally graded metal matrix composites
JP2000204454A (en) Preform for metal matrix composite material and its production
JPH1129831A (en) Preform for metal matrix composite, and its production
JPH09202670A (en) Porous ceramic-reinforced metal-based composite material and its production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees