JPH0625775A - Production of functionally gradient material - Google Patents

Production of functionally gradient material

Info

Publication number
JPH0625775A
JPH0625775A JP20071092A JP20071092A JPH0625775A JP H0625775 A JPH0625775 A JP H0625775A JP 20071092 A JP20071092 A JP 20071092A JP 20071092 A JP20071092 A JP 20071092A JP H0625775 A JPH0625775 A JP H0625775A
Authority
JP
Japan
Prior art keywords
porous body
functionally gradient
metal
gradient material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20071092A
Other languages
Japanese (ja)
Inventor
Keiichi Minegishi
岸 敬 一 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMC Corp
Original Assignee
SMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMC Corp filed Critical SMC Corp
Priority to JP20071092A priority Critical patent/JPH0625775A/en
Publication of JPH0625775A publication Critical patent/JPH0625775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To provide the process for production of the functionally gradient material which can easily produce materials of a large volume and irregular- shaped materials of columnar, cylindrical and other shapes with less restrictions on the sizes and shapes of the functionally gradient material. CONSTITUTION:This process consists of a first stage for forming a porous body in which the gap parts change gradually in prescribed directions by particles 1, 2, 3 of plural kinds of the materials constituting the functionally gradient material and a second stage of force feeding the remaining materials into the gap parts of this porous body, then curing the materials.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、傾斜機能材料を製造す
る方法に関するものであり、特に、セラミックス−金属
系の傾斜機能材料の製造に適した方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a functionally gradient material, and more particularly to a method suitable for producing a ceramic-metal functionally gradient material.

【0002】[0002]

【従来の技術】一般に、異種材料を組合わせた複合材料
においては、材料間の界面において特性が大きく異なる
ので、この特性のミスマッチが材料の劣化の主原因とな
る。このような問題に対しては、構成材料の混合組成を
連続的に変化させ、界面を傾斜させることが極めて有効
な解決手段であり、これを実現するために、近年、「材
質の傾斜化」という概念が提唱されている。
2. Description of the Related Art Generally, in a composite material in which different kinds of materials are combined, the characteristics at the interface between the materials are largely different, and the mismatch of the characteristics is the main cause of the deterioration of the material. In order to solve such problems, it is extremely effective solution to continuously change the mixed composition of the constituent materials and to make the interface inclined. In order to realize this, in recent years, "gradient of material" is used. The concept has been advocated.

【0003】この「材質の傾斜化」という概念に基づく
傾斜機能材料の設計、構造制御、評価技術の研究開発
は、国家プロジェクトを中心に進められている。具体的
には、宇宙往還機における遮熱構造部材として使用する
セラミックス−金属系超耐熱構造材料を開発目標とし、
その超音速飛行によって大気との摩擦で機体表面に発生
する熱応力には、耐熱性の高いセラミックスを対応さ
せ、機体内側の機械応力には金属を対応させるよう設計
するものである。
The research and development of functionally graded material design, structure control, and evaluation technology based on the concept of “gradient of material” is being promoted mainly by national projects. Specifically, the development goal is to develop a ceramic-metal super heat resistant structural material used as a heat shield structural member in a space shuttle.
The thermal stress generated on the surface of the fuselage due to friction with the atmosphere due to the supersonic flight is designed to correspond to ceramics with high heat resistance, and the mechanical stress inside the fuselage is designed to correspond to metal.

【0004】従来、傾斜機能材料の製造方法としては、
下記の四種類の方法が提案されている。 1.物理的蒸着法(PVD)、あるいは化学的蒸着法
(CVD)による気相法 2.材料粉末の直接積層法、あるいは薄膜積層法による
粒子配列法 3.溶射ガンを各材料に単独に、あるいは共通に用いる
溶射法 4.自己発熱反応を等方加圧下で進行させることによ
り、セラミックスを合成し、同時に金属と燒結するガス
圧燃焼燒結法
Conventionally, as a method of manufacturing a functionally graded material,
The following four methods have been proposed. 1. 1. Vapor phase method by physical vapor deposition (PVD) or chemical vapor deposition (CVD) 2. Particle stacking method by direct stacking method of material powder or thin film stacking method. 3. A thermal spraying method in which a thermal spray gun is used individually or commonly for each material. Gas pressure combustion sintering method in which ceramics are synthesized by advancing self-exothermic reaction under isotropic pressure and at the same time sintered to metal

【0005】しかしながら、これら既提案の傾斜機能材
料の製造方法は、単一材料の製造に用いられている既存
の技術を応用したもので、膜状、あるいは板状の傾斜機
能材料の製造には非常に有効であるが、これらの方法に
よって得られる傾斜機能材料は寸法や形状が制限され、
容積の大きい材料、柱状や筒状などの異形材料を製造す
ることは困難である。
However, these already proposed methods for producing a functionally gradient material apply the existing technology used for the production of a single material, and are not suitable for the production of a film-like or plate-like functionally gradient material. Although highly effective, the functionally graded materials obtained by these methods are limited in size and shape,
It is difficult to manufacture a material having a large volume, or a deformed material such as a columnar shape or a cylindrical shape.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、傾斜機能材料の寸法や形状に関する制約が
少なく、容積の大きい材料、柱状や筒状などの異形材料
をも容易に製造できる傾斜機能材料の製造方法を提供す
ることにある。
The problem to be solved by the present invention is that there are few restrictions on the size and shape of the functionally gradient material, and it is possible to easily manufacture a material having a large volume and a deformed material such as a columnar shape or a cylindrical shape. It is to provide a method for manufacturing a functionally gradient material.

【0007】[0007]

【課題を解決するための手段及び作用】上記課題を解決
するため、本発明の傾斜機能材料の製造方法は、傾斜機
能材料を構成する複数種の材料のうちの少なくとも一種
によって、空隙部が所定の方向に徐々に変化する多孔質
体を形成する第1工程と、この多孔質体の空隙部に、残
りの材料を液状で圧入したのちに硬化させる第2工程と
からなることを特徴とするものである。
In order to solve the above-mentioned problems, in the method for producing a functionally gradient material of the present invention, a void portion is defined by at least one of a plurality of types of materials constituting the functionally gradient material. The first step is to form a porous body that gradually changes in the direction of, and the second step is to press the remaining material into the void portion of the porous body in a liquid state and then cure the material. It is a thing.

【0008】本発明によるセラミックス−金属系傾斜機
能材料、特に、金属を基材とする同傾斜機能材料の製造
においては、金属の粉粒体によって空隙部が所定の方向
に徐々に変化する多孔質体を形成する第1工程と、この
多孔質体の空隙部に、セラミックス粉末のスラリーを圧
入したのちに硬化させる第2工程とが用いられ、また、
セラミックスを基材とする傾斜機能材料の製造において
は、セラミックスの粉粒体によって空隙部が所定の方向
に徐々に変化する多孔質体を形成する第1工程と、この
多孔質体の空隙部に、溶融金属を圧入したのちに硬化さ
せる第2工程とが用いられる。
In the production of the ceramic-metal functionally gradient material according to the present invention, in particular, the same functionally gradient material using a metal as a base material, a porous material in which voids gradually change in a predetermined direction due to metal powder particles. A first step of forming a body and a second step of pressing a slurry of ceramic powder into a void portion of the porous body and then hardening the slurry are used.
In the production of a functionally gradient material using ceramics as a base material, the first step of forming a porous body in which the voids gradually change in a predetermined direction by the powdered particles of ceramics, and the voids of the porous body The second step of pressing the molten metal and then hardening it is used.

【0009】更に具体的に説明すると、金属を基材とす
る傾斜機能材料の製造においては、第1工程として、ま
ず、基材となる金属材料の粒子及び/又は粉末からなる
金属粉粒体を、その空隙(密度)が所定の方向に向けて
徐々に増加または減少するように成形する。この成形に
は、基材となる金属粉粒体に、従来から知られている各
種多孔質体の形成方法を適用し、あるいは手作業その他
の適宜方法を用いることができるが、次に列記するよう
な方法が適している。
More specifically, in the production of a functionally gradient material having a metal as a base material, as a first step, first, particles of a metal material to be a base material and / or a metal powder particle made of a powder is formed. , The voids (density) are gradually increased or decreased in a predetermined direction. For this molding, a conventionally known method for forming various porous bodies can be applied to the metal powder or granular material as a base material, or manual processing or other appropriate method can be used. Such a method is suitable.

【0010】まず、一般的には、プレスにより粉粒体を
所要の空隙率分布が得られるように圧密する方法であ
る。この場合、粉粒体の粒径分布と圧密するために加え
る荷重によって、得られる多孔質体の空隙率は変化す
る。金属粒子のように球状に近い粉粒体を狭い範囲の粒
径に分級すると、粉粒体の充填状態は、概して空隙率3
9.5%を有する、幾何学的に斜方形に近い形式をと
り、空孔径は粒子径の16〜20%の範囲に収まること
が実験的に知られている。従って、空孔径に近い細かい
粒子を混合して、それらが空孔に充填されるように圧密
すれば、空隙率を減少させることができる。一方、プレ
スによる粉粒体の圧密に際して、加える荷重を部分的に
変化させることによって所要の空隙率分布が得られるこ
とは勿論である。上述した方法によって金属粉粒体を成
形した成形体は、それを燒結するなどの手段により粉粒
体相互を固定して、金属粉粒体の多孔質体を得る。
First, in general, a method of compacting powder particles by pressing so that a required porosity distribution can be obtained. In this case, the porosity of the obtained porous body changes depending on the particle size distribution of the powder and granules and the load applied for consolidation. When powder particles having a nearly spherical shape such as metal particles are classified into a narrow particle size range, the packed state of the powder particles generally has a porosity of 3
It is experimentally known to take a geometrically close to rhombic form with 9.5% and the pore size to be in the range of 16-20% of the particle size. Therefore, the porosity can be reduced by mixing fine particles close to the pore diameter and consolidating them so that the pores are filled. On the other hand, it is a matter of course that the required porosity distribution can be obtained by partially changing the load applied when the powder or granular material is compacted by pressing. The molded body obtained by molding the metal powder particles by the method described above is fixed to each other by means such as sintering the powder particles to obtain a porous body of the metal powder particles.

【0011】また、水や、高分子材料(セルロース、ビ
ニル樹脂等)あるいはその他の適宜材料を結合剤とし
て、粉粒体を所要の空隙率分布において成形することも
できる。得られる多孔質体の空隙率は結合剤の多少によ
って決まるため、部分的に結合剤の含有率を変えること
により適宜空隙率分布を持たせることができるが、必要
ならば、上記プレスによる圧密や粉粒体の粒径分布の調
整等を併用することができる。その後、乾燥あるいは加
熱焼却などにより結合剤を除くと、金属粉粒体が所要の
空隙率分布で成形された多孔質体を得る。
Further, water or a polymer material (cellulose, vinyl resin or the like) or other appropriate material may be used as a binder to form the powder or granular material in a required porosity distribution. Since the porosity of the obtained porous body is determined by the amount of the binder, it is possible to appropriately give the porosity distribution by partially changing the binder content. Adjustment of the particle size distribution of the powder or the like can be used together. After that, the binder is removed by drying or incineration by heating to obtain a porous body in which the metal powder particles are formed with a required porosity distribution.

【0012】さらに、活性剤を含む水に空気を吹き込ん
で泡立て、これに粉粒体を混ぜて多孔体を成形すること
もできる。この方法は、比重の小さい材料に有利に利用
できるもので、発泡量と混合する粒子の量によって空隙
率が決まるため、それらの調整によって空隙率分布を持
たせることになる。
Further, air can be blown into water containing an activator to form a foam, and the powder or granules can be mixed to form a porous body. This method can be advantageously used for a material having a small specific gravity, and since the porosity is determined by the foaming amount and the amount of particles to be mixed, the porosity distribution is provided by adjusting them.

【0013】上述した方法によって得られた金属粉粒体
の多孔質体は、次いで、第2工程として、十分な脱気を
行った後、別に用意したセラミックス粉末のスラリーを
それに圧入する。このスラリーの圧入は、上記多孔質体
の空隙が連続しているので、特に高圧等で圧入しなくて
も、容易に行うことができる。そして、圧入したセラミ
ックスを燒結すると、金属を基材とするセラミックス−
金属系傾斜機能材料が得られる。
The porous body of metal powder particles obtained by the above-described method is then subjected to sufficient deaeration as a second step, and then a separately prepared slurry of ceramic powder is pressed into it. Since the voids of the porous body are continuous, the slurry can be press-fitted easily without being pressed in particularly at high pressure. Then, when the press-fitted ceramics are sintered, the ceramics whose base material is metal-
A metal-based functionally gradient material can be obtained.

【0014】また、上記方法とは逆に、まず、セラミッ
クスの粉粒体によって、内部の空隙の分布が密から粗へ
徐々に変化するセラミックス多孔質体を製造し、この多
孔質体に溶融した金属を圧入して凝固させても、同様な
セラミックス−金属系傾斜材料を得ることができる。こ
の場合、多孔質体の成形は、金属粉粒体について説明し
た前述の方法を用いることができる。
Contrary to the above method, first, a ceramic porous body in which the distribution of voids in the interior gradually changes from dense to coarse is produced by the ceramic powder and is melted in this porous body. A similar ceramic-metal gradient material can also be obtained by press-fitting and solidifying a metal. In this case, the porous body can be molded by the method described above for the metal powder particles.

【0015】上述した第1工程において多孔質体を製造
するに際し、傾斜機能材料を構成する材料としては、金
属やセラミックスの1種のみを用いる場合に限らず、そ
の材料自体を複数種の混合体とし、あるいは更にその混
合体が複数の材料を傾斜的に混合したものとすることが
できる。また、第2工程においてその多孔質体の空隙に
圧入する材料についても同様である。
In producing the porous body in the above-mentioned first step, the material forming the functionally gradient material is not limited to the case of using only one kind of metal or ceramics, but the material itself is a mixture of a plurality of kinds. Alternatively, the mixture may be a mixture of a plurality of materials in an inclined manner. The same applies to the material press-fitted into the voids of the porous body in the second step.

【0016】図面を参照して上述した第1工程の一例を
説明すると、図1及び図2に示すように、球状に近い金
属粒子あるいはセラミックス粒子で粒径がほぼ一定の基
準径粒子1と、その基準径粒子の間に形成される空孔に
入る程度の径(基準径粒子の径の約10〜25%)を有
する空孔充填粒子2と、更にそれらの粒子1,2間に充
填されるような細隙充填粒子3を用い、基準径粒子1の
みを充填した空隙率が大きい第1部分11と、基準径粒
子1と空孔充填粒子2とを混合して充填した第2部分1
2と、上記各粒子1,2,3を充填した空隙率がもっと
も小さい第3部分13とを作成し、それらをプレスによ
って圧密し、あるいはそれらの間をポリビニルアルコー
ル溶液等を結合剤として接合させる。第1ないし第3部
分11〜13の各中間部分は、更に中間的な空隙率にな
るように各粒子の混合量を調整することができる。
An example of the above-mentioned first step will be described with reference to the drawings. As shown in FIGS. 1 and 2, a reference particle 1 having a substantially constant particle diameter of substantially spherical metal particles or ceramic particles, The pore-filling particles 2 having a diameter (about 10 to 25% of the diameter of the reference-diameter particles) that can enter the pores formed between the reference-diameter particles are further filled between the particles 1 and 2. The first portion 11 having a large porosity filled with only the reference diameter particles 1 and the second portion 1 mixed with the reference diameter particles 1 and the pore filling particles 2 are used.
2 and the third portion 13 having the smallest porosity filled with the above-mentioned particles 1, 2 and 3 are prepared, and they are consolidated by pressing, or a polyvinyl alcohol solution or the like is bonded between them as a binder. . In each of the intermediate portions of the first to third portions 11 to 13, the mixing amount of each particle can be adjusted so as to have a more intermediate porosity.

【0017】これによって得られた成形体は、燒結によ
って多孔質燒結体とし、次いで十分に脱気した後、別に
用意したセラミックス粉末のスラリーを空隙部に圧入し
て燒結し、あるいは溶融金属を圧入、固化させることに
より、セラミックス−金属系傾斜機能材料を得る。
The molded body thus obtained is made into a porous sintered body by sintering, and after sufficiently degassing, a separately prepared slurry of ceramic powder is pressed into the voids to be sintered or molten metal is pressed in. Then, by solidifying, a ceramic-metal functionally gradient material is obtained.

【0018】上記多孔質体を形成する金属粒子として
は、一般的に、鉄、銅、ニッケル、モリブデン、銅合
金、チタン合金、アルミニウム及びその合金、高速度鋼
やステンレスその他の各種合金鋼、酸化物分散合金など
からなる金属の粒子または切断片を用いることができ
る。また、セラミックス多孔質体に圧入する金属として
は、上述した金属の中で比較的融点の低いもの、例え
ば、アルミニウムやその合金、銅及び銅合金、あるいは
鋳鉄の他、鉛、亜鉛、等を用いることができる。
The metal particles forming the porous body are generally iron, copper, nickel, molybdenum, copper alloys, titanium alloys, aluminum and its alloys, high-speed steel, stainless steel and various other alloy steels, and oxides. It is possible to use metal particles or cut pieces made of a material dispersion alloy or the like. As the metal to be press-fitted into the porous ceramic body, one having a relatively low melting point among the above-mentioned metals, for example, aluminum or its alloys, copper and copper alloys, cast iron, lead, zinc or the like is used. be able to.

【0019】一方、上記多孔質体を成形するためのセラ
ミックスとしては、例えば、アルミナ(Al23 )、
ムライト(3Al23 ・2SiO2 )、コーディエラ
イト(2MgO・2Al23 ・5SiO2 )、部分安
定化ジルコニア(PSZ)、複合酸化物、窒化珪素(S
34 )、窒化アルミニウム(AlN)、サイアロン
(Si6-Z AlZZ8-Z 、zは正数)、炭化珪素
(SiC)などを、単独または複合化して用いることが
できる。また、金属粉粒体からなる多孔質体にセラミッ
クスをスラリーとして圧入する場合にも、これらが粉末
化したうえでスラリーとして用いることができるが、そ
の燒結温度が多孔質体を形成する金属の融点よりも低い
ものを選定する必要がある。
On the other hand, examples of ceramics for forming the porous body include alumina (Al 2 O 3 ),
Mullite (3Al 2 O 3 · 2SiO 2 ), cordierite (2MgO · 2Al 2 O 3 · 5SiO 2), partially stabilized zirconia (PSZ), complex oxide, silicon nitride (S
i 3 N 4), aluminum nitride (AlN), sialon (Si 6-Z Al Z O Z N 8-Z, z is a positive number), and silicon carbide (SiC), can be used singly or in combination of . Further, when ceramics is pressed into a porous body made of metal powder as a slurry, these can be used as a slurry after being powdered, but the sintering temperature is the melting point of the metal forming the porous body. It is necessary to select a lower one.

【0020】[0020]

【実施例】以下に、本発明の実施例を説明する。結合剤
としてパラフィン系バインダを用い、径が20〜120
μm程度のステンレス鋼(SUS304)からなる金属
粒子を用い、上記結合剤の量を金属粒子に対して5〜3
0Vol.%の範囲で段階的に変化させて金属粒子を接合し
た5種類の成形体をプレス法により作製し、それらを順
次積層、圧密後、500〜600℃で脱脂した。これに
引き続いて、水素雰囲気1370℃で燒結した。これに
よって、空隙率がほぼ3%から20%にわたって変化す
る多孔質体を得ることができた。
EXAMPLES Examples of the present invention will be described below. A paraffinic binder is used as a binder, and the diameter is 20 to 120.
Using metal particles made of stainless steel (SUS304) of about μm, the amount of the binder is 5 to 3 with respect to the metal particles.
Five types of molded bodies in which metal particles were joined while being changed stepwise in the range of 0 Vol.% Were produced by a pressing method, and these were sequentially laminated, consolidated, and degreased at 500 to 600 ° C. Following this, sintering was performed in a hydrogen atmosphere at 1370 ° C. This made it possible to obtain a porous body in which the porosity varied from approximately 3% to 20%.

【0021】次いで、その多孔質体に、平均粒径が0.
3μm程度の部分安定化ジルコニアを水でスラリー化し
て圧入し、それを常圧雰囲気で1350℃に2時間程度
加熱することにより燒結した。その結果、ステンレスの
粒子に富む側において耐衝撃性に富み、セラミックスに
富む側において耐熱性、耐摩耗性をもち、その間で両性
質が次第に変化するようなセラミックス−金属系傾斜機
能材料を得ることができた。
Next, the porous body has an average particle size of 0.
Partially stabilized zirconia of about 3 μm was slurried with water and press-fitted, and it was sintered by heating it at 1350 ° C. for about 2 hours in a normal pressure atmosphere. As a result, it is possible to obtain a ceramic-metal functionally gradient material that has a high impact resistance on the side rich in particles of stainless steel, has heat resistance and wear resistance on the side rich in ceramics, and gradually changes both properties between them. I was able to.

【0022】[0022]

【発明の効果】以上に詳述した本発明のセラミックス−
金属系傾斜機能材料の製造方法においては、金属粉粒体
またはセラミックス粉粒体を、空隙が適宜方向に漸増ま
たは漸減するように燒結して多孔質体を形成し、次いで
この多孔質体にセラミックスのスラリーまたは溶融金属
を圧入するので、セラミックス−金属系傾斜機能材料の
寸法や形状に関する制約が少なくなって、大型や異型の
材料を容易に形成することができる。
The ceramics of the present invention described in detail above
In the method for producing a metal-based functionally gradient material, metal powder particles or ceramic powder particles are sintered so that voids gradually increase or decrease in an appropriate direction to form a porous body, and then a ceramic body is formed on the porous body. Since the slurry or molten metal of (1) is press-fitted, restrictions on the size and shape of the ceramic-metal functionally gradient material are reduced, and a large-sized or atypical material can be easily formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づいて製造される多孔質体の一例を
示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a porous body manufactured according to the present invention.

【図2】全体を筒状に形成した上記多孔質体の他の形状
例を示す断面図である。
FIG. 2 is a cross-sectional view showing another example of the shape of the porous body formed into a tubular shape as a whole.

【符号の説明】[Explanation of symbols]

1,2,3 粒子、 1,2,3 particles,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】傾斜機能材料を構成する複数種の材料のう
ちの少なくとも一種によって、空隙部が所定の方向に徐
々に変化する多孔質体を形成する第1工程と、 この多孔質体の空隙部に、残りの材料を液状で圧入した
のちに硬化させる第2工程と、からなることを特徴とす
る傾斜機能材料の製造方法。
1. A first step of forming a porous body in which a void portion gradually changes in a predetermined direction by at least one of a plurality of types of materials constituting a functionally gradient material, and a void of the porous body. And a second step in which the remaining material is press-fitted in a liquid state and then hardened, and a method for producing a functionally graded material.
【請求項2】金属の粉粒体によって、空隙部が所定の方
向に徐々に変化する多孔質体を形成する第1工程と、 この多孔質体の空隙部に、セラミックス粉末のスラリー
を圧入したのちに硬化させる第2工程と、からなること
を特徴とする傾斜機能材料の製造方法。
2. A first step of forming a porous body in which a void portion gradually changes in a predetermined direction by a metal powder and granules, and a slurry of ceramic powder is pressed into the void portion of the porous body. And a second step of subsequent curing, which is a method for producing a functionally gradient material.
【請求項3】セラミックスの粉粒体によって、空隙部が
所定の方向に徐々に変化する多孔質体を形成する第1工
程と、 この多孔質体の空隙部に、溶融金属を圧入したのちに硬
化させる第2工程と、からなることを特徴とする傾斜機
能材料の製造方法。
3. A first step of forming a porous body in which a void portion gradually changes in a predetermined direction by a powdered material of ceramics, and a molten metal is press-fitted into the void portion of the porous body. A method of manufacturing a functionally gradient material, comprising: a second step of curing.
JP20071092A 1992-07-03 1992-07-03 Production of functionally gradient material Pending JPH0625775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20071092A JPH0625775A (en) 1992-07-03 1992-07-03 Production of functionally gradient material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20071092A JPH0625775A (en) 1992-07-03 1992-07-03 Production of functionally gradient material

Publications (1)

Publication Number Publication Date
JPH0625775A true JPH0625775A (en) 1994-02-01

Family

ID=16428938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20071092A Pending JPH0625775A (en) 1992-07-03 1992-07-03 Production of functionally gradient material

Country Status (1)

Country Link
JP (1) JPH0625775A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214723A (en) * 1994-02-04 1995-08-15 Kawasaki Heavy Ind Ltd Heat shielding material
JPH08187807A (en) * 1995-01-11 1996-07-23 Takamatsu Kikai Kogyo Kk Unidimensionally functionally gradient structural material, manufacture thereof as well as tridimensionally functionally gradient structural material and manufacture thereof
JPH09157772A (en) * 1995-02-22 1997-06-17 Mazda Motor Corp Production of partial composite light metal parts and preform used for the same
JP2006513320A (en) * 2003-01-08 2006-04-20 インコ、リミテッド Parts manufactured or processed by powder metallurgy and method for manufacturing the same
US10668710B2 (en) 2017-07-28 2020-06-02 General Electric Company Components including structures having decoupled structural stiffness and mass density
GB2605164A (en) * 2021-03-24 2022-09-28 Atomic Energy Authority Uk Composite material for fusion reactor first-wall and method of making the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214723A (en) * 1994-02-04 1995-08-15 Kawasaki Heavy Ind Ltd Heat shielding material
JPH08187807A (en) * 1995-01-11 1996-07-23 Takamatsu Kikai Kogyo Kk Unidimensionally functionally gradient structural material, manufacture thereof as well as tridimensionally functionally gradient structural material and manufacture thereof
JPH09157772A (en) * 1995-02-22 1997-06-17 Mazda Motor Corp Production of partial composite light metal parts and preform used for the same
JP2006513320A (en) * 2003-01-08 2006-04-20 インコ、リミテッド Parts manufactured or processed by powder metallurgy and method for manufacturing the same
US10668710B2 (en) 2017-07-28 2020-06-02 General Electric Company Components including structures having decoupled structural stiffness and mass density
GB2605164A (en) * 2021-03-24 2022-09-28 Atomic Energy Authority Uk Composite material for fusion reactor first-wall and method of making the same

Similar Documents

Publication Publication Date Title
CA1096895A (en) Molten silicon infiltration reaction products
CN101528407B (en) Improved method of bonding aluminum-boron-carbon composites
CN107553686A (en) A kind of manufacture method of the fiber reinforcement gradient porous ceramics based on 3D printing
JPH0625775A (en) Production of functionally gradient material
JPH06144948A (en) Production of ceramic porous body
US20010033038A1 (en) Method of producing metal/ceramic composite, and method of producing porous ceramic body
CN1309855C (en) Method for preparing cermet using powder stock
JP3739913B2 (en) Aluminum nitride-aluminum based composite material and method for producing the same
US20080145293A1 (en) Ceramic Material Product and Method of Manufacture
US5928583A (en) Process for making ceramic bodies having a graded porosity
US5145504A (en) Boron carbide-copper cermets and method for making same
JPH0157075B2 (en)
CN108315629A (en) A kind of preparation method of Al/SiC ceramic-metal composites
JPH08104575A (en) Composite material and its production
JP2001240902A (en) Low thermal conductivity aluminum sintered material, its producing method and piston top material
JPH0328348A (en) Ceramic/metal composite
JP4405038B2 (en) Method for producing porous sintered compact
JPS593955B2 (en) Method for manufacturing high-strength, heat-resistant silicon compound fired moldings
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JP2614749B2 (en) Manufacturing method of porous metal body
JPS59156954A (en) Manufacture of porous ceramics
Kimura et al. Design and development of functionally graded material by pulse discharge resistance consolidation with temperature gradient control
JPH05318431A (en) Production of inclination function material
RU2730092C1 (en) Composition with carbon nanotubes for producing carbon billet for high-density sic/c/si ceramics and method of producing articles from sic/c/si ceramics
JP5859850B2 (en) Composite material and manufacturing method thereof