JPH07183492A - Two-dimensional electron gas field effect transistor - Google Patents

Two-dimensional electron gas field effect transistor

Info

Publication number
JPH07183492A
JPH07183492A JP5325241A JP32524193A JPH07183492A JP H07183492 A JPH07183492 A JP H07183492A JP 5325241 A JP5325241 A JP 5325241A JP 32524193 A JP32524193 A JP 32524193A JP H07183492 A JPH07183492 A JP H07183492A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
semiconductor layer
electrode
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5325241A
Other languages
Japanese (ja)
Inventor
Yoji Morikawa
陽二 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5325241A priority Critical patent/JPH07183492A/en
Publication of JPH07183492A publication Critical patent/JPH07183492A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7789Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface the two-dimensional charge carrier gas being at least partially not parallel to a main surface of the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To make an operation speed higher without the restriction of the width of a gate electrode by a method wherein a step is provided in the junction boundary of a first compound semiconductor layer and a second compound semiconductor layer at the position between a source electrode and a drain electrode. CONSTITUTION:A depletion type HEMT comprises a substrate of a first compound semiconductor, and an n-type AlGaAs layer 11 of a second semiconductor, which is formed on the substrate where an epitaxial i-GaAs layer 10 may or may not be present. A source electrode 12 and a drain electrode 13 which are made of AuGe/Ni and a gate electrode 14 which is made of Al are provided on the n-type AlGaAs layer 11. Further, a step about 10mm high is provided in the junction boundary of the i-type GaAs layer 10 and the n-type AlGaAs layer 11 at the position between the source electrode 12 and the drain electrode 13. With this constitution, a 2DEG layer 20 having a step is formed in the junction boundary of the i-type layer 10 and the n-type AlGaAs layer 11 with the n-type AlGaAs layer 11 as an electron donor layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ヘテロ結合を利用した
2次元電子ガスを電流チャネルとして用いる2次元電子
ガス電界効果トランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-dimensional electron gas field effect transistor using a two-dimensional electron gas utilizing a heterojunction as a current channel.

【0002】[0002]

【従来の技術】化合物半導体を用いた半導体素子は、一
般にシリコン半導体を用いた素子より高速・高周波域で
動作することが可能であるため、次第にその利用が広が
っている。そして、化合物半導体を利用した代表的な素
子である2次元電子ガス電界効果トランジスタ(以下、
HEMT(High Electoron Mobility Transistor)と称す
る)は、高速動作や高周波領域での利用が可能となるこ
とから期待されている。
2. Description of the Related Art In general, a semiconductor device using a compound semiconductor can be operated at a higher speed and a higher frequency than a device using a silicon semiconductor, and therefore its use is gradually expanding. Then, a two-dimensional electron gas field effect transistor (hereinafter referred to as a typical device using a compound semiconductor)
HEMT (High Electoron Mobility Transistor) is expected because it can be used in a high speed operation and a high frequency region.

【0003】HEMTは、シリコン半導体を用いた素子
と比較して、それ自体高速動作するものであるが、より
高速動作させるための工夫が行われている。FETを高
速動作させるための最も確実な方法は、ソース、ドレイ
ン間のチャネル長を短くして電子の移動距離を短縮する
ことである。
Although the HEMT operates at a higher speed as compared with an element using a silicon semiconductor, HEMT has been devised to operate at a higher speed. The most reliable method for operating the FET at a high speed is to shorten the channel length between the source and drain to shorten the movement distance of electrons.

【0004】このためには、ソース、ドレイン間に位置
するゲート電極を小さくしなければならない。しかしな
がら、このゲート電極の大きさは、ゲート電極形成のた
めのリソグラフィー技術によって制限され、その限界以
下に小さくすることができない。また、ゲート電極の幅
を小さくするとゲート電極の寄生抵抗が増大して、高周
波動作での損失が大きくなるという問題点もある。
For this purpose, the gate electrode located between the source and the drain must be made small. However, the size of the gate electrode is limited by the lithography technique for forming the gate electrode, and cannot be made smaller than the limit. Further, when the width of the gate electrode is reduced, the parasitic resistance of the gate electrode increases, which causes a problem that the loss in high frequency operation increases.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明は、化
合物半導体による2DEGを利用した2次元電子ガス電
界効果トランジスタ(HEMT)において、ゲート電極
の幅に制限されることなく、より高速な動作が可能な2
次元電子ガス電界効果トランジスタを提供することであ
る。
SUMMARY OF THE INVENTION Therefore, according to the present invention, a two-dimensional electron gas field effect transistor (HEMT) using a compound semiconductor 2DEG can operate at higher speed without being limited by the width of the gate electrode. Possible 2
A three-dimensional electron gas field effect transistor is provided.

【0006】[0006]

【課題を解決するための手段】上記目的を解決するため
の本発明は、第1の化合物半導体層と、該第1の化合物
半導体層上に該第1の化合物半導体層と比較して電子供
与物質となる不純物濃度が高い第2の化合物半導体層が
形成され、該第2の化合物半導体層上にソース電極、ド
レイン電極およびゲート電極が設けられた2次元電子ガ
ス電界効果トランジスタにおいて、前記ソース電極およ
び前記ドレイン電極の間の前記第1の化合物半導体層と
前記第2の化合物半導体層の接合界面に段差を有するこ
とを特徴とする2次元電子ガス電界効果トランジスタで
ある。
SUMMARY OF THE INVENTION The present invention for solving the above-described object is to provide a first compound semiconductor layer and an electron donating layer on the first compound semiconductor layer as compared with the first compound semiconductor layer. A two-dimensional electron gas field effect transistor in which a second compound semiconductor layer having a high impurity concentration as a substance is formed, and a source electrode, a drain electrode and a gate electrode are provided on the second compound semiconductor layer, And a two-dimensional electron gas field effect transistor having a step at a junction interface between the first compound semiconductor layer and the second compound semiconductor layer between the drain electrode.

【0007】[0007]

【作用】上述のように構成された本発明は、第1の化合
物半導体層と、該第1の化合物半導体層と比較して不純
物濃度が高く電子供与層となる第2の化合物半導体層と
の界面で2DEG層が形成され、この第2の化合物半導
体層上に設けられたソース、ドレイン間の第1の化合物
半導体層と第2の化合物半導体層との界面、すなわち2
DEG層に段差を設けたことにより、従来(段差のない
場合)は図4に示すように、2DEG層にそってポテン
シャル(図中の曲線)が形成され、2DEG層のみの電
流密度が高くなって、2DEG層部分を電流の流れ(図
中の矢印)とは逆に電子が流れていたものが、2DEG
層内に段差を形成したことによって、図2に示すよう
に、段差のところでポテンシャル(図中の曲線)の分布
が変化し、段差から高くなった方では、2DEG層のみ
ならず第2の化合物半導体層内にも電流密度が分布して
この部分の電流の流れ(図中の矢印)とは逆に、電子が
流れるようになる。
According to the present invention constructed as described above, the first compound semiconductor layer and the second compound semiconductor layer which has a higher impurity concentration than the first compound semiconductor layer and serves as an electron donating layer. A 2DEG layer is formed at the interface, and the interface between the first compound semiconductor layer and the second compound semiconductor layer between the source and the drain provided on the second compound semiconductor layer, that is, 2
By providing a step in the DEG layer, in the conventional case (when there is no step), a potential (curve in the figure) is formed along the 2DEG layer as shown in FIG. 4, and the current density of only the 2DEG layer becomes high. In the 2DEG layer part, electrons flow opposite to the current flow (arrow in the figure).
By forming the step in the layer, as shown in FIG. 2, the distribution of the potential (curve in the figure) changes at the step, and when the step becomes higher than the step, not only the 2DEG layer but also the second compound The current density is also distributed in the semiconductor layer, and electrons flow in the opposite direction to the current flow (arrows in the figure) in this portion.

【0008】HEMTにおいては、ソースおよびドレイ
ン電極近傍の不純物濃度が高い第2の化合物半導体層内
を流れる電子は、ゲート電極によってその流れを制御さ
れにくく、チャネルとして働く部分は、2DEG層内の
みである。このため、段差があることにより、チャネル
として働く部分は、段差の低い方の部分のみとなり、実
質的なチャネル長が短くなる。
In the HEMT, the electrons flowing in the second compound semiconductor layer having a high impurity concentration in the vicinity of the source and drain electrodes are difficult to be controlled by the gate electrode, and the portion acting as the channel is only in the 2DEG layer. is there. For this reason, since there is a step, the portion that acts as a channel is only the lower step portion, and the substantial channel length is shortened.

【0009】[0009]

【実施例】以下、添付した図面を参照して、本発明の一
実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0010】図1は、本実施例のD型(デプレッション
型)HEMTの断面図である。このD型HEMTは、第
1の化合物半導体層である基板そのもの、もしくは基板
上にエピタキシャル成長させた不純物濃度5×1014
-3のi−GaAs層10上に、第2の化合物半導体層
である不純物濃度8×1017cm-3、厚さ50nmのn
−AlGaAs層11が積層されており、n−AlGa
As層11の上に、AuGe/Ni(金とゲルマニウム
とニッケルの合金)製のソース電極12およびドレイン
電極13と、Al製のゲート電極14が設けられ、さら
に、ソース電極12およびドレイン電極13の間に位置
するi−GaAs層10とn−AlGaAs層11の接
合界面に、約10nmの段差が設けられている。
FIG. 1 is a sectional view of a D-type (depletion type) HEMT of this embodiment. This D-type HEMT has a substrate itself, which is the first compound semiconductor layer, or an impurity concentration of 5 × 10 14 c which is epitaxially grown on the substrate.
A second compound semiconductor layer having an impurity concentration of 8 × 10 17 cm −3 and a thickness of 50 nm is formed on the m −3 i-GaAs layer 10.
-AlGaAs layer 11 is laminated, and n-AlGa
A source electrode 12 and a drain electrode 13 made of AuGe / Ni (an alloy of gold, germanium, and nickel) and a gate electrode 14 made of Al are provided on the As layer 11, and the source electrode 12 and the drain electrode 13 are further provided. A step difference of about 10 nm is provided at the junction interface between the i-GaAs layer 10 and the n-AlGaAs layer 11 located between them.

【0011】これにより、n−AlGaAs層11が電
子供与層となって、このi−GaAs層10とn−Al
GaAs層11の接合界面に、段差のある2DEG層2
0が形成される。
As a result, the n-AlGaAs layer 11 becomes an electron donating layer, and the i-GaAs layer 10 and the n-Al layer are formed.
A 2DEG layer 2 having a step at the junction interface of the GaAs layer 11
0 is formed.

【0012】図2は、本実施例によるD型HEMTのド
レインに2Vの電圧を印加したとき(ソースおよびゲー
トは0Vである)の2DEG層付近のポテンシャルの状
態と電流の向きおよび電流密度を示す図面である。この
図において、上から下に至る曲線がポテンシャルの等高
線を示すもので、矢印が電流の向きを示し、矢印の大き
さが電流密度を示す(矢印が太いほど電流密度が高
い)。
FIG. 2 shows the state of the potential near the 2DEG layer, the direction of the current, and the current density when a voltage of 2 V is applied to the drain of the D-type HEMT according to this embodiment (the source and the gate are 0 V). It is a drawing. In this figure, the curve from the top to the bottom shows the contour lines of the potential, the arrow shows the direction of the current, and the size of the arrow shows the current density (the thicker the arrow, the higher the current density).

【0013】この図から明らかなように、ポテンシャル
は段差部分で乱れ、そこを流れる電流が段差の高い方で
は、2DEG層以外に電子供与層であるn−AlGaA
s層11内にも流れるようになり、一方、段差の低い方
では、ドレイン電極下近傍を除くと2DEG層内のみに
電流が流れることがわかる。
As is clear from this figure, the potential is disturbed at the step portion, and the current flowing therethrough has a high step portion. In addition to the 2DEG layer, the electron donating layer n-AlGaA is also present.
It can be seen that the current also flows in the s-layer 11, and on the other hand, in the one with a lower step, the current flows only in the 2DEG layer except in the vicinity under the drain electrode.

【0014】HEMTにおいては、前記作用中でも述べ
たように、ゲート電極に電圧を印加することにより制御
できるのは、2DEG層内を流れる電流(電流とは逆向
きの電子の流れ)のみで、ゲートおよびソース電極近傍
の不純物濃度が高い第2の化合物半導体層内を流れる電
流は制御することができず、結果的にチャネルとして働
く部分は、2DEG層内のみである。このため、段差が
あることによりチャネルとして働く部分は、段差の低い
方の部分のみとなって、実質的なチャネル長が短くな
り、その動作が速くなる。たとえばソース電極とドレイ
ン電極のほぼ中間地点に段差を形成した場合には、その
チャネル長は、段差のない場合(従来)のソース・ドレ
イン間距離の約半分となって、その動作速度は、遮断周
波数fで比較して約1.8倍向上する。
In the HEMT, as described in the above operation, by applying a voltage to the gate electrode, it is possible to control only the current flowing in the 2DEG layer (the flow of electrons in the opposite direction to the current). The current flowing in the second compound semiconductor layer having a high impurity concentration in the vicinity of the source electrode cannot be controlled, and as a result, the portion acting as a channel is only in the 2DEG layer. Therefore, due to the step, the portion acting as a channel is only the lower step portion, and the substantial channel length is shortened, and the operation becomes faster. For example, if a step is formed at approximately the midpoint between the source electrode and the drain electrode, the channel length will be about half the distance between the source and drain when there is no step (conventional), and the operating speed will be cut off. It is improved by about 1.8 times as compared with the frequency f T.

【0015】次に、図3は、本実施例によるD型HEM
Tのソースに2Vの電圧を印加したとき(ドレインおよ
びゲートは0Vである)の2DEG層付近のポテンシャ
ルの状態と電流の向きおよび電流密度を示す図面であ
る。この図において、ポテンシャルの状態および電流の
向きならびに電流密度は、前記図2と同様に表示されて
いる。
Next, FIG. 3 shows a D-type HEM according to this embodiment.
It is a figure which shows the state of the potential of 2DEG layer vicinity, the direction of current, and current density when a voltage of 2V is applied to the source of T (the drain and the gate are 0V). In this figure, the state of the potential, the direction of the current, and the current density are displayed as in FIG.

【0016】この図から明らかなように、ソース側に電
圧を印加したときもポテンシャルは、段差部分で乱れ、
そこを流れる電流が段差の高い方では、2DEG層以外
にn−AlGaAs層11内にも流れるようになり、一
方、段差の低い方では、ドレイン電極下近傍を除くと2
DEG層内のみに電流が流れることがわかる。
As is apparent from this figure, the potential is disturbed at the step portion even when a voltage is applied to the source side,
The current flowing therethrough has a higher step, and therefore flows into the n-AlGaAs layer 11 as well as the 2DEG layer. On the other hand, the lower step has a current of 2 except the area under the drain electrode.
It can be seen that the current flows only in the DEG layer.

【0017】これにより前記ドレインに電圧を印加した
ときと同様に、段差があることによりチャネルとして働
く部分は、段差の低い方の部分のみとなって、実質的な
チャネル長が短くなるので、その動作が速くなる。これ
は前記同様に、たとえばソース電極とドレイン電極のほ
ぼ中間地点に段差を形成した場合には、そのチャネル長
は、段差のない場合(従来)のソース・ドレイン間距離
の約半分となって、その動作速度は、遮断周波数f
比較して約1.8倍向上する。
As a result, similarly to the case where a voltage is applied to the drain, the portion that acts as a channel due to the step difference is only the lower step portion, and the substantial channel length is shortened. It works faster. This is similar to the above, for example, when a step is formed at approximately the midpoint between the source electrode and the drain electrode, the channel length becomes about half the distance between the source and drain when there is no step (conventional), Its operating speed is improved by about 1.8 times compared with the cutoff frequency f T.

【0018】ここで、本実施例と従来の段差のないHE
MTを比較するために、従来の段差のないHEMTの2
DEG層付近のポテンシャルの状態と電流の向きおよび
電流密度を図4に示す。なお、印加した電圧はドレイン
に2V(ソースおよびゲートは0V)であり、この図に
おいて、ポテンシャルの状態および電流の向きならびに
電流密度は、前記図2と同様に表示されている。
Here, HE having no step difference between the present embodiment and the conventional HE
In order to compare MT, the conventional HEMT without step 2
FIG. 4 shows the state of the potential near the DEG layer, the direction of the current, and the current density. The applied voltage is 2 V at the drain (0 V at the source and the gate), and in this figure, the state of the potential, the direction of the current, and the current density are displayed as in FIG.

【0019】この図からわかるように、段差のない場合
には、ポテンシャルは2DEG層にそって形成されてお
り、流れる電流は、ドレイン電極からソース電極に至る
部分全てに渡って2DEG層内のみである。すなわち、
チャネル長としては、ソースドレイン間の長さとなる。
As can be seen from this figure, when there is no step, the potential is formed along the 2DEG layer, and the flowing current is only in the 2DEG layer over the entire portion from the drain electrode to the source electrode. is there. That is,
The channel length is the length between the source and drain.

【0020】以上説明した本実施例において、2DEG
層内に段差を形成するには、たとえば、第1の化合物半
導体層であるi−GaAs層10に、まず、フォトリソ
グラフィーおよびエッチングによって、段差から低い方
を形成し、その上に、第2の化合物半導体層であるn−
AlGaAs層11をエピタキシャル成長させることに
よって、その界面、すなわち2DEG層に、段差が形成
される。
In this embodiment described above, 2DEG
To form a step in the layer, for example, the i-GaAs layer 10 that is the first compound semiconductor layer is first formed by photolithography and etching to form a lower portion from the step, and then the second step is formed. N- which is a compound semiconductor layer
By epitaxially growing the AlGaAs layer 11, a step is formed at the interface, that is, the 2DEG layer.

【0021】なお、本実施例は、あくまでも本発明を適
応した一実施例であり、D型のものであるが、E型(エ
ンハンスメント型)のものについても同様に実施するこ
とが可能であり、また、その大きさや各層の厚さおよび
段差の程度に付いては、これに限定されるものではな
く、そのHEMTとして必要な特性により適宜調整され
得るものでり、たとえば段差の程度については、10〜
50nm程度とすることが可能で、下限10nmは、現
在のエッチングによる段差形成の程度によるものであ
り、一方、上限50nmを越えると、エピタキシャル成
長時に結晶欠陥が増大するために、これ以上大きな段差
をとることは好ましくないためである。
Although the present embodiment is merely an embodiment to which the present invention is applied and is of D type, it can be similarly applied to E type (enhancement type). Further, the size, the thickness of each layer, and the degree of the step are not limited to this, and can be appropriately adjusted depending on the characteristics required for the HEMT. For example, the degree of the step is 10 ~
The lower limit of 10 nm is due to the degree of step formation by the current etching. On the other hand, when the upper limit of 50 nm is exceeded, crystal defects increase during epitaxial growth, and thus a larger step is taken. This is not preferable.

【0022】[0022]

【発明の効果】以上説明したように、本発明の2DEG
を利用した電界効果トランジスタ(HEMT)は、リソ
グラフィー技術による限界の最小線幅に律則されずに、
実効的なチャネル長を短くすることができ、素子の動作
をより高速化することができる。また、この高速化に伴
なう寄生抵抗の増大も起きない。
As described above, the 2DEG of the present invention
The field effect transistor (HEMT) utilizing the is not restricted by the minimum line width of the lithography technology,
The effective channel length can be shortened, and the operation speed of the device can be further increased. In addition, the parasitic resistance does not increase as the speed increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による一実施例のHEMTの断面図で
ある。
FIG. 1 is a cross-sectional view of an HEMT according to an embodiment of the present invention.

【図2】 この実施例においてドレインに2V印加した
ときの2DEG層付近のポテンシャルの状態、電流の流
れを説明するための図面である。
FIG. 2 is a diagram for explaining a potential state and a current flow near a 2DEG layer when 2 V is applied to the drain in this example.

【図3】 この実施例においてソースに2V印加したと
きの2DEG層付近のポテンシャルの状態、電流の流れ
を説明するための図面である。
FIG. 3 is a drawing for explaining a potential state and a current flow near the 2DEG layer when 2 V is applied to the source in this example.

【図4】 従来のHEMTにおいてドレインに2V印加
したときの2DEG層付近のポテンシャルの状態、電流
の流れを説明するための図面である。
FIG. 4 is a diagram for explaining a potential state and a current flow near a 2DEG layer when 2 V is applied to a drain in a conventional HEMT.

【符号の説明】 10…i−GaAs層、 11…n−
AlGaAs層、12…ソース電極、
13…ドレイン電極、14…ゲート電極、
20…2DEG層。
[Explanation of Codes] 10 ... i-GaAs layer, 11 ... n-
AlGaAs layer, 12 ... Source electrode,
13 ... Drain electrode, 14 ... Gate electrode,
20 ... 2 DEG layers.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1の化合物半導体層と、該第1の化合
物半導体層上に該第1の化合物半導体層と比較して電子
供与物質となる不純物濃度が高い第2の化合物半導体層
が形成され、該第2の化合物半導体層上にソース電極、
ドレイン電極およびゲート電極が設けられた2次元電子
ガス電界効果トランジスタにおいて、 前記ソース電極および前記ドレイン電極の間の前記第1
の化合物半導体層と前記第2の化合物半導体層の接合界
面に段差を有することを特徴とする2次元電子ガス電界
効果トランジスタ。
1. A first compound semiconductor layer, and a second compound semiconductor layer having a higher concentration of impurities serving as an electron donor than the first compound semiconductor layer as compared to the first compound semiconductor layer are formed. A source electrode on the second compound semiconductor layer,
A two-dimensional electron gas field effect transistor provided with a drain electrode and a gate electrode, wherein the first electrode between the source electrode and the drain electrode is provided.
A two-dimensional electron gas field effect transistor having a step at a junction interface between the compound semiconductor layer and the second compound semiconductor layer.
JP5325241A 1993-12-22 1993-12-22 Two-dimensional electron gas field effect transistor Withdrawn JPH07183492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5325241A JPH07183492A (en) 1993-12-22 1993-12-22 Two-dimensional electron gas field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5325241A JPH07183492A (en) 1993-12-22 1993-12-22 Two-dimensional electron gas field effect transistor

Publications (1)

Publication Number Publication Date
JPH07183492A true JPH07183492A (en) 1995-07-21

Family

ID=18174610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5325241A Withdrawn JPH07183492A (en) 1993-12-22 1993-12-22 Two-dimensional electron gas field effect transistor

Country Status (1)

Country Link
JP (1) JPH07183492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210836A (en) * 2007-02-23 2008-09-11 Sanken Electric Co Ltd Field effect semiconductor device and its fabrication process
US9685549B2 (en) 2011-07-12 2017-06-20 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor device and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210836A (en) * 2007-02-23 2008-09-11 Sanken Electric Co Ltd Field effect semiconductor device and its fabrication process
US9685549B2 (en) 2011-07-12 2017-06-20 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor device and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6548333B2 (en) Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
JP2528537B2 (en) Field effect transistor
JPH07335867A (en) Field-effect transistor
JP2020523781A (en) Enhancement-mode GaN transistor using selective and non-selective etching layers to improve GaN spacer thickness uniformity
JP3376078B2 (en) High electron mobility transistor
US5448086A (en) Field effect transistor
US5397907A (en) Field effect transistor and fabricating method thereof
KR100548047B1 (en) Field Effect Transistor
JPH07273310A (en) Resonance tunnelling fet and its preparation
JPH07183492A (en) Two-dimensional electron gas field effect transistor
JPH11220121A (en) Heterojunction field-effect transistor
JP2970783B2 (en) High electron mobility transistor and manufacturing method thereof
KR940010557B1 (en) Semiconductor device
KR102055945B1 (en) Tunnel field-effect transistor of 3 dimension structure and method of manufacturing the same
JP2894801B2 (en) Semiconductor transistor and method of manufacturing the same
JP2708492B2 (en) Method for manufacturing semiconductor device
JP2655594B2 (en) Integrated semiconductor device
JPH06163602A (en) High-electron-mobility transistor and its manufacture
JPH03165576A (en) Quantum fine line semiconductor device and manufacture thereof
JP3410909B2 (en) Semiconductor device
JPS62209864A (en) Semiconductor device
JPH04199644A (en) Semiconductor device
JPS61102069A (en) Field-effect transistor
JPH05102192A (en) Field-effect transistor
JPH09102509A (en) Field effect type transistor and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306