JPH07183215A - Projection exposure method and device therefor - Google Patents

Projection exposure method and device therefor

Info

Publication number
JPH07183215A
JPH07183215A JP6243670A JP24367094A JPH07183215A JP H07183215 A JPH07183215 A JP H07183215A JP 6243670 A JP6243670 A JP 6243670A JP 24367094 A JP24367094 A JP 24367094A JP H07183215 A JPH07183215 A JP H07183215A
Authority
JP
Japan
Prior art keywords
pattern
exposure
wavelength
light
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6243670A
Other languages
Japanese (ja)
Other versions
JP2576798B2 (en
Inventor
Hiroshi Fukuda
宏 福田
Norio Hasegawa
昇雄 長谷川
Toshihiko Tanaka
稔彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6243670A priority Critical patent/JP2576798B2/en
Publication of JPH07183215A publication Critical patent/JPH07183215A/en
Application granted granted Critical
Publication of JP2576798B2 publication Critical patent/JP2576798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70325Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses
    • G03F7/70333Focus drilling, i.e. increase in depth of focus for exposure by modulating focus during exposure [FLEX]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To ensure both of high resolving power and sufficient focal depth to a pattern, e.g. a contact hole, etc., by a method wherein the changing step of image-forming position for a substrate as well as the changing step of exposure energy in respective image-forming positions are included in the projection exposure step. CONSTITUTION:A mask 7 is illuminated with a beam of light from light sources 1-4 so as to transfer a pattern on the mask 7 to a substrate through the intermediary of a projection optical system 8. At this time, a changing step of image- forming position for a substrate as well as the changing step of exposure energy in respective image-forming positions are included in the projection exposure step. For example, the changing step of the image-forming positions is composed of the changing step of the beam from the light sources 1-4. Furthermore, the changing step of exposure energy wherein the beam used for pattern exposure is pulse-oscillated excimer laser beam is composed of the narrowing step of the oscillation wavelength and the changing step of pulse numbers corresponding to the narrowed wavelength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素素子,磁気バ
ブル素子,超電導素子等の固体素子における微細加工に
用いられる縮小投影露光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reduction projection exposure apparatus used for fine processing of solid state elements such as semiconductor element elements, magnetic bubble elements and superconducting elements.

【0002】[0002]

【従来の技術】従来、LSI等の固体素子における微細
パターンは主に微小投影露光法を用いた形成されてき
た。上記方法は、マスクパターンを投影レンズを用い
て、レジストを塗布した基板上に結像させることにより
転写するものである。縮小投影露光法における限界解像
度は露光波長に比例し、又投影レンズの開口数に反比例
するので、露光光の短波長化と投影レンズの高開口数化
により、その解像度の向上が推進されてきた。一方、投
影レンズの焦点深度は露光波長に比例し、投影レンズの
開口数に反比例する。このため上記解像度の向上を計る
ことにより焦点深度は急激に減少してきている。即ち、
上記従来法では、パターンの微細化と十分な焦点深度の
確保を両立させるのは困難で、特に高解像度をねらった
場合、焦点深度は非常に浅くなる。なお、投影露光法に
関しては、例えば、半導体リソグラフィ技術、風絋一
郎,産業図界 第4章 第87頁より第93頁に論じら
れている。
2. Description of the Related Art Conventionally, a fine pattern in a solid-state element such as an LSI has been formed mainly by using a fine projection exposure method. In the above method, the mask pattern is transferred by forming an image on a resist-coated substrate using a projection lens. Since the limiting resolution in the reduced projection exposure method is proportional to the exposure wavelength and inversely proportional to the numerical aperture of the projection lens, improvement of the resolution has been promoted by shortening the wavelength of the exposure light and increasing the numerical aperture of the projection lens. . On the other hand, the depth of focus of the projection lens is proportional to the exposure wavelength and inversely proportional to the numerical aperture of the projection lens. For this reason, the depth of focus has been drastically reduced by improving the resolution. That is,
In the above-mentioned conventional method, it is difficult to make the pattern finer and secure a sufficient depth of focus at the same time, and the depth of focus becomes extremely shallow especially when aiming for high resolution. Note that the projection exposure method is discussed in, for example, semiconductor lithography technology, Fichiro Ichiro, Industrial Graphics, Chapter 4, pages 87 to 93.

【0003】[0003]

【発明が解決しようとする課題】LSIの高集積化とと
もに、素子の微細化と立体化が同時に進み、表面に大き
な凹凸段差構造を有する基板上に微細なパターンを形成
する必要が益々強くなってきた。しかし、前述のごとく
現状の縮小投影露光法では解像限界を上げると焦点深度
が浅くなってしまう。このため、基板表面を全露光領域
にわたり上記焦点深度内に納め、微細パターンを解像さ
せるのが困難となってきた。特にコンタクトホールの形
成においては、その焦点深度がもともと小さいことに加
えて、一般にかなりの表面段差が素子上に生じた後に行
なわれることが多いので、焦点深度の不足は深刻であ
る。
With the high integration of LSIs, the miniaturization and three-dimensionalization of elements have progressed at the same time, and the need to form fine patterns on a substrate having a large uneven step structure on the surface has become even stronger. It was However, as described above, in the current reduction projection exposure method, if the resolution limit is raised, the depth of focus becomes shallow. For this reason, it has become difficult to keep the surface of the substrate within the depth of focus over the entire exposure region and resolve the fine pattern. In particular, in forming a contact hole, the depth of focus is originally small, and in general, it is often performed after a considerable surface step is formed on the element. Therefore, the shortage of the depth of focus is serious.

【0004】本発明の目的は、短い露光波長と大きな開
口数を有する光学系を用いて、平坦面上の一般的な微細
パターンに対して高い解像度を確保する一方で、特に上
記のコンタクトホール等のパターンに対して高い解像度
と十分な焦点深度の両方を確保することのできる投影露
光装置を提供することにある。
An object of the present invention is to secure high resolution for a general fine pattern on a flat surface by using an optical system having a short exposure wavelength and a large numerical aperture, and in particular, the above contact holes and the like. It is an object of the present invention to provide a projection exposure apparatus capable of ensuring both a high resolution and a sufficient depth of focus for a pattern.

【0005】[0005]

【課題を解決するための手段】上記目的は、縮小投影露
光装置において、その露光に関与する光の光強度の波長
依存性、特にその波長帯域巾を可変とする手段と、上記
波長帯域巾に広じた光軸方向の一定距離内にマスクパタ
ーンを連続的に結像させることのできる投影露光手段を
設けることにより達成される。
SUMMARY OF THE INVENTION In the reduction projection exposure apparatus, the above-mentioned object is to provide a means for varying the wavelength dependence of the light intensity of the light involved in the exposure, particularly the wavelength bandwidth, and the above-mentioned wavelength bandwidth. This is achieved by providing projection exposure means capable of continuously forming an image of the mask pattern within a wide distance that is constant in the optical axis direction.

【0006】[0006]

【作用】本発明者の検討によれば、穴パターンの様な透
光部の割合の小さな孤立パターンの焦点深度は、上記パ
ターンを光軸方向に連続的に結像させることにより実効
的に増大する。一方、異なる波長の光を用いて露光を行
なうと、投影レンズの色収差によりマスクパターンは波
長に応じて異なる位置に結像する。このため、比較的広
い波長帯域の光を用いて露光することにより、マスクパ
ターンを光軸方向に連続的に結像させることができる。
従って、露光々の波長帯域を広くすることにより、穴パ
ターンの様な透光部の割合の小さな孤立パターンの焦点
深度を実効的に深くすることができるのである。
According to the study by the present inventor, the depth of focus of an isolated pattern such as a hole pattern having a small proportion of light-transmitting portions is effectively increased by continuously forming the image in the optical axis direction. To do. On the other hand, when exposure is performed using light having different wavelengths, the mask pattern is imaged at different positions depending on the wavelength due to chromatic aberration of the projection lens. Therefore, the mask pattern can be continuously imaged in the optical axis direction by performing exposure using light in a relatively wide wavelength band.
Therefore, by widening the wavelength band for each exposure, it is possible to effectively increase the depth of focus of an isolated pattern such as a hole pattern having a small proportion of transparent portions.

【0007】しかしながら、ライン・アンド・スペース
パターンの様な透光部の割合の比較的大きなパターンで
は波長帯域を広くすると、周知の様に色収差による光強
度コントラストの低下が生じる。このため、これら透光
部の割合の大きなパターンに対しては波長帯域巾を狭く
して、色収差を十分に低減しなければならない。
However, when the wavelength band is widened in a pattern having a relatively large light-transmitting portion such as a line-and-space pattern, the light intensity contrast is lowered due to chromatic aberration, as is well known. For this reason, it is necessary to narrow the wavelength band width for patterns having a large proportion of these light transmitting portions to sufficiently reduce chromatic aberration.

【0008】本発明による露光装置は、その露光に関与
する光の光強度の波長依存性を可変とする手段により露
光々の波長帯域巾を変更できるため、穴パターン等透光
部の割合の小さな孤立パターンに対しては、比較的広い
波長帯域巾を設定して露光を行ない、一方、ラインアン
ドスペースパターン等の透光部の割合が比較的大きなパ
ターンに対しては、十分に狭い帯域の光を用いて露光を
行なうことができる。これにより、大きな開口数と短波
長露光光を用いて、平坦面における微細パターンの形成
ができる一方で、表面に大きな段差を有する基板上にも
十分な焦点深度をもって穴パターンを形成することが可
能となる。
In the exposure apparatus according to the present invention, since the wavelength band width of each exposure can be changed by the means for varying the wavelength dependence of the light intensity of the light involved in the exposure, the proportion of the light transmitting portion such as the hole pattern is small. For an isolated pattern, a relatively wide wavelength band is set for exposure, while for a pattern with a relatively large light-transmitting portion such as a line-and-space pattern, a light with a sufficiently narrow band is used. Can be used for exposure. This makes it possible to form a fine pattern on a flat surface using a large numerical aperture and short wavelength exposure light, while forming a hole pattern with a sufficient depth of focus even on a substrate having a large step on the surface. Becomes

【0009】次に、穴パターンの焦点深度が、上記パタ
ーンを光軸方向に連続的に結像させることにより増大す
ることを示す。
Next, it is shown that the depth of focus of the hole pattern is increased by continuously imaging the pattern in the optical axis direction.

【0010】Z軸を光軸とする直交座標系において、Z
=0に結像する穴パターンの光強度分関数をi(x,
y,z)とする。図3(a)にi(x,y,z)の計算
例を示す。但し、計算例は、krF エキシマレーザ光
により開口数0.4の投影レンズを用いて露光した0.3
μm角のコンタクトホールに対するものである。いま、
上記パターンが同一光軸上のZ=−∞より+∞に一様に
結像したとすると、このときの光強度分布関数I(x,
y,z)は
In an orthogonal coordinate system having the Z axis as the optical axis, Z
The light intensity function of the hole pattern that forms an image at = 0 is i (x,
y, z). FIG. 3A shows an example of calculating i (x, y, z). However, the calculation example is 0.3 exposed by a projection lens with a numerical aperture of 0.4 by a KrF excimer laser beam.
This is for a μm square contact hole. Now
Assuming that the pattern is uniformly imaged at + ∞ from Z = −∞ on the same optical axis, the light intensity distribution function I (x,
y, z) is

【0011】[0011]

【数1】 [Equation 1]

【0012】となり、光軸方向位置zによらない。とこ
ろで、図3(a)よりわかる様に、z<−3μm,3μ
m<zに対してi(xyz)とみなせる。従って、
Therefore, it does not depend on the position z in the optical axis direction. By the way, as can be seen from FIG. 3A, z <−3 μm, 3 μ
It can be regarded that i (xyz) ~ for m <z. Therefore,

【0013】[0013]

【数2】 [Equation 2]

【0014】数値計算のために離散化して、Discretization for numerical calculation,

【0015】[0015]

【数3】 [Equation 3]

【0016】但し、ΔZ=0.25μm 図3(b)に上式により求めたI(x,y,z)を示
す。但し光強度(縦方向)の縮尺は、図3(a)のもの
より変更してある。図3(a)と図3(b)を比較して
わかる様に、連続的に結像しても像質は変化なく、しか
も原理的には焦点深度を限りなく大きくすることができ
る。
However, ΔZ = 0.25 μm FIG. 3B shows I (x, y, z) obtained by the above equation. However, the scale of the light intensity (vertical direction) is changed from that shown in FIG. As can be seen by comparing FIG. 3A and FIG. 3B, the image quality does not change even if images are continuously formed, and in principle, the depth of focus can be increased to an unlimited extent.

【0017】[0017]

【実施例】【Example】

(実施例1)以下、本発明の一実施例を図面とともに説
明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0018】図1は、本発明の一実施例による縮小投影
露光装置の構成図である。本装置は、反射鏡1,波長帯
域設定装置2,エキシマレーザ共振器3,ミラー5,照
明光学系6,レチクル7,投影レンズ8,基板ステージ
9,制御コンピュータ10その他縮小投影露光装置に必
要な各種要素より構成されている。
FIG. 1 is a block diagram of a reduction projection exposure apparatus according to an embodiment of the present invention. This apparatus is required for a reflecting mirror 1, a wavelength band setting apparatus 2, an excimer laser resonator 3, a mirror 5, an illumination optical system 6, a reticle 7, a projection lens 8, a substrate stage 9, a control computer 10 and other reduction projection exposure apparatus. It is composed of various elements.

【0019】波長帯域設定装置2はQ値の異なる複数の
エタロンを有し、その内の任意の1コをレーザ光路へ挿
入できる様になっている。従って、許容の範囲内で所望
の波長帯域に対応するQ値を有するエタロンを選び、こ
れをレーザ光路中へ挿入することにより露光波長帯域を
任意に設定することができる。この露光波長帯域の指定
は、露光装置の制御コンピュータ10への入力によりな
され、このデータに基づき、波長帯域設定装置2はエタ
ロンの選択及び挿入を自動的に行なう。
The wavelength band setting device 2 has a plurality of etalons having different Q values, and any one of them can be inserted into the laser optical path. Therefore, the exposure wavelength band can be arbitrarily set by selecting an etalon having a Q value corresponding to a desired wavelength band within the allowable range and inserting it into the laser optical path. The designation of the exposure wavelength band is made by an input to the control computer 10 of the exposure apparatus, and the wavelength band setting apparatus 2 automatically selects and inserts the etalon based on this data.

【0020】なお、図1では、波長帯域設定装置2はレ
ーザ共振器3の外に設置されているが、実際にはこの方
法に限らない。即ち、波長帯域設定装置2をレーザ共振
器3の中へ挿入したり、又は両者を一体化する等の方法
をもとることできる。又、Q値の異なるエタロンの代り
に、例えばグレーティングを用いてもよい。この場合、
比較的狭い帯域巾は高いQ値を有するエタロンにより、
又比較的広い帯域巾はグレーティングにより設定するの
が好ましい。
Although the wavelength band setting device 2 is installed outside the laser resonator 3 in FIG. 1, it is not limited to this method in practice. That is, it is possible to adopt a method of inserting the wavelength band setting device 2 into the laser resonator 3 or integrating the both. Also, for example, a grating may be used instead of the etalon having a different Q value. in this case,
The relatively narrow bandwidth is due to the etalon with high Q
Further, it is preferable that the relatively wide bandwidth is set by the grating.

【0021】次に、本装置を用いて、レチクル7上のパ
ターンを基板スタージ9上に固定されたレジストを塗布
した基板へ投影露光した後、現像してレジストパターン
を形成した。エキシマレーザ共振器3の励起ガスにはK
rFを用いた。波長帯域設定装置2による帯域の制御を
行なわない場合のレーザの波長帯域巾は約0.5nmで
あった。
Next, by using this apparatus, the pattern on the reticle 7 was projected and exposed onto the substrate coated with the resist fixed on the substrate sturgi 9, and then developed to form a resist pattern. K is used as the excitation gas for the excimer laser resonator 3.
rF was used. The wavelength band width of the laser when the band was not controlled by the wavelength band setting device 2 was about 0.5 nm.

【0022】まず、波長帯域設定装置2により露光波長
帯域巾を約0.003nmに設定した。用いた投影レン
ズに対して、この帯域巾による色収差は非常に小さく、
実用上無視できるレベルにある。基板の表面配置を光軸
方向にいろいろに設定して露光を行ない、様々な微細パ
ターンの解像する光軸方向の範囲、独ち該パターンに対
する焦点深度をしらべた。又、同時に表面が平坦な基板
と、表面に様々な凹凸段差を有する基板を用いて、被露
光領域全面でのパターン解像の均一性をしらべた。その
結果、直径0.3μm及び0.5μmの穴パターンが、各
々焦点深度1μm及び2μmで解像した。又、0.3μ
m及び0.5μmのライン・アンド・スペースパタン
が、各々焦点深度約1.5μm及び2.5μmで解像し
た。又、基板表面が極めて平坦な場合でも、投影レンズ
の像面歪曲の影響で直径0.3μmの穴パターンを被露
光領域の全面に解像させるのは困難だった。又、その他
の上記パターンも基板表面の凹凸が増大するにつれ、全
面に解像するのが困難となった。
First, the exposure wavelength band width was set to about 0.003 nm by the wavelength band setting device 2. For the projection lens used, the chromatic aberration due to this bandwidth is very small,
It is at a level that can be practically ignored. The surface arrangement of the substrate was variously set in the optical axis direction to perform exposure, and the range of the optical axis direction in which various fine patterns were resolved, and the depth of focus for the pattern were investigated. At the same time, using a substrate having a flat surface and a substrate having various uneven steps on the surface, the uniformity of pattern resolution over the entire exposed region was examined. As a result, hole patterns with diameters of 0.3 μm and 0.5 μm were resolved at focal depths of 1 μm and 2 μm, respectively. Also, 0.3μ
Line and space patterns of m and 0.5 μm resolved at depths of focus of about 1.5 μm and 2.5 μm, respectively. Even when the substrate surface is extremely flat, it was difficult to resolve a hole pattern having a diameter of 0.3 μm over the entire exposed area due to the influence of image plane distortion of the projection lens. In addition, as for the other patterns described above, it became difficult to resolve the entire surface as the unevenness of the substrate surface increased.

【0023】次に、波長帯域設定装置2により露光波長
帯域巾を約0.1μmに変更して、同様のパタン形成を
試みた。用いた投影レンズの設定データによれば上記の
帯城巾に対して、上記パターンはレンズの色収差により
光軸方向の約10μmにわたり連続的に結像する。その
結果、ライン・アンド・スペースパターンに関しては、
全く解像させることができなくなったが、一方、直径
0.3μm及び0.5μmの穴パターンの焦点深度は各々
約8μmに増大した。これにより、基板表面が大きく凹
凸状を呈している場合にも、被露光領域の全面に上記穴
パターンを形成することができる様になった。
Next, the wavelength band setting device 2 was used to change the exposure wavelength band width to about 0.1 μm, and an attempt was made to form a similar pattern. According to the setting data of the projection lens used, the pattern is continuously imaged over about 10 μm in the optical axis direction with respect to the above band width due to the chromatic aberration of the lens. As a result, regarding the line and space pattern,
No resolution was possible at all, while the depths of focus of the 0.3 μm and 0.5 μm diameter hole patterns were increased to about 8 μm, respectively. This makes it possible to form the hole pattern on the entire surface of the exposed region even when the substrate surface has a large unevenness.

【0024】(実施例2)図2は、本発明の別の実施例
の構成図である。本装置では、第1実施例における波長
帯域設定装置に代えて、波長スキャン装置12が設けら
れている。
(Embodiment 2) FIG. 2 is a block diagram of another embodiment of the present invention. In this device, a wavelength scanning device 12 is provided instead of the wavelength band setting device in the first embodiment.

【0025】波長スキャン装置12は、エタロンとその
レーザ光束に対する角度を制御する機構より構成され、
レーザ光の波長帯域を約0.003nm程度に狭帯域化
するとともに、上記角度を変えることで上記帯域の中心
波長を変化させる。従って、露光中にエタロンの角度を
変化させ、露光波長をスキャンすることにより、マスク
パターンの結像位置を光軸方向へ移動させることができ
る。又、制御コンピュータによりエキシマレーザのパル
ス発振とエタロンの角度設定のタイミングを、あらかじ
め指定した様に同期させることができるので、上記スキ
ャン範囲内の各波長に対して任意の露光量を用いて露光
を行なうことができる。
The wavelength scanning device 12 is composed of an etalon and a mechanism for controlling the angle of the etalon with respect to the laser beam.
The wavelength band of the laser light is narrowed to about 0.003 nm, and the central wavelength of the band is changed by changing the angle. Therefore, the image forming position of the mask pattern can be moved in the optical axis direction by changing the angle of the etalon during exposure and scanning the exposure wavelength. In addition, the control computer can synchronize the pulse oscillation of the excimer laser and the timing of the etalon angle setting as specified in advance, so that exposure can be performed using any exposure amount for each wavelength within the above scan range. Can be done.

【0026】なお、上記中心波長を変化させる手段とし
てはエタロンのレーザ光束に対する角度を変化させる他
に、エタロンを構成する2枚の平面板の間隔を変化させ
る、又は2枚の平面板の間に密閉した気体の圧力や種類
を変える等の公知の手段を用いてもよい。
As means for changing the central wavelength, in addition to changing the angle of the etalon with respect to the laser beam, the distance between the two flat plates constituting the etalon is changed, or the two flat plates are hermetically sealed. Known means such as changing the pressure or type of gas may be used.

【0027】本装置を用いて実際にパターンを形成し、
第1実施例同様の効果を確認した。
A pattern is actually formed using this apparatus,
The same effect as the first embodiment was confirmed.

【0028】次に、本発明のさらに他の実施例について
説明する。
Next, another embodiment of the present invention will be described.

【0029】本発明者の検討によれば、微細パターンの
焦点深度は、同一光軸上で光軸方向に結像位置が連続的
に変化する像を重ね合せることで実効的に増大する。
According to a study by the present inventor, the depth of focus of a fine pattern is effectively increased by superimposing images whose image forming positions continuously change in the optical axis direction on the same optical axis.

【0030】上記方法は、比較的広い帯域の光を用いて
マスクパターンを基板上へ投影露光し、上記マスクパタ
ーンを、上記波長帯域に対応する色収差の範囲内で光軸
方向に連続的に結像させることにより、実現される。
In the above method, the mask pattern is projected and exposed onto the substrate by using light in a relatively wide band, and the mask pattern is continuously connected in the optical axis direction within the range of chromatic aberration corresponding to the wavelength band. It is realized by making an image.

【0031】本方法は、光透過部の割合の大きな密集パ
ターンでは像コントラストの低下を招き好ましくない
が、光透過部の割合の小さな孤立穴パターン等において
は著しい効果を有する。
This method is not preferable because it causes a decrease in image contrast in a dense pattern having a large proportion of light transmitting portions, but has a remarkable effect in an isolated hole pattern having a small proportion of light transmitting portions.

【0032】本発明の効果を示すために、まず結像位置
が光軸方向上連続的に変化する像を重ね合せたときの像
の光強度分布について論じる。
In order to show the effect of the present invention, first, the light intensity distribution of images when the images whose image forming positions continuously change in the optical axis direction are superimposed will be discussed.

【0033】Z軸を光軸方向とする直交座標系におい
て、平面Z=0を結像面とする像の3次元的光強度分布
面数を、i(x,y,z)とする。この像を同一光軸上
の位置Z=−LからZ=Lまで連続的に結像させたとき
の合成像の光強度分布関数I(x,y,z)は
In a Cartesian coordinate system with the Z axis as the optical axis direction, the number of three-dimensional light intensity distribution planes of an image having the plane Z = 0 as the image plane is i (x, y, z). The light intensity distribution function I (x, y, z) of the composite image when this image is continuously formed from positions Z = -L to Z = L on the same optical axis is

【0034】[0034]

【数4】 [Equation 4]

【0035】と表わされる。但し、ここにw(l)はZ
=lに結像する像のZ=0に結像する像に対する相対強
度比である。簡単のため、この相対強度比を全て1と仮
定し、積分を 散化すると、
It is represented as follows. Where w (l) is Z
Is the relative intensity ratio of the image formed at = 1 to the image formed at Z = 0. For simplicity, assuming that this relative intensity ratio is all 1 and scattering the integral,

【0036】[0036]

【数5】 [Equation 5]

【0037】但しHowever,

【0038】[0038]

【数6】 [Equation 6]

【0039】を得る。図4に、N=8,Δl=0.25
μmとしたときの式の右辺各項、及び左辺の計算結果
を示す。但し、光強度の縮尺は適当に調整してある。な
お、計算はkrF エキシマレーザ光により開口数0.
4の投影レンズを用いて露光した0.3μm角のコンタ
クトホールに対するものである。I(x,y,z)とi
(x,y,z)の比較から、上記の重ね合せにより良好
な光強度分布の得られる光軸方向の範囲、即ち、焦点深
度は約70%増大していることがわかる。
To obtain In FIG. 4, N = 8, Δl = 0.25
The calculation results of each term on the right side and the left side of the equation when μm is shown. However, the scale of the light intensity is appropriately adjusted. Note that the numerical aperture was calculated by using a KrF excimer laser beam.
This is for a contact hole of 0.3 μm square exposed using the projection lens of No. 4. I (x, y, z) and i
From the comparison of (x, y, z), it can be seen that the range in the optical axis direction where a good light intensity distribution can be obtained by the superposition, that is, the depth of focus is increased by about 70%.

【0040】焦点深度は、一般にNの種をより大きくす
るとさらに増大するが、これに伴なう像の劣化が懸念さ
れる。そこで、Nの値を増大したときのZ=0における
光強度分布に注目する。ところで、Z<−8・Δl,8
・Δl<zに対して、i(x,y,z)0、とみなせ
ることから、上記光強度分布は、
The depth of focus generally increases as the number of N species increases, but there is a concern that the image may be deteriorated. Therefore, attention is paid to the light intensity distribution at Z = 0 when the value of N is increased. By the way, Z <-8 · Δl, 8
-For Δl <z, it can be regarded as i (x, y, z) ~ 0, so the above light intensity distribution is

【0041】[0041]

【数7】 [Equation 7]

【0042】即ち、8以上のNの値を用いても、得られ
る光強度分布はNが8の場合のものとはほとんど変わら
ない。これは、デフォーカスが増大するにつれ光強度分
布が0に近づくコンタクトホール等で代表される光透過
部の割合の小さな孤立パターンに特有の現象である。従
って上記パターンに対しては、Nを増大し、連続的に結
像させる範囲を大きくすることにより、像質を劣化させ
ることなく、焦点深度だけを原理的にはいくらでも増大
させることができる。
That is, even if the value of N is 8 or more, the obtained light intensity distribution is almost the same as that when N is 8. This is a phenomenon peculiar to an isolated pattern in which the light intensity distribution approaches 0 as the defocus increases and a small proportion of the light transmitting portion is represented by a contact hole or the like. Therefore, for the above pattern, by increasing N and enlarging the range of continuous image formation, it is possible in principle to increase only the depth of focus without degrading the image quality.

【0043】有限の波長帯域を有する露光々と上記波長
帯域に対して像点色消しを成されていない投影レンズと
を用いて投影露光を行なうことにより、同一マスクパタ
ーンを光軸方向に連続的に結像させることができる。即
ち、色収差により上記帯域内の各波長による結像位置が
異なるため、結像面を光軸方向に連続的に分布させるこ
とができるのである。この際、上記帯域内における波長
の変化により結像面が光軸方向にシフトしたとき、結像
倍率,像面湾曲,像歪の変動は一定の許容範囲内に保た
れていなければならない。
By carrying out projection exposure using exposures having a finite wavelength band and a projection lens which is not image-point achromatic with respect to the wavelength band, the same mask pattern is continuously formed in the optical axis direction. Can be imaged on. That is, since the image forming positions of the respective wavelengths in the band differ due to chromatic aberration, the image forming surface can be continuously distributed in the optical axis direction. At this time, when the image forming surface is shifted in the optical axis direction due to the change of the wavelength within the band, the fluctuations of the image forming magnification, the field curvature, and the image distortion must be kept within a certain allowable range.

【0044】又、一般に光強度は帯域内で波長に依存し
て変化するため、結像位置により像の光強度は異なる。
ところで、狭い波長範囲を考えると、波長と結像位置の
関係は一般に一次式で表わすことができるので、式の
w(l)を露光に関与する光の光強度波長依存性(波長
スペクトル)と同等のものと考えることができる。光軸
方向の像の一様性を得るためには、w(l)を1とみな
せるのが望ましいことはいうまでもない。従って、露光
に関与する光の波長スペクトルは、前記帯域内でのみ一
定の光強度を有する矩形型又は台形型であることが好ま
しい。
Further, since the light intensity generally changes within the band depending on the wavelength, the light intensity of the image differs depending on the image forming position.
By the way, considering a narrow wavelength range, the relationship between the wavelength and the image forming position can be generally expressed by a linear expression. Therefore, w (l) in the expression is defined as the light intensity wavelength dependence (wavelength spectrum) of light involved in exposure. Can be considered equivalent. Needless to say, it is desirable that w (l) can be regarded as 1 in order to obtain the uniformity of the image in the optical axis direction. Therefore, it is preferable that the wavelength spectrum of the light involved in the exposure is a rectangular type or a trapezoidal type having a constant light intensity only within the band.

【0045】(実施例3)波長帯域巾0.1nmに狭帯
域化されたkrFエキシマレーザ光を用いてマスクパタ
ーンを基板上に塗布したレジスト膜へ転写した後、現像
を行ないレジストパターンを形成した。投影レンズの設
計データによれば、図5に示したごとく、上記波長帯域
に対応してマスクパターンは光軸方向に約10μmにわ
たり連続的に結像する。
(Example 3) A mask pattern was transferred to a resist film coated on a substrate by using a KrF excimer laser beam narrowed to a wavelength band of 0.1 nm, and then developed to form a resist pattern. . According to the design data of the projection lens, as shown in FIG. 5, the mask pattern is continuously imaged for about 10 μm in the optical axis direction corresponding to the wavelength band.

【0046】上記結像位置に含む範囲内で、レジストを
塗布した基板の表面位置を光軸方向にいろいろに設定し
て露光を行ない、パターンが解像する範囲をしらべた。
評価に用いたパターンは0.3μm角の穴パターンであ
る。その結像、上記パターンの解像する基板表面位置の
光軸方向範囲、すなわち実効的な焦点深度は約8μmで
あることがわかった。一方、色収差が無視できるだけ十
分に狭帯域化された光を用いて露光する従来法では、上
記パターンの焦点深度は約1μmにすぎなかった。実際
のLSIでは表面に凹凸段差がある。凹凸段差にかかわ
らず、露光領域の全面に上記パターンを解像させるため
には、最低2μmの焦点深度が必要である。従って、従
来法では、上記パターンを実際のLSIに適用するのは
困難であったが、本方法を用いることにより、これが可
能となった。
Within the range including the above-mentioned image forming position, the surface position of the substrate coated with the resist was variously set in the optical axis direction for exposure, and the range in which the pattern was resolved was examined.
The pattern used for evaluation is a 0.3 μm square hole pattern. It was found that the image formation, the range in the optical axis direction of the substrate surface position where the pattern is resolved, that is, the effective depth of focus is about 8 μm. On the other hand, in the conventional method in which light is exposed using light whose band is narrowed enough to ignore chromatic aberration, the depth of focus of the pattern was only about 1 μm. In an actual LSI, there are uneven steps on the surface. A minimum depth of focus of 2 μm is required in order to resolve the above pattern on the entire surface of the exposure area regardless of the unevenness. Therefore, in the conventional method, it was difficult to apply the above pattern to an actual LSI, but by using this method, this is possible.

【0047】なお、本実施例で用いた投影露光装置の投
影レンズは、合成石英の単一材料よりなる単色レンズで
あった。このため、露光波長、即ち結像位置により、若
干の結像倍率の変化がみられ、光軸方向に基板表面位置
が異なると、露光領域の周辺部でパターンの位置ずれが
発生した。これは、本発明の意とするところの効果では
なく、本来は極力抑制されなければならない。従って、
投影レンズには、露光波長を変化させたとき倍率、像面
歪、像面湾曲等の変動を一定の許容範囲内に保ったまま
で、結像面を光軸方向にシフトすることができる様に設
定されたものを用いるべきである。又、露光に用いる光
源、露光々の波長帯域巾は本実施例に示したものに限ら
ず用いることができる。但し上記波長帯域巾は、該帯域
巾に対応してマスクパターンが連続的に結像する光軸上
の距離が0.5×(λ/NA2)(但し、λは露光に寄与
する光の中心波長、NAは露光に用いる投影レンズの開
口数)以上である様に設定されることが望ましい。なぜ
ならば、上記距離が、0.5×(λ/NA2)未満の場
合、焦点深度増大の効果が殆ど望めないからである。
The projection lens of the projection exposure apparatus used in this example was a monochromatic lens made of a single material of synthetic quartz. For this reason, a slight change in the imaging magnification was observed depending on the exposure wavelength, that is, the image forming position, and when the substrate surface position was different in the optical axis direction, pattern displacement occurred in the peripheral portion of the exposure area. This is not the effect intended by the present invention and should be suppressed as much as possible. Therefore,
The projection lens is designed so that the image plane can be shifted in the optical axis direction while keeping fluctuations in magnification, image plane distortion, field curvature, etc. within a certain allowable range when the exposure wavelength is changed. You should use the configured one. Further, the light source used for exposure and the wavelength band width of each exposure are not limited to those shown in this embodiment, and can be used. However, the above wavelength band width is such that the distance on the optical axis at which the mask pattern is continuously imaged corresponding to the band width is 0.5 × (λ / NA 2 ) (where λ is the light that contributes to exposure). The central wavelength and NA are preferably set to be equal to or larger than the numerical aperture of the projection lens used for exposure. This is because if the distance is less than 0.5 × (λ / NA 2 ), the effect of increasing the depth of focus can hardly be expected.

【0048】(実施例4)次に本発明の別の実施例を示
す。
(Embodiment 4) Next, another embodiment of the present invention will be described.

【0049】KrF エキシマレーザ光を、エタロンを
用いて波長帯域巾0.0025nmに狭帯域化し、かつ
エタロン角度を変化させることにより、その中心波長を
248.3nmより248.35nmまで0.0025n
mずつシフトさせ94パルス分露光した。この際、露光
に寄与する光の光強度の波長依存性を図6に示すごとく
設定すべく、上記シフトされた各波長毎のパルス数を図
7の様に変化させた。Xを用いた投影レンズと評価した
パターン及び評価方法は第1実施例と共通である。
The KrF excimer laser light is narrowed to a wavelength band of 0.0025 nm by using an etalon, and the etalon angle is changed so that the central wavelength of the KrF excimer laser light is 0.0025 n from 248.3 nm to 248.35 nm.
It was shifted by m and exposed for 94 pulses. At this time, in order to set the wavelength dependence of the light intensity of the light contributing to exposure as shown in FIG. 6, the number of pulses for each shifted wavelength was changed as shown in FIG. The projection lens using X, the evaluated pattern, and the evaluation method are the same as in the first embodiment.

【0050】本実施例により0.3μm角の穴パターン
を、約4μmの焦点深度をもって解像することができ
た。従って下記パターン形成方法が可能である。
According to this embodiment, a hole pattern of 0.3 μm square can be resolved with a depth of focus of about 4 μm. Therefore, the following pattern forming method is possible.

【0051】(1)所望の形状を有するマスクパターン
を介してレジスト膜へ縮小投影露光する工程と、上記レ
ジスト膜を現像する工程を含み、上記縮小投影露光が、
開口数NAの投影レンズを用いて中心波長λの光により
行なわれるパターン形成方法において、前記マスクパタ
ーンの光軸上の結像位置が、中心波長λに対する結像位
置を中心に少なくとも−0.5(λ/NA2)から0.5
(λ/NA2)の範囲にわたって連続的に分布すること
を特徴とするパターン形成方法。
(1) The reduction projection exposure includes the steps of reducing projection exposure onto a resist film through a mask pattern having a desired shape, and developing the resist film.
In a pattern forming method which is performed with light having a central wavelength λ using a projection lens having a numerical aperture NA, the image forming position on the optical axis of the mask pattern is at least -0.5 with the image forming position with respect to the central wavelength λ as the center. (Λ / NA 2 ) to 0.5
A pattern forming method characterized by being continuously distributed over a range of (λ / NA 2 ).

【0052】(2)上記縮小投影露光に関与する光の波
長帯域巾を、該帯域巾に対応する上記投影レンズの色収
差により、前記マスクパターンの光軸上の結像位置が、
前記範囲内に連続的に分布する様に定めたことを特徴と
する前記(1)記載のパターン形成方法。
(2) The image forming position on the optical axis of the mask pattern is determined by the chromatic aberration of the projection lens corresponding to the wavelength band width of light involved in the reduction projection exposure.
The pattern forming method as described in (1) above, wherein the pattern forming method is defined so as to be continuously distributed within the range.

【0053】(3)上記縮小投影露光に関与する光の波
長を、上記露光中にスキャンすることにより、上記投影
レンズの色収差により、前記マスクパターンの光軸上の
結像位置を、前記範囲にわたり移動させると同時に、前
記波長のスキャン速度を調整することにより、上記結像
位置の移動速度をあらかじめ指定したごとく制御する
か、又は前記波長のスキャンに同期してあらかじめ指定
されたごとく露光量を変化させて露光を行なうことを特
徴とするパターン形成方法。
(3) By scanning the wavelength of light involved in the reduction projection exposure during the exposure, chromatic aberration of the projection lens causes the image forming position of the mask pattern on the optical axis over the range. By simultaneously moving, the scanning speed of the wavelength is adjusted to control the moving speed of the imaging position as specified in advance, or the exposure amount is changed in synchronization with the scanning of the wavelength as specified in advance. A method of forming a pattern, which comprises exposing the film to light.

【0054】(4)上記縮小投影露光に関与する光の光
強度の波長依存性が、台形状、又は2山状であることを
特徴とする前記(2)もしくは(3)記載のパターン形
成方法。
(4) The pattern forming method as described in (2) or (3) above, wherein the wavelength dependence of the light intensity of the light involved in the reduction projection exposure is trapezoidal or bimodal. .

【0055】(5)上記縮小投影露光に用いる光が、エ
キシマレーザ光であることを特徴とする前記(1)記載
のパターン形成方法。
(5) The pattern forming method as described in (1) above, wherein the light used for the reduction projection exposure is an excimer laser light.

【0056】(6)前記投影レンズにおいて、前記波長
帯域巾、又は前記波長スキャンの範囲内の各波長に対し
て、前記マスクパターンの結像倍率の変動、前記マスク
パターンの結像面の像面湾曲及び像面歪は所定の許容範
囲内であり、かつ、上記結像面が光軸方向に異なること
を特徴とする前記(2)もしくは(3)記載のパターン
形成方法。
(6) In the projection lens, the variation of the image-forming magnification of the mask pattern, the image plane of the image-forming surface of the mask pattern, with respect to each wavelength within the wavelength bandwidth or the range of the wavelength scan. The pattern forming method according to (2) or (3), wherein the curvature and the image plane distortion are within a predetermined allowable range, and the image planes are different in the optical axis direction.

【0057】[0057]

【発明の効果】上記の様に、本発明による縮小投影露光
装置は、マスクパターンを基板上へ縮小投影露光する縮
小投影露光装置において、上記露光に関与する光の光強
度の波長依存性を可変とする手段を設けることにより、
マスク上のパターンの投影レンズによる結像位置を上記
レンズの色収差を用いて任意に分布させることができる
ので露光パターンに応じて、その焦点深度を増大させる
ことができる。従って、露光々の短波長化、投影レンズ
の高開口数化、及び素子構造の立体化に伴なう基板表面
の凹凸段差の増大等の起因する焦点深度の不足に対処す
ることが可能である。このため、本発明による縮小投影
露光装置を用いることにより、縮小投影露光法をLSI
等の固体素子における微細パターン形成に適用する際の
大きな障害をとり除くことができ、縮小投影露光法の適
用範囲をさらに微細な固体素子の製造へと拡大すること
ができる。
As described above, in the reduction projection exposure apparatus according to the present invention, in the reduction projection exposure apparatus for reducing and exposing the mask pattern onto the substrate, the wavelength dependence of the light intensity of the light involved in the exposure is changed. By providing a means to
Since the image forming positions of the pattern on the mask by the projection lens can be arbitrarily distributed by using the chromatic aberration of the lens, the depth of focus can be increased according to the exposure pattern. Therefore, it is possible to cope with the shortage of the focal depth due to the shortening of the wavelength of each exposure, the increase of the numerical aperture of the projection lens, and the increase in the unevenness of the surface of the substrate due to the three-dimensional element structure. . Therefore, by using the reduction projection exposure apparatus according to the present invention, the reduction projection exposure method can be applied to the LSI.
It is possible to eliminate a major obstacle when applied to the formation of a fine pattern in a solid-state device such as the above, and it is possible to expand the scope of application of the reduction projection exposure method to the manufacture of a finer solid-state device.

【0058】また、本発明によるパターン形成方法を用
いれば、縮小投影露光法におけるコンタクトホール等に
代表される孤立透光部を有するパターンの焦点深度を増
大させることができるので、露光々の短波長化、投影レ
ンズ高開口数化、及び素子構造の立体化に伴なう基板表
面の凹凸段差の増大、基板の傾斜、および投影レンズの
像面湾曲等による焦点深度の不足に対処することが可能
である。
Further, by using the pattern forming method according to the present invention, it is possible to increase the depth of focus of a pattern having an isolated light transmitting portion represented by a contact hole or the like in the reduced projection exposure method. It is possible to deal with the lack of depth of focus due to the increase in the numerical aperture of the projection lens, the increase in the numerical aperture of the projection lens, the increase in the unevenness of the substrate surface due to the three-dimensional element structure, the inclination of the substrate, and the curvature of field of the projection lens Is.

【0059】従って、LSI等の固体素子の製造に際し
て本発明によるパターン形成方法を適宜用いることによ
り、縮小投影露光法を前記パターンに適用する際の大き
な障害を取り除くことができ、縮小投影露光法の適用範
囲をさらに微細な固体素子の製造へ拡張することができ
る。
Therefore, by appropriately using the pattern forming method according to the present invention in manufacturing a solid-state element such as an LSI, a large obstacle in applying the reduced projection exposure method to the pattern can be eliminated, and the reduced projection exposure method can be used. The scope of application can be extended to the manufacture of finer solid-state devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す構成図。FIG. 2 is a configuration diagram showing another embodiment of the present invention.

【図3】本発明の効果を示す特性図。FIG. 3 is a characteristic diagram showing the effect of the present invention.

【図4】本発明の作用を示す原理図。FIG. 4 is a principle diagram showing an operation of the present invention.

【図5】本発明の一実施例における原理を示す特性図。FIG. 5 is a characteristic diagram showing the principle in one embodiment of the present invention.

【図6】本発明の一実施例の条件を表わす特性図。FIG. 6 is a characteristic diagram showing conditions of an example of the present invention.

【図7】本発明の一実施例の条件を設定するための図。FIG. 7 is a diagram for setting conditions of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…反射鏡、2…波長帯域設定装置、3…エキシマレー
ザ共振器、4…出力鏡、5…ミラー、6…照明光学系、
7…レチクル、8…投影レンズ、9…基板ステージ、1
0…制御コンピュータ、12…波長スキャン装置。
1 ... Reflective mirror, 2 ... Wavelength band setting device, 3 ... Excimer laser resonator, 4 ... Output mirror, 5 ... Mirror, 6 ... Illumination optical system,
7 ... Reticle, 8 ... Projection lens, 9 ... Substrate stage, 1
0 ... Control computer, 12 ... Wavelength scanning device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光源からの光でマスクを照明し、該マスク
上のパターンを投影光学系を介して基板上に転写する投
影露光方法であって、露光中に前記基板に対して結像位
置を可変する工程で各結像位置で露光エネルギーを可変
する工程とを含むことを特徴とする投影露光方法。
1. A projection exposure method for illuminating a mask with light from a light source and transferring a pattern on the mask onto a substrate via a projection optical system, wherein an image forming position is formed on the substrate during exposure. And a step of varying the exposure energy at each imaging position in the step of varying.
【請求項2】前記結像位置を可変する工程は前記光源か
らの光の波長を変化させる工程から成ることを特徴とす
る請求項1記載の投影露光方法。
2. The projection exposure method according to claim 1, wherein the step of changing the image forming position comprises a step of changing the wavelength of light from the light source.
【請求項3】前記露光エネルギーを可変する工程はパタ
ーン露光に用いられる光がパルス発振のエキシマレーザ
であって、 該発振波長を狭帯化する工程と、 狭帯化された波長対応するパルス数を可変する工程から
成ることを特徴とする請求項1記載の投影露光方法。
3. The step of varying the exposure energy is a pulse oscillation excimer laser used for pattern exposure, the step of narrowing the oscillation wavelength, and the number of pulses corresponding to the narrowed wavelength. The projection exposure method according to claim 1, further comprising the step of varying
【請求項4】光源がエキシマレーザであって、パルス発
振した光を狭帯化する手段と、 該狭帯化した中心波長の変化と該光のパルス数とを予め
指定した如く同期させる手段と、同期した光を縮小レン
ズを通して基板上に転写する手段からなる投影露光装
置。
4. A light source is an excimer laser, means for narrowing pulse-oscillated light, and means for synchronizing a change in the narrowed central wavelength and the number of pulses of the light as specified in advance. , A projection exposure apparatus comprising means for transferring synchronized light onto a substrate through a reduction lens.
JP6243670A 1994-10-07 1994-10-07 Projection exposure method and projection exposure apparatus Expired - Lifetime JP2576798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6243670A JP2576798B2 (en) 1994-10-07 1994-10-07 Projection exposure method and projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6243670A JP2576798B2 (en) 1994-10-07 1994-10-07 Projection exposure method and projection exposure apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62251479A Division JP2619419B2 (en) 1987-10-07 1987-10-07 Reduction projection exposure equipment

Publications (2)

Publication Number Publication Date
JPH07183215A true JPH07183215A (en) 1995-07-21
JP2576798B2 JP2576798B2 (en) 1997-01-29

Family

ID=17107250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6243670A Expired - Lifetime JP2576798B2 (en) 1994-10-07 1994-10-07 Projection exposure method and projection exposure apparatus

Country Status (1)

Country Link
JP (1) JP2576798B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204894A (en) * 1998-01-13 1999-07-30 Matsushita Electron Corp Excimer laser oscillation equipment, reduction projection aligner using the same, and pattern forming method using the aligner
US11526082B2 (en) 2017-10-19 2022-12-13 Cymer, Llc Forming multiple aerial images in a single lithography exposure pass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141154A (en) 2007-12-06 2009-06-25 Canon Inc Scanning exposure apparatus and method of manufacturing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204894A (en) * 1998-01-13 1999-07-30 Matsushita Electron Corp Excimer laser oscillation equipment, reduction projection aligner using the same, and pattern forming method using the aligner
US11526082B2 (en) 2017-10-19 2022-12-13 Cymer, Llc Forming multiple aerial images in a single lithography exposure pass
US12001144B2 (en) 2017-10-19 2024-06-04 Cymer, Llc Forming multiple aerial images in a single lithography exposure pass

Also Published As

Publication number Publication date
JP2576798B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
JP2940553B2 (en) Exposure method
KR101072514B1 (en) Optical proximity correction using chamfers and rounding at corners
KR100899359B1 (en) A method, program product and apparatus for performing double exposure lithography
TWI284786B (en) Method and apparatus for performing model-based layout conversion for use with dipole illumination
JP2852169B2 (en) Projection exposure method and apparatus
KR100927454B1 (en) Feature Optimization with Enhanced Interference Mapping Lithography
KR100606491B1 (en) A method for determining parameters for lithographic projection, a computer system and computer program therefor, a method of manufacturing a device and a device manufactured thereby
JP2008160109A (en) Lithographic apparatus and method
JP2000021742A (en) Method of exposure and exposure equipment
JP4194986B2 (en) Lithographic apparatus, device manufacturing method and device
JP3605047B2 (en) Illumination apparatus, exposure apparatus, device manufacturing method and device
JPH04226013A (en) Imaging exposure device and exposure method
EP0938031B1 (en) A process for integrated circuit device fabrication using a variable transmission aperture
JP2619473B2 (en) Reduction projection exposure method
JP2619419B2 (en) Reduction projection exposure equipment
JP2576798B2 (en) Projection exposure method and projection exposure apparatus
JP3296296B2 (en) Exposure method and exposure apparatus
JP2000031028A (en) Exposure method and exposure apparatus
JPH01258419A (en) Pattern formation
JP2000021761A (en) Exposure method and apparatus
JP2894914B2 (en) Projection exposure method and apparatus
JP2000031035A (en) Aligner and manufacture of device
JP3050210B2 (en) Exposure bubble and device manufacturing method using the same
JP3050208B2 (en) Exposure foam and device manufacturing method using the same
JP3099826B2 (en) Exposure apparatus, exposure method, and element manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term